EPГO：
 «EPГA EПE＝EPГA乏IA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~$ ミTO AГION OPOミ»

MEАETH ПEPIBAИMONTIKתN EПIIПTREESN
 EPГSN EПEEEPГAइIA $~ K A I ~ \triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~$ ПANTOKPATOPO乏

ANADOXOE MENETHE

EYミTPATIOE KAPAГEЛPIIOY
ПАПАФН 82， 54453 ӨЕГミA＾ONIKH
email：skarageo＠gmail．com

IEPA KOINOTHTA AIIOY OPOY乏 $A \Theta \Omega$

EPГO：
 «EPГA EПE＝EPTA乏IA乏 KAI AIAOE $H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ \Sigma T O ~$ AIION OPO乏»

MEЛETH ПEPIBAИMONTIKRN EITI／TTSEERN EPISN EITEEEPГAEIAE KAI AIAQEEHE AETIKRN AYMATRN I．M． ПANTOKPATOPOE

MH TEXNIKH חEPIAH

ANADOXOE MENETHE
EYミTPATIOE KAPATERPIIOY
ПАПАФН 82， 54453 ӨЕГऽA＾ONIKH
email：skarageo＠gmail．com

ПINAKA乏 ПEPIEXOMENRN

2. MH TEXNIKH ПEPIAHYH3
2.1. ПЕРІРАФН ЕРГОҮ. 3
 3
 3
 3
2.1.4 Перирраий леттоируías,5
2.2. AПOETALEI之-EYNTETAГMENEL6
2.3. ПEPIBAAAONTIKE E EПIITTQSEIL 8
2.4. METPA KAI \triangle PAEEIL ILA THN IIPOLTAEIA TOY IIEPIBAAAONTOE 11
2.5. ОФелн 11
2.6. Enahanktikes ayeeil 11
 12

2. MH TEXNIKH ПEPI^H ΨH

2.1. Пєрıүрачю́ غ́pүou

E.E.A.

ПAPAMETPOE		ПAPOYЕA ФAEH	ФAEH EXEAIAEMOY
Еॄ̇uпnperoủ	кат.	220,00	290,00
	$\mathrm{m}^{3} / \mathrm{d}$	33,00	43,50
акаӨápтшv	$\mathrm{m}^{3} / \mathrm{d}$	49,50	65,25
	$\mathrm{m}^{3} / \mathrm{h}$	2,06	2,72
	$\mathrm{m}^{3} / \mathrm{h}$	7,42	9,79
	gr/kat/d	60	60
Eıб̈ккó Punavtıко́ ¢ортіо TSS	gr/kat	70	70
Eıӧккó Puпavtıкó ¢ортіо TN	gr/kar/d	10	10
Eıठıко́ Puпavtıко́ ¢ортіо TP	gr/kar/d	3	3
Фортіо BOD_{5} бхદठıабиой	kg/d	13,20	17,40
	kg/d	15,40	20,30
	kg/d	2,20	2,90
Фортіо TP охहరıабиой	kg/d	0,66	0,87

 перıттрєфо́ $\mu \varepsilon$ vous, ßıо入оүıкойя ठїкой,

Фáon 「＇：Enavenixwon opuyuátov aywyóv

2．1．4 Пєрıүрафй גєıтоируіая

 ठıаперато́тŋта UVT $70 \% / \mathrm{cm}$ ．

Kшбıко́¢ опицiou	इuvtetayuėvec ETEA 87	
	X	X
A． 2 （apx＇̇）	522488，04	4458979，78
A． 1	522478，97	4458967，96
A． 0 （Tغ่ ${ }^{\text {O }}$ OS－K．Ф．）	522441，29	4459002，15

	ミuvtetayuėvec EГ¿A 87	
	X	X
D．0．0	522532，15	4459025，49
D．0．2	522490，29	4459019，27
	522441，29	4459002，15

 E．E．＾．हival：

	ミuvtetapuėveç E［EA 87	
	X	X
A． 0 （apx＇－K．Ф．）	522441，29	4459002，15
B． 1	522420，21	4459030，07
B． 0	522421，20	4459052，76

 522415，06 ка। $Y=4459058,37$.
 апоб̈غ்ктП（паракєі $\mu \varepsilon v o ~ \rho \varepsilon ̇ \mu a) ~ \varepsilon i v a l: ~$

Kんठัıкóç oŋpriou	ミuvtetayuėvec，E［さA 87	
	X	Y
＇EȨoठos anó EE＾（C．1）	522410，70	4459053，76
ミף	522396，09	4459045，68

3. KOKKINH ENAEIEH avtıoтoıxยi $\sigma \varepsilon$ APNHTIKH EПIחT $\Omega \Sigma H$

ФAEH EPROY	ПEPIBAAMONTIKO ETOIXEIO	Enimtseeis			BAPYTHTA				$\triangle I A P K E I A$		ANAETPE		
		$\frac{4}{2}$	W్凶入入	증	¢	$\frac{\Sigma}{\frac{L}{E}}$			$\sum_{i=1}^{T}$	工 2 Cu M O	징	W ¢ y L L	$\frac{\mathrm{K}}{2}$
			$\sqrt{ }$			\checkmark				$\sqrt{ }$	\checkmark		
	Морфолоүıка́ каı тополоүіка่ характпрıттıк		\checkmark				\checkmark			\checkmark			$\sqrt{ }$
	характпріоттк்			$\sqrt{ }$									
			$\sqrt{ }$				\checkmark			\checkmark			$\sqrt{ }$
				\checkmark									
		\checkmark			\checkmark					$\sqrt{ }$			
			\checkmark					\checkmark		\checkmark			$\sqrt{ }$
				\checkmark									
	Поıо́tทта тои aغ̇pa	\checkmark				$\sqrt{ }$				\checkmark		$\sqrt{ }$	
		\checkmark					\checkmark			$\sqrt{ }$		$\sqrt{ }$	
	Н入єкронаүvทтікд̇ пеठia			\checkmark									
	Үбата			$\sqrt{ }$									
		\checkmark				$\sqrt{ }$				\checkmark		$\sqrt{ }$	

 גеाтоupyia tous．

2．5．O甲ع́ 1η

 періßа́入lov．

тПs סXETIKウ́s KYA

Mع тПV катабкєuท่ тоu غ́pүou:

Tax．$\Delta /$ vaŋך：Пaná甲n 82，Өعбба入ovikn，Т．K．54453，
Tๆर．： 2310902321
Email：skarageo＠gmail．com
ミфраүіठа－Үпоүра甲и́

KAPAГERPTIOY A．EYETPATIOE ДIПАЛМ．ХНMIKOZ MHXANIKOE A．П．O． MEAOE T．E．E．APIOMOE MHTPSOY 87022
 THA 2310.592 .321
A．Ф．1．199767005－．O．Y．EIT OEETKAONIKHE

Oraסa久ovíkn 14／4／ 2022
CIA TON EAETXO O EПIBAEחRY TA MEAETH
 $\Delta a \sigma o \lambda e ́ \gamma \circ \varsigma \mu \varepsilon A^{\prime} \beta$ ．

E＾EГXOHKE

O ПPOÏETAMENOE

Móoxos т фипаそıஸ́tクs
$\triangle 000 \lambda$ YOOS $\mu \varepsilon A^{\prime} \beta$

IEPA KOINOTHTA AIIOY OPOYE $A \Theta \Omega$

EPГO：
 «EPГA EПE＝EPГA乏IA乏 KAI AIAOE AIION OPOミ»

MEЛETH ПEPIBAИИONTIKSN EПI／TTSEERN EPISN EITEEEPГAEIAE KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~$ ПANTOKPATOPOE

ANALOXOE MEAETHE

EY ZTPATIOL KAPATERPIIOY ПАПАФН 82， 54453 ӨЕГऽAへONIKH email：skarageo＠gmail．com

O

O

ПINAKA乏 ПEPIEXOMENRN

1．EILAГ $\Omega \Gamma H$ 9
1．1．Titaos eptoy ．． 9
1．2．EIAOL KAI METE＠O』 EPROY ．． 9
1．3．ГЕЯГРАФIKH ӨЕЕН KAI ДIOIKHTIKH YTIAГ Ω ГН EPIOY 9
1．3．1 Є6ㄲ 10
 II
 11
 11
 11
 12
 12
12
1．4．Katatazh toy eproy 12
1．5．ФOPEAL EPIOY． 13
1．6．ПEPIBAAAONTIKOE MEAETHTH亡 EPIOY 13
2．MH TEXNIKH IEPIAHYH 14
3．ГYNOITIKH IEPIГPAФH T ΩN EPГ Ω N 15
3．1．BAEIKA ミTOLXEIA TOY EPIOY 15
 15
 15
 15
3．2．BAEIKA ETOLXEIA KATA乏KEYHE KAI AEITOYPCIA乏， 16
 17
3．3．AПAITOYMENE ПOLOTHTEL ПPQTQN YAQN，NEPOY，ENEPIELAL KAL AПOBAHT $2 N$ 18
 18
 19
 21
4．1 ETOXOE KAI EKOIIMOTHTA 21
 21
éppod 21
 21
4．2．IETOPIKH EEEAEH TQN EPIQN 22
4．3．OIKONOMIKA ETOIXEIA TQN EPI Ω N 22
 22
 22
4．3．3 Тро́тос хрпиатоботтүоп． 22
4．4．SYEXETILH TOY EPIOY ME AAAA EPDA 23
5．इYMBATOTHTA TOY EPГOY ME OE $\Sigma M O Q E T H M E N E \Sigma ~ X \Omega P I K E \Sigma ~ K A I ~ П O A E O A O M I K E \Sigma ~$ AEEMEY 24
5．1．QELH TOY EPTOY 24
5．1．1 Opıа оьктдиิv． 24
 24
5．1．3 オабוкéc єктáaziç 24
 24
5．1．4．1 Oठぃо́ ठ̈ктоо 24
 ．． 24
 24
5．1．4．4 AлоуE்tevoा 24
5．1．4．5 Үठреитा 25
 25
5．2．IEXYOYEEE XQPOTAEIKE KAI ПOAEOAOMIKEL PY＠MIEEIL THL ПEPIOXHL TOY EPIOY． 25
5．2．1 ПроріЕ்чधıऽ 25
5．2．2 Өебдкко каӨсотळ́ц． 25
 26
 26
6．ANAAYTIKH ПEPIГPAФH $\Sigma Х E A I A \Sigma M O Y ~ T O Y ~ E P Г O Y ~$ 27
6．1．ANAAYTIKH IEPITPAФH TEXNIK Ω N－TE Ω METPIK Ω N ETOLXEI Ω N 27
 27
 27
 27
6．2．ANAAYTIKH IIEPITPAФH KYPI Ω ，BOHӨHTIK Ω N KAI YПOLTHPIKTIK $\Omega N / \Sigma Y N O \triangle \Omega N E I K A T A \Sigma T A \Sigma E \Omega N ~ K A I E P I \Omega N ~$ 30
6．3．EIIMEPOYェ EPLA 31
6．3．1 Kıрıaкд́ épүa． 31
 31
 32
 32
6．3．4．1 Ерүа третоßӓӨиац елгегррүабіаद， 32
 33
 35
 36
 37
 37
6．4．ФAEH KATAZKEYH亡 T Ω N NE Ω N EPR Ω N 37
 37
 37
 38
6．4．4 Avaүкаі́a vגıкд́ катаоквойร 39
6．4．5 Eкров́я vүро́v алоß入йтоь 39
6．4．6 Misová̧̧ovta dגıкá 39
6．4．7 Еклоилह́ç аह́рเळv ро́тळv 40
6．4．8 Ектоитв́ş Өоро́ßод каи ठоvท்øвюv 40
 41
6．5．ФALH AETTOYPILA乏 41
 41
 41
 42
 42
 43
 43
 43
6．6．ПAYЕН AEITOYPILAL－AПOKATALTALH 43
 43
6．6．2 Kадаiрвоп μ о́vцоь катабквиळ́v． 44
 44
6．7．＇EKTAKTE \＆YNOHKEL KAI KINAYNOI ITA TO IIEPIBAANON 44
 44
 44
 45
 45
6．8．EIIIAPALH TOY EPIOY ZE KOITE PEMATQN 45
7．ENAAAAKTIKE AYEEIE 46
7．1．ПAPOYZIALH BISIIMHE AYZHट 46
 46
 46
 47
7．1．3．1 Геvка́ 47
 48
 54
 56
 58
 61
 62
 64
 65
7.1.4.4 ТедПттоі Yүровıо́тотол 66
 70
 72
 73
7.1.5.1 Геviкá 73
 73
 74
7.2. AЕІОлОГНЕH KAI AITIOAOFHEH THZ TEAIKHE EIIIOLHE 75
 75
 75
 76
 80
 83
 83
8. YФILTAMENH KATALTALH IIEPIBAAAONTOE 84
8.1. ПЕPIOXH MEAETHL 84
 84
8.1.2 гпиеіако́ е́рүо 85
8.1.3 Katпropia épyov. 85
8.1.4 Пробтатеьо́ияи терохй 85
8.1.5 Yурототккі пєриохй $^{\text {п. }}$ 85
 85
8.2. KАIMATOAOГTKA KA BIOKAIMATIKA XAPAKTHPILTIKA. 85
8.3. МОРФОАОПТКА КАІ ТОПОАОПКА ХАРАКТНРЕЕТIKA 87
8.3.1 Катаурарй тотіод кvацора́с 87
8.3.2 Еирютайкі о́циюоп топіод 87
 88
 88
8.4. ГЕתAOITKA, TEKTONIKA KAI EAAФOAOГTKA XAPAKTHPILTIKA 89
8.4.1 Геоміоуиќ ұарактрртаткќ 89
8.4.2 Eбачоіоүикд үарактирьтикх́ 91
8.4.3 Тектонка́ ұарактиритикд́ 93
8.5. ФҮЕIKO ПЕРIBAAAON 93
8.5.1 Гevidá otorzeia 93
 94
 96
 97
 103
 103
 104
 104
 104
 104
 105
8.6. ANOPQIIOIENEL IIEPIBAAAON 105
8.6.1 Хшротац̆но́с бквбィабио́s 105
 105
 105
 106
 106
 106
 106
 106
 107
 107
8．7．KOINQNIKO KAI OIKONOMIKO IEPIBAAAON 108
8．7．1 डииоурарию ката́атапा 108
 109
8．7．2．1 Парауорикоі тоигіс． 109
 109
 109
 109
8．8．TEXNIKE Y YOAOME 109
8．8．1 Үтодонв́я иєтачоро́v． 109
 109
8．8．3 Аіктла и́брелап！． 110
8．9．AN＠P®ПOIENEIL ПIIE 110
 110
 110
8．10．ATMOLФAIPIKO ПIEPIBAМАON－ПOЮTHTA AEPA． 110
 110
 111
 111
8．11．AKOYETIKO IIEPIBAAMON KAI $\triangle O N H E E I \Sigma$ 111
8．11．1 ITगь́ç Oopóßou 111
 111
 111
8．12．HAEKTPOMAГNHTIKA IEAIA． 111
 112
 112
8．13．＇Y $\triangle A T A$ 112
 112
 112
 112
 112
 112
 112
 113
 113
 113
8．13．3 Yто́јеа ט́бага 113
 113
 113
 114
 114
8．14．KINAYNOI IIA THN ANEPQIINH YTELA，THN HOATTILTIKH KAHPONOMIA H／KAI TOIEPIBAAAON，KYPI Σ AOI Ω ATYXHMATRN KAI KATALTPOD Ω N． 114
8．15．TAEEIL EEEAEHL TOY ПEPIBAAAONTOE XQPIL TO EPIO 115
 115
 115
9．EKTIMHटH KAI AEIOAOГHЕH IEPIBAAAONTIK ΩN EIIIIT $\Omega \Sigma E \Omega N$ 116
9．1．ME＠OAOAOTIKE AILATTHLEIL 116
9．2．EIIIITREEIL EXETIKA ME TA KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPILTIKA 117
 117
 Өяриохорртко́трткц 117
 117
 117
9．2．3．2 Фи́oŋ 入etoupyiac 118
9．3．EIIITT®ะEIE ETA MOРФОАОГIKA KAI TOПOAOГIKA XAPAKTHPIETIKA． 118
 118
 118
 118
 119
 119
9．4．EாIITREEIL EXETIKE ME TEQAOIIKA，TEKTONIKA KAI EAAФOAOГIKA XAPAKTHPILTIKA． 119
9．4．1 Макробкотикец тарадррйац． 119
 119
 119
 119
 119
 119
 120
 120
9．5．EחIITTQEEIL ETO ФYรIKO ПIEPIBAAAON 120
 120
 120
9．5．2．1 Eio̊uরá otoxzzía 120
 121
 122
 122
9．5．3．1 Eสutto 122
 122
9．5．4 Ahies опиаvtiке́s лерıохе́s 122
 122
 122
9．6．EIIITRIEEL STO AN＠P＠ПOIENE HEPIBAAAON． 122
 122
9．6．1．1 Meraßolés oaç xpíjerc 7 Ms 122
9．6．1．2 Eкutwoets 123
 123
 123
 123
 123
9．6．3．1 Eлитбовй． 123
 124
9．6．3．3 Eıӧикŋ́ ектіцךणワ 124
9．7．EIIITIQEELE STO KOINQNIKO－OIKONOMIKO IIEPIBAAAON 124
 124
 124
9．7．3 Ө́́авцг врүаテіаद 124
 124
9．7．5 Поио́тиа Цюйร． 124
 124
9．8．EIIITTREEIL \＆TIL TEXNIKE Y YIOAOME 124
9．8．1 Eилttorac． 124
9．8．2 Eта́рквіа． 125
9．9．इYミXETIZH ME TIL ANӨP＠IOFENEIL HIIEEEIL ETO IEPIBAAAON 125
9．9．1 IhOavótpra eviopuors 125
 125
9．10．EாIITR Ω EEIL ETHN ПOIOTHTA TOY AEPA 125
9．10．1 Елилти́баця 125
9．10．2 Үпољочиио́с оиуквирро́бвои 126
 126
9．11．EIIITTQEEIL AПO ӨOPYBO H \triangle ONHLEIL 126
 126
 127
9．12．EIIITTQ乏EIE EXETIKEL ME HAEKTPOMAINHTIKA IEAIA 127
9．12．1 Eлитtळँаद̆ 127
9．12．2 HiOavórиra 127
9．13．Enimitaseİ ETA Y $\triangle A T A$ 128
 128
9．13．2 Епатб́бая бта елифаvеіакд́ и́бата． 128
 128
 128
 128
 128
 128
 128
9．13．3．2 Avá̀voा 129
 129
 129
 129
9．14．EIIITR乏EIE ПOY AПOPPEOYN AПO KINAYNOYะ ГIA THN AN＠PQПINH YTEIA，THN ПOAITILTIKH KAHPONOMIA H
／KAI TO IEPIBAAAON，KYPI $\Sigma \Sigma$ AOI Ω ATYXHMATRN KAI KATAZTPOФ Ω N 129
9．15．इYNOYH EIIITISEESN LE IINAKE 130
10．ANTIMET Ω IILH IEPIBAAAONTIK ΩN EIIIIT $\Omega \Sigma E \Omega N$ 133
10．1．ME＠ОАОАОГIKEट AПAITHLEIL KAI ПPOLӨETA METPA 133
10．2．METPA AПOKATAZTAZHI KAI ANTIMETQIIILHL EПIITREE Ω N Σ E KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPIETIKA 135
 XAPAKTHPLLTIKA 135
 XAPAKTHPLLTIKA 136
 136
10．6．METPA AПOKATALTALH亡 KAI ANTIMET $\Omega I I \Sigma H \Sigma ~ E I I I T I \Omega \Sigma E \Omega N ~ \Sigma T O ~ A N \Theta P \Omega П O Г E N E \Sigma ~ П E P I B A A A O N . ~$ 137
 138
10．8．METPA AПOKATALTALHL KAI ANTIMET 2 IIILHL EIIITTQEE Ω N $\Sigma T I \Sigma$ TEXNIKEL YHOAOMEL 138
 IEPIBAAAON 139
10．10．METPA AПOKATAETALHE KAI ANTIMETSIIILHZ EIIIITREESN $\Sigma T H N$ IHIOTHTA TOY AEPA 139
10．11．MEIPA AПOKATALTALHE KAI ANTIMETQIIILHZ EIIIITQEESN AIO＠OPYBO H \triangle ONHLEIE 140
10．12．METPA AПOKATALTALHL KAI ANTIMETQIIILH亡 EIIIITREESN EXETIK Ω N ME HAEKTPOMAINHTIKA IEAIA 141
 141
10．14．METPA AПOKATALTAZHE KAI ANTIMETRПILHZ ПEPIBAAAONTIK\＆N EПIITIQEEQN ПOY AПOPPEOYN AПO THN EYIIA＠ELA TOY EPIOY EE KINAYNOYE EOBAPQN ATYXHMAT Ω N H KATAZTPOD 2 N． 142
10．15．AПOTEムE 142
11．ПEPIBAAAONTIKH AIAXEIPI工H KAI ПAPAKOAOYӨHटH． 170
11．1．ПEPIBAム＾ONTIKH \triangle IAXEIPILH 170
11．2．ПЕРIBAААОNTIKH ПАРАКОлОҮӨНЕН 170
 170
 170
 170
 170
 170
 171
 171
 172
 172
 172
 172
 172
 173
 173
 173
11．2．4 Паракоخоь́Өŋоп Өоро́ров． 173
11．2．4．1 Mह́ 173
 173
 173
 173
11．2．5 Параюоіоі்Өпоा обиф́v 173
 174
 174
 174
 174
11．3．Σ XEAIO ANTIMETRПILHL EKTAKTQN IEPILTATTK Ω N 174
11．3．1 Eобxaní 174
11．3．2 Avтксіиеvo тои Σ इбסiov 174
11．3．3 Eveрүотоіро tov इxeठiov． 175
11．3．4 Aжеvеруотоіроп тои Σ квסíov． 176
 177
 IIEPIBAAAONTIK Ω OP OPN 184
12．1．©EMA－ONOMASIA EPIOY H APAETHPIOTHTAE 184
12．2．EПחNYMIA ФOPEA H \triangle PASTHPIOTHTAZ 184
12．2．1 Kата́тайク ќpyov 184
 185
 185
 185
 185
12．2．2．4 इuvteтवүиévec окоже́ठ̇ov EEA． 185
 185
12．2．3 Пергүраий Ерүюо． 186
 теривӧ̀iovtos． 188
 188
12．2．5．1 A仑̂pla $\alpha \pi \dot{\delta} \beta \lambda \eta \tau \alpha$. 188
12．2．5．2 Үүри́ ажо́ß入ŋта． 188
 189
 190
 190
 190
12．2．7．3 Kazù tा फámा Aहtroupriaç 193
 197
 198
13．IIPOEOETA ETOIXEIA 199
13．1．E®EIAIKEYMENE meAETES 199
13．2．ПРОВАНМАТА ЕКПОNHटHL 199
14．ФЛТОГРАФIKН TEKMHPI $\Omega \Sigma H$ 200
15．XAPTE - EXEAIA 202
15．1．Xapthi tipozanatoaizmoy 202
15．2．XAPTHZ HEPIOXHE MEAETHE 202
15．3．XAPTHE ENAAAAKTIK Ω N $A Y E E \Omega$ N 202
15．4．ГЕ $2 \wedge$ OIIKOE XAPTHE 202
15．5．XAPTHE XPHLE Ω N KAI KAAYYHE FHE 202
15．6．इXEAIA TOY EPIOY H THZ APAZTHPIOTHTA乏 202
15．7．Xaptes enimiraze 2 N 202
15．8．XAPTHЕ ПPOГРАММАТОЕ ПAPAKOAOY＠HЕHЕ 202
16．ПAPAPTHMA 211
16．1．YTIEIONOAOГIKOI YHO $\triangle O Г I \Sigma M O I ~ T H \Sigma ~ E, E . \Lambda ~$ 212
16．2．ПTYXIO ME \wedge ETHTH． 213
16．3．EIДIKH OIKO $О$ OГIKH АЕIOАOГНЕH 214

1．ЕIइAГЛГН

 EПE＝EPTA乏IA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T R N ~ I . ~ M . ~ П A N T O K P A T O P O \Sigma » ~ T o u ~ \varepsilon ่ p y o u ~ « E P Г A ~$

 періпои 17 m ．

 Kal tov N1650／1986．

1．1．Títhos ε épou

 IEPA乏 MONH亡 ПANTOKPATOPO乏»．

1．2．Eídos каı $\mu \varepsilon ́ \gamma \varepsilon Ө o \varsigma ~ \varepsilon ́ \rho \gamma o u ~$

To غ́pүo a甲орá бuvoптікá та парака́тш：

ПPOTEINOMENA EPTA

 $\lambda u \mu a ́ t \omega v$ TПS I．Movís

 av ω т $\dot{\rho} \omega \omega$ v
 SN8，ouvo入ıкои́ μ ก̇коuц періпоu 56 m，

1.3.1 Ożoŋ

1．3．2 Аıоıкптıк்่ uпаүшүи்

	इuvtetayuévec E［टA 87	
	X	X
A． 2 （apx＇̇）	522488，04	4458979，78
A． 1	522478，97	4458967，96
A． 0 （Tغ่ं入OS－K．Ф．）	522441，29	4459002，15

	इuvtetayuėvec，E［さA 87	
	X	X
D．0．0	522532，15	4459025，49
D．0．2	522490，29	4459019，27
A． 0 （тغ่入०¢－K．Ф．）	522441，29	4459002，15

 E．E．＾．عival：

Kшठठıко่¢ опияiou	ミuvtetayużveç E［EA 87	
	X	X
A． 0 （apx＇்－K．Ф．）	522441，29	4459002，15
B． 1	522420，21	4459030，07
B． 0	522421，20	4459052，76

 522415，06 ка। $Y=4459058,37$ ．

	ミuvtetayuėvec，E［さA 87	
	X	Y
＇EE\％Oठо¢，anó EE＾（C．1）	522410，70	4459053，76
इп	522396，09	4459045，68

1．4．Ката́та६̧ク тои غ́pyou

－ 12 O„áす̄øç каı
－ 2 Катпүорієऽ：
－ 1^{η} катпүоріа（A）$\mu \varepsilon$ ठủo uпокатпүорівৎ（A1 кaı A2）ка।
－ 2^{7} катпүоріа（B）

$\begin{aligned} & \text { EIAOE EPIOY H } \\ & \text { पPA乏THPIOTHTA乏 } \end{aligned}$	$\underset{\text { A1 }}{\text { YIOKKATHIA }}$	$\underset{\text { A2 }}{\text { YIOKATHIA }}$	$\underset{\text { B }}{\text { KATHIOPIA }}$	ПAPATHPHEEİ
a／a： 19 Еүкатаота́бधя， єпє६६pyacias aотікढ́v лица்тшv （по̇ $\lambda \varepsilon \omega \mathrm{v}$ ка। окєбนஸ்v）$\mu \varepsilon$ ס̈à $\theta \varepsilon a \eta$ єп६६६pүađuغ̇v ω v uү $\dot{\omega}$ v $\sigma \varepsilon$ єпіраvяiaкó тп Өá入aซəa	$\Pi \geq 100.000$ ь．к．	$\Pi<100.000$ ı．к．		П：Mováฮ̄६ऽ Iซoठ̄úvauou П凤ПӨuбนои்（МіП） a）$\sum u \mu п а р а б u ́ p o v т a ı ~ \mu \varepsilon ~ \pi \eta v$ $\lambda u \mu a ́ t \omega v$（EEN）： －оі квทтрікоі апохЕтеитікоі aүшyoi $\varepsilon к т o ́ s ~ \sigma x \& ס i o u ~$ －ol ayшүoi סráقधans， B）OI EEへ Ібю к．А．п．，оuнпарабúpovtal anò TIS avtiotoixes браотпріо́тптея， ү）Гіа то вбШтеріко் ठіктио

 1^{η} Kaтпуорі́а каı Yттокатпүорі́а A2．

KarátaEn катá ミTAKOム 2008 каı NACE Rev． 2

$\Delta / v o n ~: \quad$ Пaпápn 82，Өєбба入oviкn，Т．К． 54453
$T \eta \lambda . \varepsilon п ⿺ 𠃊 ⿴ 囗 十 七 七 \omega v i a \varsigma ~: ~ 2310902321 / 6976801783 ~$
e－mail ：skarageo＠qmail．com

2. MH TEXNIKH ПEPI^H ΨH

3. इYNOПTIKH ПЕРІГРАФН T®N EPГЛN

 проß入غ̇пहтаı η катабкєuท่ v

E.E.A.

Пivaкая 3．1．：Парá $\mu \varepsilon т \rho o I ~ \sigma \chi \varepsilon \delta ı a \sigma \mu о u ́ ~ E E \Lambda ~$

ПAPAMETPOE		ПАРОYЕA ФАЕН	ФAEH EXEAIAEMOY
	кат．	220，00	290，00
	$\mathrm{m}^{3} / \mathrm{d}$	33，00	43，50
акаӨápтшV	$\mathrm{m}^{3} / \mathrm{d}$	49，50	65，25
	$\mathrm{m}^{3} / \mathrm{h}$	2，06	2，72
	$\mathrm{m}^{3} / \mathrm{h}$	7，42	9，79
Eıठıко̇ Puпavtıkó ¢ортіо BOD_{5}	gr／kat／d	60	60
Eıঠıkó Punavtıkó ¢ортio TSS	gr／kat	70	70
Eıöıкó Punavtikó ¢ортio TN	gr／kar／d	10	10
Elŏıкó Punavtikó ¢ортio TP	gr／kar／d	3	3
Фортіо BOD_{5} бхદठıабนой	kg／d	13，20	17，40
	kg／d	15，40	20，30
Фортіо TN охहঠıабной	kg／d	2，20	2，90
Фортіо TP охहठıабиои̇	kg／d	0，66	0，87

 пєрıттрєфо́ $\mu \varepsilon$ vouc，ßıо入оүıкойя ठїкоuч，

－Н入єктрıко́ пivaка $\varepsilon \lambda \varepsilon ̇ ү \chi o u ~ \lambda \varepsilon ा т о u p y i a c . ~$

Фáon 「＇：Enavenix ω on opuy $\mu a ́ t \omega v$ ay ω yáv

3．2．1 Пєріүра甲ท่ גєıтоuрүіая

 отПV катакра́тпоп T Tんv aı

 ठıаперато́тпта UVT 70\%/cm.

aпоßАர்т ωv

- Kатабкєบغ́ц апо́ đкиро́ठ̄єца $80 \mathrm{~m}^{3}$.

- \wedge Өобо $\mu \varepsilon ́ \varsigma ~ 77 ~ m ² . ~$

Xprion evépyelas

 бદ пहріпои 21.170 kWh кal 58 kWh avtioтоıха．

Xpr்on xпuiка́v

3．3．2 Побо́тптес апоß入ウ่тюv

Кшठıко́c E．K．A．：19．08．05

Yypá anóß Ynta $^{\text {Y }}$

A ε pia aпóß入nta

 ठıદن́Өuvon avė $\mu \omega \mathrm{v}$ ）．

 عivaı ol ако்入оuӨєऽ:

Перıура甲й	Xpóvos גєıтоupyias (h/غ̇тоऽ)							
		CO	NOx	$\mathbf{S O}_{2}$	voc	PM10	PM2.5	CO_{2}
$\begin{gathered} H / Z \\ \text { (IOxúç } 25 \\ \text { kVA) } \end{gathered}$	20	1,39	3,68	0,50	0,29	0,27	0,27	359,25

4. $\Sigma T O X O \Sigma ~ K A I ~ \Sigma K O П I M O T H T A ~ Y \Lambda O П O I H \Sigma H \Sigma ~ T O Y ~ E P Г O Y ~-~$ EYPYTEPE Σ Y $\Sigma X E T I \Sigma E I \Sigma$

4.1. इто́хоя каı бкопицо́тпта

 Mavouñ̀ B' о Па入аıоᄉóyos

 врүсто́onाтшv.

 ठитіка́.

4.3.1 Ектіцךоŋ бuvoגıкой проӥпоגоуıбиой

 бє 703.168,93 Eupढे.

4.3.3 Тро́поя хрпиатобо́тпоŋя

 проүра́ циата.

 'Opos.

5．ГYMBATOTHTA TOY EPLOY ME OE乏MOOETHMENE XתPIKE乏 KAI ПONEOAOMIKE乏 $\triangle E \Sigma M E Y \Sigma E I \Sigma$ TH乏 ПEPIOXHE

5．1．1＇Opıa oıкıоцஸ்v

5．1．2＇Opıa проотатєиó $\mu \varepsilon v \omega v$ пєрıохผ்v

5．1．4．1 обіко́ ঠіктио

 хшнато́броро．

 İpıббой kaı Tpunŋтர்̧．

5．1．4．4 Aпохغ́тعuणП

5.1.4.5 'Yסоعиनп

H úठן

 Apxaıoтர்T

тои غ́pyou

 unoठоцஸ்v.

5.2.1 Проßлદ̇чعıৎ

 4% avá ठєкаєтіа.

5.2.2 Өعбиико่ каӨєбтஸ்ৎ

 ГХООАП, ПЕРПО К.т.入.).

 бúnф $\omega \mathrm{va} \mu \varepsilon$ та кргтйріа тои áp θ роu 19, $\omega \varsigma$:

 хモрбо́vๆбо тои 'AӨ ω.

6. ANAАYTIKH ПЕРIГРАФН ГXEДIA¿MOY TOY ЕРГОY

 (рغ́ца).

 522415,06 ка। $Y=4459058,37$.

 عvepyoú عாı甲áveıaç $2500 \mathrm{~m}^{2}$.

 λ дида́тшv.

 ठıаперато́тпта UVT 70\%/cm.

－Ефєठоіко́ пХоноvани̇vo пגєктропараүшүó Z६úyoc．

Пivaкас 6．1．ПарохЕ̇ц $\lambda \cup \mu a ́ т \omega v$

ПAPAMETPOE		ПAPOYЕA ФАЕН	ФAEH EXEAIAEMOY
	кат．	220，00	290，00
	$\mathrm{m}^{3} / \mathrm{d}$	33，00	43，50
акаӨа́ртшv	$\mathrm{m}^{3} / \mathrm{d}$	49，50	65，25
	$\mathrm{m}^{3} / \mathrm{h}$	2，06	2，72
	$\mathrm{m}^{3} / \mathrm{h}$	7，42	9，79
Eıठ̈ко̇ Puпavtıко́ 甲ортіо BOD_{5}	gr／кar／d	60	60
Eıธ̈ıкȯ Punavtıкó ¢ортio TSS	gr／kat	70	70
Eıöıкó Puпavtıkó ¢ортіo TN	gr／кaт／d	10	10
Eı̇ııк̇ Puпavtikó ¢ортio TP	gr／kat／d	3	3
Фортіо BOD_{5} оXहठıабนоบ่	kg／d	13，20	17，40
Фортіо TSS охहঠıaбนой	kg／d	15，40	20，30
	kg／d	2，20	2，90
Фортіо TP бхहठıабนоบ่	kg／d	0，66	0，87

 ка入入ıгрүєıы்v

Парáнєтроя	KYA 5673／400／97	KYA 145116 －Пiv． 2
Апоб̇̇ктПऽ	（ $\mu \eta$ घиаїनӨптоs апоठ̄غ்ктПऽ）	
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{l})$	≤ 25	≤ 10（80\％ठвıуца́т ${ }^{\text {a }}$ ）
COD（mg／l）	≤ 125	
Alwpoúurva oteped（ mg / l ）	≤ 35	≤ 10（80\％ठвıуцव்т ${ }^{\text {a }}$ ）
Өо入ótnta（NTU）		≤ 2（סıá μ ¢のП Tıur）
Eschericia Coli（E．coli） (EC/100ml)	＊	$\begin{aligned} & \leq 5(80 \% \text { ठвıүна́т } \omega v) \\ & \leq 50(95 \% \text { ठвıүца́т } \omega v) \end{aligned}$

 50 Hz ．

$\varepsilon п \varepsilon \xi \varepsilon р y a \sigma i a c$,

 ка入 $\omega \delta \bar{\omega} \omega \dot{\sigma} \varepsilon \omega \mathrm{v}$ ．

－Е६ютєріко́s Фштібцо́s

－इúotnua үعíwons
－Еүката́бтаоп аvтıкєраuviкńs проотабias

6．3．1 Kтıрıакá épya

 $\mu \eta$ Хavootáбı。．

 $2,65 \times 1,95 \mu$ ．．

 m .

 плǹpns vitponoinon.

 $\varepsilon \mu ß а п т і \sigma \mu \Sigma ̇ v \eta \varsigma ~ п \varepsilon р і о т р о ф и ̆ я, ~$

 $\varepsilon \vee \tau \dot{\mu} \mu \mathrm{v}$.

 єпифáveıac,

 перıттрєфо́ $\mu \varepsilon$ vouc ßıо入оүıкойс ठ̈́ซкоuc,

－Апоотátȩ ठїккшv anó поגuпpoпuर̇̇vio

－Pou入દцáv
－Poठ̄غ̇へعৎ
－дакти்入ıо аофалвіая，

 Titley 2014）．

 $8 m^{3} / m^{2}-h r$ ．

 прокаӨiそnопя

6.3.4.4 Anohúuavön

 ठıаперато́тŋта UVT 70\%/cm.

 нікрооруаvіб $\omega \dot{\omega}$.

 TCP/IP, CANopen).

ката入аиßáveтаı

6.4.2 Enıนह̇pouç TEXvıкả غ̇pya

єкпогŋӨві．

 IKAO．

6．4．4 Avayкaia uגıкá катаơкعuŋ̀乌

6．4．5 Екроغ́ழ uүрळ́v anoßגク்тшv

6．4．6 ПАعovàZ̧ovta uגıká

 $645 \mathrm{~m}^{3}$ ．

 عiठ̄ous عpүаवia.

 ठı६úӨuvon avė $\mu \omega \mathrm{v}$).

ミủvӨعoŋ عрүота६iou (єктінŋоп):

- 1 Мпहтоví̇pa
- 1 МпХаvіко́с єкокафєац,

M \quad Xávø ${ }^{\text {a }}$	LWa dBA	Leq/LWa	Eủvo ${ }^{\text {o }}$				Аıápкııa			dB(A)
			$\begin{array}{\|c} \text { Res.Laeq } \\ \text { dBA } \end{array}$	Dist. Ratio	Equiv. On-time	Equiv. On-time	Active dur.	Corr. On-time	PNi	
$\begin{aligned} & \text { Eкवкафॄ̇a̧ } \\ & 200 \mathrm{~kW} \end{aligned}$	109	Lwa	61.00	4.00	0.32	0.32	8	21.6\%	0.02	54
Фортпүо́ипвтоvíga	106	Lwa	58.00	4.00	0.32	0.32	8	21.6\%	0.01	51

Avatpenó L हvo 25 Tv 120 kw	108	Lwa	60.00	4.00	0.32	0.32	8	21．6\％	0.02	53
Xроviкர் пєрioठo¢：8h										
Combined（Leq）： 59 dBA										

Me ßáon touç napanảv ω uno久oүıø

 П入єктропараүшүо́ दعúyo¢ TПऽ EEA．

6．5．Фáoŋ Aعıтоupyía

 пароч்ซаৎ $\mu \varepsilon \lambda$ ह̇тๆ̧．

Xprion evépyeias

IIINAKA亡 KATANAA $\Omega \Sigma H \Sigma ~ H A E K T P I K H \Sigma ~ E N E P \Gamma E I A \Sigma ~ K A I ~ A E I T O Y P I I K O ~ K O \Sigma T O \Sigma ~$							
A／A		גatouppia	Еүкатевтицікท Iozós／res．	Aторрочо́нахך 		Xpóvog 2．ztrovpyias	
	Нертүра甲р	Тец．	kW	kW	kW	h／d	kWh／d
1	Yкоßри́xua avtilia avth． 10 otaoioy B． axỏ η Ēท	1	0，90	0，72	0，72	12	8,6
2	Yтоßpíxu aveरi．ia гроробосіас β ßюд． Ba0 μ ī ωv	1	0，55	0，44	0，44	12	5，3
3	Kwทテтipaç лерибгро甲ís Bro8iokoy	1	1，10	0，88	0，88	24	21，1
4		1	0，55	0.44	0，44	2	0，9
5	Kıvпripaç ¢йтpov	1	0，18	0，14	0，14	2	0,3
6	Aveitan $\pi \lambda$ úonc	1	0,90	0，72	0,72	2	1.4
7		1	0.90	0.72	0,72	2	1，4
8		1	0，44	0，35	0，35	12	4，2
9		1	0，50	0，50	0，50	24	12，0
10		1	0，25	0，25	0，25	12	3，0
	EYNOAO				тиеррікия китиу		58

Xprion xпиाкळ்v

6．5．3 Екроє́c uypळ்v anoßגク்тшv

Kんठัıкóç E．K．A．：19．08．05

 عival oı ако́入оuӨを̧；

Перıүрафй	Xpóvos גеıтоupyias， （h／غ̇тос）							
		co	NOx	SO_{2}	voc	PM10	PM2．5	CO_{2}
$\begin{aligned} & \mathrm{H} / \mathrm{Z} \\ & \text { (ıoxu̇ç } 25 \\ & \text { kVA) } \end{aligned}$	20	1，86	2，95	0，40	0，60	0，36	0，35	289，83

6．6．Паи́бך Аعıтоируias－апокатáбтабך

6．6．2 KaӨaipeơn μ óvı $\mu \omega \mathrm{v}$ катаवккєuळ̉v．

 проц аvакúк $\lambda \omega \sigma \eta$ ．

 anó тŋv I İpá Movウ்．

 плйр ω ¢．

6．7．1．2 Eкठгìhшaп пиркауіа́s

 aпаıтвіта．

6．7．1．4 Aотохia ह́pvouv ou

－Aотохіа тпऽ $\lambda \varepsilon$－

－Аотохіа тпऽ $\lambda \varepsilon$－

 ع入єүхо́нєvo．

 عпо́ $\mu \varepsilon$ vo кє甲á入aıo．

7. ENAMAAKTIKE \wedge Y $\Sigma E I \Sigma$

 фúons, kлп)

7．1．3．1 ГعviKǵ

 биотпиáт $\omega \mathrm{v}$ єпє६६рүабiac，

1．ミuotíциata Evepyoú I／ủos，

3．ミúcтпиa $\mu \varepsilon \mu ß \rho a v \omega \dot{\omega}$（MBR－Membrane－Bio reactor）
4．Пєрıбтрєфо́иєvoı ßıодоүıкоі ठітко৷
（7）Фưıка́ इuoтர்иата

2．इuotinuata Taxziac Δ ıiṅ

i．Үүроßıт்топоו єпı甲аvєıакп்ऽ ройऽ（FWS）

7．1．3．2 ミúotnua evepvoú ıiv́os

ミuиßatikó oúơnua evepyoú ı λ úos

 uпа́рхєı прштоßáӨциа каӨiZ̆ппп．

 поu ovoцáそ̧vtaı ßıкрокіঠ̈є̧．

 апо́ то бúoтпиа．

Anouákpuvan BOD_{5}（\％）	Opyavikn่ фо́ртї́ா $\left(\mathrm{KgBOD}_{5} / \mathrm{kg}\right.$ 	$\begin{gathered} \text { Оукоиєтріки́ } \\ \text { фо́ртіоŋ } \\ \left(\mathrm{KgBOD}_{5} / \mathrm{m}^{3}\right. \\ \eta \mu \varepsilon \dot{\rho a}) \end{gathered}$	Aváuıкто uypó MLSS （mg／lt）	Xpóvos Парадоvท்я （hr）	Avaкuклочоріа iAúos	Xpóvos Паранокท்с ı λ ủos （ $п \mu \varepsilon \dot{\rho} \varepsilon \varsigma)$
85－95	0．2－0．4	0．3－0．6	1500－3000	4－8	0．25－0．50	5－15

 ханл入ои் 甲ортіои．

 BOD 5 （ $85-95 \%$ ）．

 ìúos．

 та́ $\xi \varepsilon \omega \varsigma$ тои 10\％）．

ミúotnua napateraużvou azpiouoú

 паратвтанह̇vou aعpıवرou่．

Aпора́криvöп BOD_{5}（\％）	Opyavıкク่ фо́ртїп （ $\mathrm{KgBOD}_{5} / \mathrm{kg}$ 		$\begin{aligned} & \text { Aváцикто } \\ & \text { UYpó } \\ & \text { MLSS } \\ & \text { (mg/It) } \end{aligned}$	Xpóvos Парароvท்s （hr）	Avaкиклофоріа ıAU̇os	Xpóvos Параиогท̇я inùos （ $п \boldsymbol{\mu} \dot{\rho} \boldsymbol{\prime} \varsigma$ ）
85－95	0．05－0．15	0．16－0．4	3000－6000	18－36	0．95－1．50	20－30

 ウ̀ нгбаіас，к入інакац．

\checkmark Nітропоіпоп $\lambda u \mu a ́ t \omega v$.
\checkmark Aп入oúбтepo anó то тuпıкó đúotnua evepyoủ ı入úoç．
 тои $\mu \varepsilon$ үள̀入ou xpóvou aعpıбนoú．

 паратвтане́vou аรрıбнои́．

 каı aпоиáкриvỡ тои аद่̆тои．

 tпद vitponoinons．

 ı̀viocs．

 перїтт

 пргціац отоv пuӨцદ̇va．

 ı入úoc．

$\Theta c=300 / T$ п $\mu \varepsilon \rho$.

 náxuvon．
 हvaMacoóuहvшv גहाтоupyí̀v．

Anopákpuvö̀ BOD 5 （\％）			Avápıктo uypó MLSS （mg／lt）	Xpóvos Параиогท்я （hr）	Avaкиклочоріа ı入u̇os，	Xpóvos Параноvĭ＇ ıגúos （пиغ́рє¢）
85－95	0．05－0．30	0．08－0．24	1500－5000	12－50	－	－

\checkmark Yщŋ入n่ anouákpuvon opyaviкoù 甲ортiou．

 аuтодатоповітв．
 фортішv．

乃оорі $\lambda \mu$.

 (Rusten et al., "Upgrading to nitrogen removal with KMT moving bed biofilm process", Water Science

 Өгриокрабіа ото вйроц， $10-20^{\circ} \mathrm{C}$ ．

Aпора́криvö BOD_{5}（\％）	Opyaviкท่甲о́рті́п （KgBOD ${ }_{5} / \mathrm{kg}$ เ入úoç $\eta \mu$ ह́pa）		Aváцıктo uypó MLSS （mg／It）	Xpóvos Параиоvŋ̀s （hr）	Avaкиклочоріа ıגúos	Xpóvos Параиоvìя iAúos （пиغ่ряс）
85－97	0，05－0，3	－	2－10．000	0．25－1．5	0．95－1．50	20－30

 ı入úos，عival та кáтшөl：

 $\mu \varepsilon$ avt $\lambda 10 \sigma \pi \alpha \dot{\sigma} \sigma$.

Пара̇ивтроя	Tוиท่	Аıвpyagia nou anaıreitaı
Өодо́tпта	< 1 NTU	
Ano久úpaovn	> LRV 5	
BOD	< $5 \mathrm{mg} / \mathrm{l}$	
A $\mu \mu \omega \mathrm{viaká}$ [NH_{4}]	< $1 \mathrm{mg} / 1$	
	$<5 \mathrm{mg} / \mathrm{l}$	$\mu \varepsilon \mu \beta$ рavஸ்v
Одıко́с фш்оророя	< $1 \mathrm{mg} / \mathrm{l}$	Avaعрóßia aпоршбчópшon + Aпоviтропоinon +

Пivaкас 7．6．Характпрıттıка бибтй μ атоц MBR．

Aпорáкрийơ BOD 5 （\％）	Opyavikì甲о́ртїŋ （KgBOD $_{5} / \mathrm{kg}$ ı λ u̇oç $\eta \mu$ ह̇pa）		$\begin{array}{\|c\|} \hline \text { Avá иıкто } \\ \text { uypó } \\ \text { MLSS } \\ \text { (mg/lt) } \end{array}$	Xpóvos Парарогท่s （hr）	Avaкuклочоріа IAúos	Xpóvos Параиогі்я ı λ ヘuos （ $\eta \mu \varepsilon \dot{\rho} \rho \varepsilon \varsigma)$
95－99	0，02－0，06	0，2－0，4	5－15．000	6－30	3－5	20－50

\checkmark Харп入ウ́ параушүウ் ı入и̇oc．

Tクऽ عvepyoú ı λ úoc，

 $\varepsilon \vee \tau \dot{\mu} \mu \omega \mathrm{v}$ ．

 m^{2} عпıழáveıac．

 отоиद，перıттрєфо́нєvouç ßıо入оүıкой̧，ठїкоия，

 μ крр்.

 avantúбoovtaı пробариóZovтаı то́бо поботıка́ óбо каı поıотıка́ бта характпрıотıка́ тои aváцıктои

$\triangle \varepsilon \cup т \varepsilon \rho о \beta \dot{\theta} \boldsymbol{\theta}$ о	таито́хроип viтропоіпоп	$\Delta \varepsilon \cup \tau \varepsilon \rho \circ ß \dot{\theta} \theta \mu \circ \circ \mu \varepsilon$ virponoinoा $\sigma \varepsilon$

Үбраиґィкウ่ чо́рт।оп $\left(m^{3} / m^{2} d\right)$	0．08－0．16	0．03－0．08	0．04－0．1
Oруалкк் чо́ртіоп			
－$K g S B O D_{5} / m^{3} d$	0．003－0．01	0．002－0．007	0．0005－0．001
－$K g T B O D \delta^{\prime} / m^{3} d$	0．01－0．017	0．007－0．015	0．001－0．003
прผ́то бта́бॉо			
－Kg SBOD ${ }_{5} / \mathrm{m}^{3}$ d	0．02－0．03	0．02－0．03	
－ Kg TBOD ${ }_{5} / m^{3} d$	0．04－0．06	0．04－0．06	
Фо́ртоп aцयんviaç（ $\mathrm{Kg} \mathrm{SBOD}_{5} / \mathrm{m}^{3} \mathrm{~d}$ ）		0．0007－0．0015	0．001－0．002
Yסраu入ıко́¢ хоóvoç параноví¢（hr）	0．7－1．5	1．5－4	1．2－2．9
	15－30	7－15	7－15
A $\mu \mu \omega \mathrm{via}$ E¢̧óठou（mg／t）		<2	1－2

\checkmark Ап入о́тпта $\lambda \varepsilon$ гтоupyiac．

\checkmark பuvaróтпта vitропоіпопя．

 орүаvікои́ фортіои．

 ठіஎк ω v．
※ Про́ß入пиа обнஸ́v．
 oxहठІaбนои่．

7．1．4 Фuoiká оuotijuata

7．1．4．1 ミиотńиата Bрабвіас Eфариоип́s

 $\varepsilon ф а р \mu о ү \dot{я}$ ．

 Baбikoús tùnous：

 тоछІКОบ่．

	Aрঠcvanc	$\Delta t i \theta \eta \sigma \eta$ ¢
Техиккп் вфариожйऽ	$\mu \varepsilon ́ \theta 0 \delta 0 t$	$\mu \varepsilon ́ \theta$ oठot
Yסраv入ıко́ بортio（ $\mathrm{m} /$／́toc ）	0．60－2．00	1．70－6．00
$\left(\sigma \rho \cdot / 10^{3} m^{3} d\right)$	170－550	56－200
	Aлаитеita	Алоıтвіто

 ß λ áotnonc．

\checkmark H uшŋ入ウ́ aпоцákpuvan opyaviкоú фортiou．
 ка入入ıвंрувıая，

Ta кúpıa $\mu \varepsilon ı о v \varepsilon к т \dot{\mu} \mu$ ata apopoúv $\mathrm{T} \eta \mathrm{V}$ ：

7．1．4．2 ミuotrinata Taxeiac $\Delta i n ́ \theta n o n s ~$

Пара́ретро̧，	Фóprión （Kg／orp．n म）	BaOpóc anóðoơท̧ (\%)	Паратпрウ்бвıя
BOD ${ }_{5}$	4．50－18．0	86－100	
AZ推о	0．33－4．10	10－93	E६̧aptátaı anó： －To عпinعסัo провпє६цруабіая - Tnv ava入oyia BOD／N - Tov кúк入o גЕוтоupүiaç - To иठ̃раидıко́ 甲ортіо
Фшбبо́роя	0．11－1．34	29－99	ঠıабронйя

Ко入оßактпрювıӧп்	2－6 форе́ऽ	

 ßраб̄віас عфариоүйऽ．

 апо́ тіৎ нікро́тєрєऽ апаıтоú $\mu \varepsilon v \varepsilon \varsigma ~ \varepsilon к т а ́ \sigma \varepsilon ı \varsigma) ~ a \varphi о р о u ̉ v: ~$

 пооо́тптє̧ BOD（80－95\％），वı

غ̇x|:

 отعрعஹ்v, a入入á каı тоu aद̧ஸ்тоu.
 kal:

7.1.4.4 TEXVntoi Yүроßіо́топои

 P.communis), घiठ̄n ßoủph (фuтd̀ тоu үદ̇vouç Typha).

 фибікоі uүроßıо́топоı.

 Өрєптіка́ каı фитофápиака.

 T $\omega \mathrm{V}$ рún $\omega \mathrm{v}$.

 $\mu \varepsilon$ тіऽ $\mu о р ф \varepsilon ́ ц ~ а द \omega ் т о и . ~$

Ta aı 1

 ß入áotŋons．

 वтعрळ่v．

Yypoßıóтопоו катако́pu甲pи pońs（SWS）

Та $\mu \varepsilon ı о \varepsilon \varepsilon к т ท ் \mu а т а ~ т о и ~ u ү р о т о ́ п о и ~ к а т а к о ̇ р и 甲 п \varsigma ~ р о \grave{\varsigma ~ \varepsilon i v a l: ~}$
x H aס̃uvapia uщク入oú puӨرoú vitponoinons．

 uүроßıо்топшv．
 орүаviкои่ чортіои

	Mováő	इv́бтŋu α FWS	$\Sigma v \dot{\sigma} \tau \boldsymbol{\eta} \mu \mathrm{SFS}$
	пиє́pe¢	5－14	5－14
BáOoç vepoú	m	$0.1-0.5$	0．3－0．8
Oрүаvıкท่ ¢о́ртıаך	kgBOD／бтр．d	8	8
Yброидıкй ¢о́ртьт	$\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}$	0．01－0．06	$0.01-0.06$
	$\sigma \tau \rho / \mathrm{m}^{3} . \mathrm{d}$	0．02－0．14	0．02－0．14
	－	2：1－10：1	＜1
E入eү\％oç коขvovatóv	－	Aлоutzitou	\triangle Ev $\alpha \pi \alpha u \tau$ Eícol
$\beta \lambda \alpha \sigma \tau \eta \sigma ा \varsigma$	yr	3－5	1－2

 aı ω рои́ $\mu \varepsilon \vee \omega \vee$ от

1．Aعpóßıa（ $\mu \eta$ aعpıて̧o $\mu \varepsilon v a)$ ，

3．єпанфотвріگ̧vта avaعро́ßıa．

 tóvous，
 єпıп λ ह́ovta 甲utá．

Пара́ивтроו				
	B^{\prime} Báध $\boldsymbol{\prime}$ ıo аєро́ßıо	B＇$^{\prime}$ Bá $\theta \mu ı$ 	Аеро́ßıas Апоид́криvaп̧ （xwpis aعрıоцо́）	इиотர்иата $\mu \varepsilon$ 甲итд் tп̧ оıкоүモ̇veıa̧̧ Lemnaceae
Толıка́ критіріа бхєठıабиои́				
Anaitnon Поовпє६єруабіая	Eoxápoon ウ̀ KäiZnon	Eoxáp ω on r่ KäiZnon		Expoí anó єпацротеріъоибєऽ入ijuses，
	130－180	130－180	30	40
Opyaviкí фо́отіпп（Kg BODs／णтp．d）	4．5－9．0	16．8－33．6	$1.12-4.50$	2．24－3．36
Bá̇os vepoú（m）	0．5－1．0	1．0－1．22	0．6－1．0	1．22－1．83

Xoóvos параноvі̆（d）	10－36	4－8	6－18	20－25
Yбраидıко́ чорті́ （ $m^{3} / m^{2} d$ ）	$\begin{gathered} 0.019- \\ 0.056 \end{gathered}$	0．094－0．28	0．037－0．15	0．056－0．084
Oépиократía лица́таи（ ${ }^{\circ} \mathrm{C}$ ）	＞10	＞10	＞10	＞7
Про́ураниа оиукоиібп́я	Eпохіакп் 	$\Delta \dot{\Delta} 0$ 甲орદ̇ऽ ouvexळ்c	$\Delta u ̈ 0 ~$ 甲орદ́ऽ то бuvexळ゙ऽ	μ quaia
Avauevóuєv поо́тŋта вкроѓя				
$\begin{aligned} & B O D_{5} \varepsilon I \sigma \dot{\delta} \sigma u \\ & (\mathrm{mg} / \mathrm{lt}) \end{aligned}$	＜20	＜15	＜10	＜30
SS（mg／t）	<20	＜15	<10	＜30
TN（mg／t）	＜15	＜15	＜5	＜15
TP（mg／t）	<6	＜1－6	＜2－5	＜6

\checkmark То ханп入ó ко̇отоৎ катабкєиர่ऽ．

Та $\mu \varepsilon ו \sigma v \varepsilon к т ท ่ \mu а т а ~ т о и ~ б и о т ท ่ \mu а т о \varsigma ~ \varepsilon i v a l: ~$

X ПıӨavó про́ß入пиа обны்v каı हvтó $\mu \omega v$ ．

 тои anóß入лтои oтп $\lambda i \mu v \eta$ ．

7．1．5．1 โEvikó

 апоठ̈غ்кє६）

 каІ 甲шочо́рои．

Enavaxpnoıuonoinon via ápōعuon

 проठіવурафш்v тпऽ KYA 5673／400／1997．

 про́оßапп．

 $\mu \varepsilon \mu \varepsilon \mu \beta$ рávєऽ）кaı ano入úuavoŋ．

－A A $\varepsilon \sigma \circ \varsigma$ ع घпत

 апорро甲птікои́ $\beta \dot{\theta} \theta$ роu．

є६єта́отŋкаv

 ßорعıоठ̄итıкá тŋऽ I．Moví̧．
 каӨஸ்c：
－Xарактпріて६таı апо́ впа́рквıа Хஸ́pou

Bopeıoठ̄utiká Tnc I. Movñ (ENAM, OEEH 1).

 عпıßápuvan.

 عпıßápuvon.

 Reactor), 入óv由:

 عпıßápuvaŋ.

－тクऽ $\sigma u v \grave{\theta}$－

ミúotnua عпع६६pyaoiac $\mu \varepsilon \mu \varepsilon \mu ß$ pávec（MBR－Membrane Bio Reactor）

 λ д́үш：

 عпıß́apuvorn．

 au६̆ảvouv Touç kivठủvouc ox

ミuotńuата Bpaठziac eqapuovńs ото ह́ठapos

ミuotinuta عпו甲aveıakńs pońs

 тоия．

－$\varepsilon \mu \varphi a ́ v i \sigma \eta \varsigma ~ п \rho о \beta \lambda п \mu a ́ т \omega v ~ о \sigma \mu \omega ் v, ~ \varepsilon v т о ́ \mu \omega v . ~$

 tous．

TEXVntés Níuvec otaOeponoinons

 tous．

 отŋマ періохウ்．
 то хро́vo）
 μ ккро́ßıa тшv 入uиát ωv ．

－Мغүà入n ап入о́tпта ото хвıрıбио́．

弓んウ்я，к．入．п．）．

 غ́pyou. Oı кupıóтєpє̧ anó autés, zivaı:

- Апо́oтабп тоu ре́натоc anó тŋv E.E.^.

- Гвшнвтріка́ каı нор甲одоүıка́ характпріотіка́ ре́цатоя,

 ठраотпріоттптєя.
 $\lambda \varepsilon \kappa a ́ v \eta$.
 uठ̆ăтшv

 uппргбi६ৎ

 єпıфаvвıакоі апоठ்غ́ктє̧:
- То параквінвvo рغ́ца

 дuцát ω v va vivetal oto napakeiuevo péua（катápynon tou uøıotáuevou ठ̈ккúou

 пЕріóס̄ouc）．

 Mov＇̆ $\mu \varepsilon$ по入ú μ кро́тєро оптıко́ пєठ̄io．
 عпіпт ω on．

 пЕрıாтஸ்ఠॄıц，

 Н入єктронаүvクткка́ пєঠia ठєv uпápXouv．

8．YФIгTAMENH KATA乏TA乏H ПEPIBAMNONTO乏

8．1．Пعрıохர் $\mu \varepsilon \wedge \varepsilon ̇ т \eta \varsigma ~$

 $\mu \varepsilon$ TףV YA 5980／16－10－1965－ФЕК 714／B／29－10－1965．

8．1．2 ミпиعıaко̇ غ́рүо

8．1．3 Karnyopia غ̇pyou

8．1．4 Проотатєио́иєvๆ пєріохウ்

8．1．5 Үүротопıк门் перıохй

 tou $A \theta \omega$ ．

8．2．КДıнатолоуıка́ каı ßıокДıнатıка́ характпрıотıка́

 Нпєıр ω тıко்－Мєбєиршпаїко́．

 avépхยтаı $\approx \varepsilon 16-17^{\circ} \mathrm{C}$ ．

 $\mu \varepsilon \gamma a ̈ \lambda \eta \zeta$ ठ̈ápk

$\begin{array}{\|l\|} \hline \text { Періодоя } \\ \text { 1978-2004 } \\ \hline \end{array}$	Xарактпріотікळ゙v			
Mrjvas	$\begin{gathered} \hline \text { Oءриокрасіа } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	＇Yчоя Bpoxvis	$\begin{gathered} \text { Exモтıкர் } \\ \text { uypagia aغ́pos } \end{gathered}$	$\begin{gathered} \text { Еद̆́̇тиıō } \\ (\mathrm{mm}) \end{gathered}$
Iavouápıos，	2，6	47	85	21
Фєßpouápıo̧	3，4	55	83	21
Ма́pтıо̧，	6，5	50	80	34
Апрілıоs	11，0	51	73	51
Máıos	16，2	50	71	59
Ioúvios	20，9	41	66	76
Ioúdios，	22，9	54	65	84
Aúyouotos，	22，3	38	67	SO
इєптє̇иßрю¢，	18，6	31	72	63
Октө்ßріоя，	13，3	56	80	40

Noદ̇иßpıos，	7，6	84	85	20
$\Delta \varepsilon к \varepsilon$ ¢ßрıо̧	4，7	90	86	23
Mėon（o入ıкı́）	12，5	649	76	568

Eıкỏva 8．2．OиßpoӨєpиıкó ठıáypaцца M．乏．Apvaiac，

8．3．МорчоАоүıка́ каı топıоАоүıка́ характпрıотıкá

8．3．1 Kатаүра甲í топiou ava甲opás

 проотатвย̇घтаı anó autó.

 tou $A \theta \omega$.

8.3.4 Епиаvткко́тๆта - трюто́тŋта топіои

8.4.1 Гєமдоүıка́ характтріотıка́

$\mathrm{Rh}:$ Máça tr ; PoSóntr,

CR: Пepposoruxí L̆inq, (Pe: Zíon Пawviaç, Pa: Zóvq Пáikoo, AL: Ziovn A) μ мтiaç - Zơvn Aç̣ó,

P: Ziovn חivõou,

I: Ióvoç ̧ônn,

Eu: Evórpua «Toléa óp - Thax́ódels,

 O＾OKAINO）

 IOYPAEIKO）

 TPIAAIKO）
8．Еи甲аviбвı̧ каı когта̇б μ ата $\mathrm{Pb}-\mathrm{Zn}$

11．Eццаviбвı̧ каı коттд́биата Cr каı
12．Мвта入入દia．

8．4．2 EठаяроДоүıка́ Характпрıотıка́

 ото＇Аүıо＇Ороఢ（I．Г．M．E．1978，Nтá甲ク̧ к．á 1999）．

IZnиатоvevń петрळ́иата

＇Eठа甲оs

Ta عठ́àpn tou Ayiou＇Opouc XapaктnpiZovtaı au

al：A入入oußıaкદ̧́ anoӨżбદı̧．

 охпиатібной Вعртібкои．

 1:50.000)

8.4.3 Тєктоvıка́ характпрıотıка́

 oxદ்oŋ:

$$
A=\mathbf{a} \cdot \mathrm{g}
$$

'Oпои: g: घпıтáxuvơn ßapu̇т \quad тая каı

NEO $~ X A P T H \Sigma ~ \Sigma E I \Sigma M I K H \Sigma ~ E П I K I N \triangle Y N O T H T A \Sigma ~$

8.5. Фuสıкó перıßádMov

8.5.1 Гevıкá otoryeia

Х $\lambda \omega$ ріба

 (Мпацпа入ف்vac 1998).

a/a		1	2	3	4
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii			V	
4	Asperula aristata ssp. thessala		X		
5	Astragalus thracicus ssp. monochorum		X		
6	Atropa belladona	Γ			A \triangle
7	Aubrieta erubescens			R	
8	Beta nana		X	R	
9	Campanula lavrensis		X		
10	Centaurea pannosa		X		A
11	Centaurea peucedanifolia	A			A
12	Cephalanthera Iongifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		A \triangle
15	Fritillaria euboeica		X	R	
16	Fritillaria graeca		X		A \triangle
17	Helichrysum sibthorpii			V	
18	Hypericum athoum		X		
19	Isatis tinctoria ssp. athoa		X		A \triangle
20	Limodorum abortivum	B			A
21	Linum leucanthum		X		
22	Linum olympicum ssp. athoum		X		
23	Neotinea maculata	B			
24	Neottia nidus-avis	B			
25	Polygonum icaricum		X		A
26	Silene echinosperma		X		
27	Silene multicaulis ssp. genistifolia		X		
28	Silene orphanidis	A		V	
29	Viola athois		X		A \triangle

EnをEnyñozic Пivaka 18

 Провб́ріко́ б̈а́таүна 67/80.
2. Evōпиıкó. Nai: χ.
 घiठ̈oc [(V)], A5: ¿návio عiठ̄oc (R).
 k.á. (1998)

Пaviōo

8.5.2.1 Xáptnc проотатعuóusVnc перוoxís

 пропүой $\mu \varepsilon v \eta ~ п а р а ́ ү р а ф о . ~$

EIDIKA XAPAKTHPI乏TIKA：EIAH TH乏 ПPOटTATEYOMENH乏 ПEPIOXH乏－GR 1270003 EZム XEP $\Sigma O N H \Sigma O$＇A O Ω

－$\Theta a \mu \mathrm{v} \omega \dot{\mathrm{v}} \varepsilon \varsigma \mu \varepsilon$ Laurus nobilis 5230

－Фpúyava Sarcopoterium spinosum 5420

－E入入クviká öáon oछıá̧ $\mu \varepsilon$ Abies borisii－regis 92701 C C B C
－$\Delta a ́ \sigma \eta$ о

－$\Delta \mathrm{ajo} \mathrm{\eta} \mu \varepsilon$ Quercus brochyphylla otnv Kрìтп 9310
－Δ áon $\mu \varepsilon$ Quercus ilex 934025 A B A B
－Δ áon $\mu \varepsilon$ Quercus macrolepis 9350
 Pinus mugo kaı Pinus leucodermis 7 B C B B

 （ava甲орá oтŋv парака́тш 入ітта）：

Eiön Bláotnons

Abies borisii－reqis（Маквठ̄оvıкó ह̇̀лато）
Abies cephalonica
Acinos alpinus nomismophyllus
Adenocarpus complicatus complicatus（Aঠॄvỏкарпоৎ，о бuипєптпүүц̇voc）
Aethionema orbiculatum
Allium guttatum sardoum
Allium moschatum
Allium chamaespathum
Alyssoides utriculata
Amelanchier ovalis ovalis (A
Anthemis sibthorpii
Anthyllis montana jacquinii
Anthyllis vulneraria pulchella
Arabis brvoides
Arctostaphylos uva-ursi (Арктоотáчu入ос)
Arenaria biflora
Asperula aristata nestia
Asperula suberosa
Astragalus thracicus monachorum
Atropa bella-dorma
Aubrieta erubescens
Aurinia corymbosa
Beta nana
Berberis cretica (Bepßepic п крПтіки́)
Bromus cappadocicus cappadocicus
Buxus sempervirens (Пu६óc)
Calamintha hirta
Campanula albanica sancta
Campanula chalcidica
Campanula lavrensis
Campanula orphanidea
Centaurea athoa athoa
Centaurea chalcidicaea
Centaurea huljakii
Centaurea pannosa
Centaurea peucedanifolia
Cephalaria flava flava
Cephalanthera Ionaifolia
Cephalanthera damasonium
Cerastium banaticum speciosum

Colchicum doerfleri
Convallaria maialis
Coronilla varia
Corydalis integra
Crepis athoa
Cruciata glabra
Cruciata pedemontana
Cyclamen graecum graecum
Cyclamen persicum
Danthonia alpina
Delphinium fissum
Dianthus gracilis gracilis
Dianthus pinifolius pinifolius
Dianthus stefanoffii
Digitalis leucophaea
Erysimum calycinum
Erysimum drenowskii
Euphorbia amygdaloides amygdaloides
Euphorbia deflexa
Festucopsis sancta
Fritillaria euboeica
Fritillaria graeca
Fumana procumbens (Фouuáva η غ́pnouoa)
Gagea bohemica
Gagea pusilla
Gagea villosa
Galium asparagifolium
Galium demissum
Galium incanum incanum
Galium insularae
Galium pycnotrichum
Genista lydia (Гعvioтa Tņ ^uठठiac)
Geocarvum capillifolium
Globularia bisnagarica
Helianthemum nitidum (H入ıávӨ\& μ)
Helichrysum sibthorpii
Heracleum humile (Hрák $\lambda \varepsilon ı$ то $\quad \chi$ аип λ 人)
Heracleum sphondylium ternatum
Hypericum athoum
Hypericum cerastoides
Hypericum montbretii
Hypericum rumeliacum rumeliacum
Hypericum vesiculosum
Isatis tinctoria athoa

Juniperus foetidissima (Bouvokunápıбoo)
Linum elegans
Linum olvmpicum athoum
Matthiola fruticulosa valesiaca
Melica nutans
Neotinea maculata
Neottia nidus-avis Onosma paradoxum
Qphioglossum vulgatum
Orobanche purpurea
Qrthilia secunda
Paeonia peregrina
Platanthera bifolia
Platanthera chlorantha
Phyllitis scolopendrium
Pimpinella tragium polyclada
Pinus brutia (Tpaxeia пعu̇kn)
Pinus nigra pallasiana (Avaтодıкó цаиро́пвuко)
Poa compressa
Poa hybrida
Poa thessala
Polygala nicaeensis mediterranea
Potentilla speciosa
Pterocephalus perrenis perrenis
Rhamnus saxatilis prunifolius (Pá $\operatorname{\mu vo\varsigma ~o~проuvó\varphi u\lambda \lambda o\varsigma)~}$
Polygonum icaricum
Rosa villosa（AvpıotoıavtaФu入入ıá η трıх由тウ́）
Satureia parnassica athoa
Saxifraga juniperifolia sancta
Saxifraga sempervivum
Scorzonera cana
Sedum cepaea
Sedum grisebachii grisebachii
Sedum reflexum
Sideritis perfoliata athoa
Silene compacta
Silene flavescens thessalonica
Silene multicaulis genistifolia
Silene orphanidis
Silene vulgaris prostrata
Sorbus aria cretica（КрПтıкウ் aơך
Sorbus aucuparia aucuparia（Aypıooopßıá）
Sorbus chamaemespilus（Xaцаııغ́øпı入oc）

Stachvs leucoglossa
Taxus baccata（＇ITquoc）
Tephroseris integrifolia aucheri
Teucrium divaricatum athoum
Thymus praecox iankae
Thymus thracicus
Vaccinium mvitillus（Baккivio o μ úpтı $\lambda \lambda$ 人os）
Veronica barrelieri
Valeriana alliariifolia
Veronica chamaedrys chamaedrys
Veronica officinalis
Vicia cracca stenophylla
Viola arvensis
Viola athois
Viola delphinantha
Viola orphanidis orphanidis
Viola reichenbachiana
Viola sieheana
Eiōn θ nגaotikळ்v
Canis lupus（＾úkos）
Sus scrofa（Aypıoyoúpouvo）
Mustela nivalis
Felis silvestris
Capreolus capreolus
Eiön AupıBiwv
Bombina variegata
Triturus karelinii
Triturus alpestris
Eiōn عのпยтต่า
Podarcis muralis
Lacerta viridis
Testudo graeca
Testudo hermanni
Eiön opvı日onaviöas
Accipiter brevipes（Eaîvi）
Accipiter nisus nisus（Toıx入оүદ́рако）
Apus melba melba（ Σ кєтıарvác）
Aquila chrysaetos chrysaetos（Xpuoaعтóc）
Bubo bubo bubo（Mnoúqoc）
Buteo buteo buteo（Гعракiva）
Caprimulgus europaeus（Гuठ̄оßuそ̧áxтpa）
Ciconia nigra（Maupone入apyós）
Circaetus gallicus（Ф।ठаદто́ऽ）
Columba livia livia（Aypıопєріотєро）
Corvus corax corax（Ко́ракас）
Delichon urbica urbica（乏пıтохع入iōovo）
Emberiza cirlus（ Σ ıрлотоix λ ovo）
Erithacus rubecula rubecula（Kоккıvo入ainnc）
Falco eleonorae（Mauponєтрітnऽ）
Fringilla coelebs coelebs（ Σ nivoc）
Garrulus glandarius atricapillus（Kiaøa μ аuрокє่ча入п）
Hieraaetus fasciatus（ Σ nıZ̧arтóc）

Lullula arborea arborea（ $\Delta \varepsilon v \tau \rho о \sigma т a \rho \grave{\theta}$ คpa）

Tetrao urogallus（Aypıoкoupvós）

1150 Пара́ктієц 入ıиvoӨá入абобєऽ－OXI

1410 Мєбоүعıакà a入iп६ठ̄a（Juncetalia maritimi）－OXI

2220 Oivec，$\mu \varepsilon$ Euphorbia terracina－OXI

92A0 \sum ToÉ $\mu \varepsilon$ Salix alba kaı Populus alba－OXI

 m．

 छu入oкápßouva．

 оікобоипиа́тшv（Nтà甲ク̧ к．à．1992）．

 1020 （aypotiкغ́s ка入入ı́друઘıес）．

8．5．3．1 Xapakтípas tnc ह́ктаans tou épvou

 пaviöaç η x $\lambda \omega$ рiöac.

 Yпоupyziou E૬ шт

 Халкіб̈кク่ऽ.

 'Opous عivaı μ ovaxoi.

 Movń.

8.6.2.2 Пооотатвио́ивvа тип́иата

 10-1965.

 غ̇Xouv.

8.6.3 Поגтпотккй кגпроvopıá

 Xрıттıvஸ்v.

8.6.3.1 Apxaiolovikoi x ́́pol - ¿áves

 180 aıळ்va.

 714/B/29-10-1965.

8.7. Коıvшขıкó каı оוкоvонıко́ пєрıßáג\оv

8.7.1 Апиоүрафıк่ ката́отаоп

 Ayiou 'Opouc.

8．7．2 Параушүıк门் біа́рӨршот

8．7．2．1 Параvаviкоі тонві＇

$\Delta \varepsilon v$ uпа́pxouv параүшүікої тонгіс．

$\Delta \varepsilon v$ unápxouv параүшүікоі тонвіс，

8．8．1 Үпобоиモ́я нєтафорळ்v

 каı oı періпатоı عivaı ouxvó $\mu \varepsilon ̇ \sigma o ~ \mu \varepsilon т а \varphi о р a ́ c . ~$.

 $\Delta \varepsilon v$ unápxouv ठikтua $\Delta E H$ ．

Eutuxús avti入ǹ

8．10．Атноочаıрıкó перıßáגАоv－Поо́тпта ає́ра

Характпрıоцо́я púnavoņs	$\begin{array}{c\|} \text { CO } \\ \left(8 \omega \rho \varepsilon \varsigma, \tau \mu \varepsilon ̇ \varsigma_{r}\right. \\ \left.\mathrm{mg} / \mathrm{m}^{3}\right) \end{array}$	$\begin{gathered} \text { Kanvós } \\ (24 \omega \rho \varepsilon \varsigma \\ \left.\mathrm{T} \mu \varepsilon \mathrm{c}_{\mathrm{c}}, \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{SO}_{2} \\ (24 \omega \rho \varepsilon \varsigma \\ \tau \mu \varepsilon \dot{c}, \\ \left.\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$		
Xapп入á	<15	＜250	＜200	＜180	＜200
Ме́трı	$>15 \leq 20$	$>250 \leq 275$	$>200 \leq 250$	$>180 \leq 250$	$>200 \leq 350$
Y $¢ \eta$ 入á	$>20 \leq 25$	$>275 \leq 300$	$>250 \leq 300$	$>250 \leq 360$	$>350 \leq 500$
Пo入ú uøn入á	＞25	＞300	＞300	＞360	＞500

8．11．Акочотıкó перıßáגМоv каı доvฑ்бєıৎ

8．11．1 Пŋүモ̇с，Өopúßou

 латреитікє́，к．д．п．）．

перıßадлдоттоя

 піvака тои ápӨpou 2 пар． 5 тои П．Δ ．1180／81（ФЕК－293 А＇）．

a／a	Пெрıохй（хрŋ̇on үп¢）	Avஸ்тато ópıo Өopúßou oと dBA
1	NоноӨєтпи	70
2	Bioun犭aviкó	65
3	kaı aotıкó otoıxદio	55
4		50
5		45

 Өо́pußo．

8．12．НАектронаүvптıка́ пеסїa

unóßa日pou

8．13．＇Үбата

入újata．

8．13．2 Eпıраvєıaкá úठ̄aтa

8．13．2．1 Періура甲ர́ иброура甲ікои́ ঠікти́ои

 апоотраүүіद६ı тпท перıохウ่．

- Yסрعūп
- 'Apঠ̌ưך

$\Delta \varepsilon v$ unápXeı púnavon anó проїỏvта 甲uтопробтабias,

8.13.3 Yпóyモıa úסัaтa

 перıххйs.

－Yס̄рघūワ
－＇Apס̄عuõ

 катаvà ${ }^{2} \omega$ on μ óvo．

ŋ́／каı то перıßádМоv，кирíшs ৯óү曰 атиХпиáтшv каı катабтрофఱ́v

ү．Eпıßapпиغ̇va aпóßגпта

 норфолоүıка́ үєш৯оүіка́ характпріотіка́ тпя.

 aктіvoßo入ies.

9．EKTIMH乏H KAI AEIONOГHटH ПEPIBAMAONTIK』N EПIПT Ω EESN

9．1．МعӨобоАоүıкє́¢ апаıтர்бєıऽ

 ยпıாт்்ฮع ω v．

 घпıாтஸ்бहんv：

 оиठغ்тєроц，
ii．ПіӨауо́тŋта вцца́vioņ．

 unápxouv．

 'Epyou:

- Фáon Kатабквuņ̃,
- Фáon ^erroupyias

Характпріотіка́

9.2.3 Екпоипе̇с аєрiou тоu Өгриокппіои

9.2.3.1 Фáon катабкеurís

 ако入ойӨ ω с:

Eiöoç púnou	$\mathbf{C O}_{\mathbf{2}}$
$\mathbf{g} / \mathbf{H P}-\mathrm{hr}$	587,3

	CO_{2}	
	Kg／d	tn／y
$\begin{aligned} & \text { Eкбкаф́áaç 200kW } \\ & \text { (286.5 HP) } \end{aligned}$	1346.1	40
Фортпүо́－यп६тоviżpa 100kw（ 134.5 HP ）	632	19
Avatpenóuॄvo 120kw （ 161 HP）	756	23

 غ̇pүшv．

9．2．3．2 Фáon \हıтoupvias

	$58 \mathrm{kWh} / \eta \mu \varepsilon$ ¢pa
П入єктропараүшү门่	$0.855 \mathrm{~kg} / \mathrm{kWh}$
	$49.59 \mathrm{~kg} / \mathrm{d}=0.05 \mathrm{tn} / \mathrm{d}$ ウं $18.1 \mathrm{tn} / \mathrm{y}$

 каı ठєv прока入єі топıоһоүккє̧́ $\mu \varepsilon т а ß о \lambda \varepsilon ́ \varsigma . ~$

9．3．4 А६̧ıฝóүワō ठ̈ıáonaoņ toniou

 катабквиท่ каı 入єाтоupyia T $\omega \mathrm{v}$ ह́py $\omega \mathrm{v}$ ．

Характпріотוка́

9．4．1 Макроокопикє́ц паратррŋ்бョıৎ

 μ нкра́ $\mu \varepsilon \gamma \varepsilon ̇ Ө \eta$ ．

9．4．2．1 П॥Өаvótпта рúnavons тиv \＆ठаøа́v

 щпороúv va عvтахӨoúv ap

X дшрібо

Пaviöa

 $\mu \varepsilon т а к ı v \grave{\sigma} \sigma \varepsilon \omega \mathrm{~V}$ T $\omega \mathrm{V}$ そ $\omega \omega \mathrm{V}$

9.5.2.1 Eiठıкá otoıхеía

Eiön BAáotnons

Eión Onגaotıkळ்v

 вүката́oта⿱亠巾я．

Eiön Auøißıa каı Eiön عрпетш்v

Enıாтஸ்oııc tou غ̇pyou otnv nepıoxń Natura

＊$\Delta \varepsilon v$ Өa a入入ágॄı η норфо入оүіа тпऽ перıохп่я，

 т $\omega \mathrm{V}$ то́п $\omega \mathrm{v} \omega$ отокіас, клп.

9．6．1．2 Eпıाтш்वहाऽ

 uyieivís．
 тпV проотабіа тои періßа̀ λ лоитоц，

9．6．2．1 Eктіипоп घпиптш்бع ωv

 тпр пробтабіа тои періßа́入入оитос，

 періохウ்．

9．6．3．1 Eпıाтш்́бह।я

 вүката́отабп．

9．6．3．2 Eпıптш்бвıс ота Іоторıка́ иипивіа

 Mvпuziou．

9．6．3．3 EIסікர் EктіuпनП

9．7．3 〇éozıç \＆pyaoiac

＇Еицєбa то غ̇pyo Өa бu

9．7．5 Поьо́ттта Zюウ்я

 отףV I．M．Паvтокрव́тороऽ，

9．8．1 Eпиптஸ்бモıৎ

9．8．2 Eпव́pкєıa

 T $\omega \mathrm{V}$ кúpı।

9．9．1 Пı日аvótๆта вvioxuoŋऽ

 каі 入оппйऽ ठраотпрі́тптаद，

9．10．1 Eпırाтக்ণョıя

 $100 \mathrm{mg} / \mathrm{m}^{3}$ ，пои каӨорі६ॄта। апо́ то d̀pӨро 2 парау．ठ тои П．А．1180／81（ФЕК 293／A／6－10－1981）．

 T $\omega \mathrm{v} \mu \eta \mathrm{Xav} \eta \mu$ át $\omega \mathrm{v}$ autív．

 ठєка́ठєє ppm).

 аитокіvŋтть.

 293/A/6-10-1981).

 גеітоирүіа тоиद,
 anóoraan

 סivetaı anó tпv $\varepsilon \xi i \sigma \omega \sigma \eta:$
$\mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\mathrm{N}}-10 \log _{10}\left(4 \cdot \pi \cdot \mathrm{r}^{2}\right)$
о́пои:

 غ̇хоu $\mu \mu \varepsilon i \omega \neq \eta$ autoù кaтà $6 \mathrm{~dB}(\mathrm{~A})$.

9.11.2 Enırाஸ்णேıৎ

9．12．1 Eпиாтळ்णョ！я

9．12．2 ПіӨavóтŋта

$\Delta \varepsilon v$ unápxouv $\eta \lambda \varepsilon к т \rho о \mu a ү v \eta т ı к \dot{~} п \varepsilon ঠ ̄ i a . ~$

9．13．Епıптஸ்бвıৎ ота и́бата

9．13．2．1 Eпиттஸ́бहוс ото ঠіктио

 пара入iac．

9．13．2．3 Eктіипоп нвтаßо入áv

 á $\mu \varepsilon \sigma a$ каı $\mu \varepsilon \lambda \lambda$ Иоvтіка́．

Фáon катаókeuñs

 عivaı по入ú μ лкра́（ $2-2,5 \mu$ к̇тра）．

Фáon Aeıtoupyias

 бıарро́̀v．

9．13．3．2 Aváduan

9．13．3．3 Епиттஸ்णعノك

 $\lambda u \mu a ่ т \omega v$ đ ε autá．

dóүш aтчХпна́тшv каı катабтрофа́v

Фáon катабквuns

Фáon λ हוтоupvias

2．avtıoтoIxદi $\sigma \varepsilon$ ENDIAMESH KATAミTAミH－EПIITT $\Omega \Sigma H$
3．KOKKINH ENAEIEH avtiotoוxદi $\sigma \varepsilon$ APNHTIKH EПIITT $\Omega \Sigma H$
EPTO ：«EPTA ETEEEPTALIAL KAI $\triangle T A O E \Sigma H \Sigma ~ A \Sigma T I K S N ~ A Y M A T S N ~ \Sigma T O ~ A T I O N ~ O P O \Sigma » ~$

ФAEH EPTOY	IEPIBAMAONTIKO ETOIXEIO	Enintaseis			BAPYTHTA				AIAPKEIA		ANAETPE ${ }^{\text {I }}$ IMH		
		$\frac{\pi}{2}$	W్M	징	¢	$\stackrel{\Sigma}{\stackrel{L}{E}}$	$\underset{\text { T }}{\substack{\text { T }}}$		$\sum_{i}^{\text {² }}$	들 댄 읃	징	W Y y 폴	シ
			$\sqrt{ }$			\checkmark				\checkmark	\checkmark		
	Морфодоүıка́ каı тополоүіка́ характпрıттька		\checkmark				\checkmark			\checkmark			\checkmark
	характпріттіка́			\checkmark									
	Фuбiкó перıß⿺̇入入ıv		$\sqrt{ }$				\checkmark			\checkmark			\checkmark
				\checkmark									
		\checkmark			\checkmark					\checkmark			
			\checkmark					\checkmark		\checkmark			\checkmark
				\checkmark									
	Поіо̇тпта тоu aह́pa	$\sqrt{ }$				\checkmark				\checkmark		\checkmark	
		\checkmark					\checkmark			\checkmark		\checkmark	
	Н入єкронаүvๆтіка̇ пеठia			\checkmark									
	＇Үбата			\checkmark									
		$\sqrt{ }$				\checkmark				\checkmark		$\sqrt{ }$	

EPIO ：«EPTA ETIEEEPTALIAE KAI $\triangle T A O E E H \Sigma ~ A I T I K S N ~ A Y M A T S N ~ \Sigma T O ~ A / T O N ~ O P O \Sigma » ~$

ФAEH EPROY	TEPIBAMAONTIKO ETOIXEIO	enimtazeis			BAPYTHTA				АIAPKEIA		ANAETPEWIMH		
		$\frac{4}{2}$	W్ㅐㅆ	등	¢	$\frac{\Sigma}{\frac{1}{2}}$			${ }_{\text {2 }}^{\text {² }}$		징		＇
$\frac{E}{2}$			\checkmark					\checkmark	$\sqrt{ }$			$\sqrt{ }$	
	Мор甲оגоүіка́ каı тополоүıка характпрıттіка́												
	характпрıттіка́			\checkmark									
	Фưıко́ перıßа̇入入ov	$\sqrt{ }$			$\sqrt{ }$				$\sqrt{ }$				
		\checkmark			$\sqrt{ }$				\checkmark				
		\checkmark			$\sqrt{ }$				\checkmark				
				\checkmark									
		\checkmark			$\sqrt{ }$				$\sqrt{ }$				
	Поюо́тпта тои аغ̇ра	\checkmark						\checkmark	\checkmark				\checkmark
		\checkmark					\checkmark		\checkmark				\checkmark
				\checkmark									
	＇Үбата	\checkmark			\checkmark				\checkmark				
		\checkmark				\checkmark				\checkmark		$\sqrt{ }$	

10．1．МєӨодоДоүıкв́ц апаıтர்бєıৎ каı про́бӨєта $\mu \varepsilon ́ т \rho а ~$

ГЕviкغ่с катعuӨủvgeıs

 ото П．$\Delta .1180 / 81$（ФЕК 293／А／81）каІ عıठıко்тعра то d̀pӨро 2 autoù：

 тои перıßà入入оитос．

 акó入ouӨa：

 єкока甲ш்v．

 та проß入єпо́ $\mu \varepsilon \mathrm{va}$ от।ऽ：
－YA A5／2375／78（ФEK 689／B／78）
－YA 56206／1613／86（ФEK 570B／86）
－YA 69001／1921／88（ФЕК 751／B／88）
－YA 765／91（ФЕK 81／B／91）

 (EK 801ß/74), KYA 5673/400/1997, KYA 145116/2011 каӨஸ́Ц каІ ото П. $\Delta .1180 / 81$.

 apxŋ́s.

 öпиıоupyoúv aıшрர்ната.

 праүнатопоіпөві.

 тПऽ бко்ทクऽ:

Фáon λ हוтouovías

Фáon Kataoкеuís

 о入ок入ńp ω ö тои غ́pyou．

Фáon 入eitoupvias

норчодоүıка́ каı топוоһоүıка́ характпрıотика́

Фáon катаокеuд́s

Фáon \eitoupvias

Фáon катаокеuís

єкбка甲গ่ऽ	

Фáon \eitoupvias

甲ибוкó перıßád\ov

фáon катабкहиग́s

 $\Delta \varepsilon v$ катаотр $\dot{\varphi}{ }^{\prime}$

$\beta \lambda a ̀ ß \eta ~ \sigma \varepsilon ~ a u ̛ \eta ŋ ́ v ~$

 anó TПV $\mu \varepsilon \lambda$ ह̇tך

 OTףV KYA 71560／3053，ФЕК 665／B／85．
 Фáon deitouovías

avӨрんпоүعvغ́s перıßád入ov

Фáon KataбкEuís

 тои غ̇pyou.

Фáon λ हitoupvías

коıvตvıкооıкоvоиıко́ перıßád\ov

Фáon катабкعuй́s

 перıßà̀lıov धivaı:

 ठıа́ркєıа TWV घрүабї்v.

Фáon deitoupvias

Фáon катабкहий's

Фáon גEItoupvias

Фáon катабкеиர́s

 ठраотпріо́тптая

Фáon גEITouovias

отпи поо́тпта тои ає́ра

Фáon катабкعuŕs

 $\mathrm{mg} / \mathrm{m}^{3}$, пои каӨоріそ६таı апо́ то d́pӨро 2 парау. ठ́ тои П. Δ. 1180/81 (ФЕК 293/А/6-10-1981).

Атرобфаıрıкй рúnavon	 عivaı $\alpha \mu \varepsilon \lambda \eta T \varepsilon ่ \varepsilon \varsigma$,

Фáon Aहitouovias

 ßıо入оүıкウ่ऽ єпє६६рүабіас，

Фáon катабкеuŕs

 проßגєпо́uєva anó тŋv KYA 37393／2028／2003（ФЕК 1418／B／1－10－2003）«Мغ்тра каı ópoı үıа
 о́пமц тропопоıウ்Өпкє $\mu \varepsilon$ т тv KYA apıӨر．Н．П．9272／471／2－03－2007（ФЕК 286／B＇）．
 та проßגєпо́ $\mu \varepsilon v a$ anó то ПД 1180／1981（ФЕК 293／A／81）．
 17252／1992（ФЕК 395B／29－06－1992）ópia Өopúßou．

Өópußos, anó тŋv kivŋon охпиáт ω каІ та катабквบабтікá ह́pүa	 єпाтрغ்пहтaı η vuxtepıví $\varepsilon p y a \sigma i a . ~$

Фáon λ हItoupvias

$\Delta \varepsilon v$ uпápXouv $\eta \lambda \varepsilon к т р о \mu а ү v \eta т і к а ́ ~ п \varepsilon ঠ i ́ a . ~$

ப́бата

фáのп катабкеuŕs

 бıарроє́¢,

Фáon λ हitoupvías

10．14．Мв́тра апоката́отабךя каı аутıиعтஸ́пıопя

 Фáon катабк\＆uris

Фáan Merroupvias

10．15．АпотвАвбнатіко́тпта $\mu \varepsilon ́ т \rho \omega v ~$

Фáon катабкहuŕs

Фрабтпрıо́тпта－парв́यßабп	
Өópußos anó тŋv kivŋon oxпиátшv каІ та катабкєиаотіка́ ह́pүа	
Атцобфаıрıкй рúnavon	
Катабквиท่ ориүцàтшv 	
єкбкачウ่я	

Фuđıкó перıßà入入ov	

Фáon גeıtoupvias

Араотпрıóтпта－ парє́цßабп	
Xprion yns	вүкатаотаӨві то є́pүo характпріद६таı апо́ аүротıко́ характท்ра．
Oбоі пробпह்入абпऽ－ ouvtṅpクõヶ	 періохйя．
Eукатȧotaon ėpyou	
AıбӨŋтікர் uпоßàӨرıбף топіои	
Граниદ่ऽ нвта甲ора́ऽ 	

Ефıкто́тпта це்тр $\mathbf{~ v}$

 tou．
 tov unعúӨuvo tnc Movnç．

 Tou．

Пivaкас 10．2．Мغ̇тра тЕХvıкळ̉v Характпрıотıкळ̉v．
Фáon катаоквиர́s

Араотпрıо́тпта－паре́цßабп	
oxпиátшV каı та катабкєиаотіка́ ह́pya	 пєрıорıণ $\mu \dot{v}$ Өори̇ßou．
Атرоб¢аıрıкп் púnavan	
	 бтаӨノой．
єкбкафท่ऽ	
Фuđiкó пहрıßà入入ov	

Фáon גeıtoupvias

Арабтпріо́тпта－ парธ́ $\mu \beta a \sigma \eta$	
Хрர்on yns	Н перıохウ́ тои غ́pyou каІ то оіко́пєठо ото опоіо өа
бuvTク்pクoņ	 періохウ่ऽ．
Eүкатáoтaõ ह̇pyou	
АıఠӨŋтікர் uпоßáӨرібף топіои	 катабкєиш்v anó đкиро́бєца．
Граниє́я нєта甲ора́я П入єктрıкর่ऽ єvغ́pүعıas，	

 145116／2011

（Ппүர்：aпó甲aon 171914 ФEK 3072／B 3－11－13）

 anó трітой．

 12，пар． 2 тПऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каı В）бта घпıкivठัva aпóß入пта
 $287 B^{\prime} / 07$ ）．

B．Фáon катабкеu＇́s

 Kגпроvo䒑uác»（A＇153）ón

B.1.10 Oı ठıáठן

 тоua^દ̇тદ¢.

 та ако̀лоиӨа:

 ع入áxıवтo ठuvató

Yypd́ каı отеред́ anóß入nta

 тои غ́pyou，ón $\omega \varsigma$ п．х．үє $\omega \mu$ орфо

 1312）ón $\omega \varsigma$ عка́бтотє ıбхบ่ย।

 квінцvクऽ vo

Qópußos－סovñozis

Фáon גeitoupvias

 проß入пиатт ωv ．

¿uүкєкрıи̇̇va va үivetal：

 тПऽ вүката́oта⿱㇒冋я

 avtippúnaveñs．
А．2．7 Na тпроúvтaı ol סıaтáद̧ıı，тП̧，Y．А．Н．П．14122／549／E．103／2011（ФЕК 488／B＇／30－03－2011）－

Yypá Апо́ß入nta

 үıа тıৎ aváyкєऽ тоu غ́pyou.

 тпऽ періохウ்я

 (B^{\prime} 1909) каı ото N. 4042/2012 (A' 24), о́n $\omega \varsigma$ єка่бтотє ıбхйouv.

 عкव่oтотє ІбXu̇ouv.

 о́пமऽ દка́ототє ІбXúouv.

£теред́ Aпо́ß入пта

 （ФЕК 24／A＇／2012）．

 NoноӨعбіас，Еıठıко்тяра：

 41624／2057／E103／10（ФЕК 1625 B＇）ónw¢ וסxúouv．

 ón $\omega \varsigma$ וסXúधા．
 （ФEK 81 A＇）．

 1312 B＇）óп $\omega \varsigma$ וסхúعı．
 13588／725／28．3．06（ФЕК 383 B＇），24944／1159／30．6．06（ФЕК 791 B＇），8668／2．3．07（ФЕK 287 B＇）Kaı

 Ioxu̇ouv.
 otnv KYA 114218/1997 (ФEK $1016 \mathrm{~B}^{\prime} / 17-11-1997$).

 поотткळ̈v характпрютткผ்v єкройя к.גп.

 Eүкик入i ω v.

 Пєрıßа́Моитоя

Фáon oxediaouoú

 xpóvo.

 $287 B^{\prime} / 07$).

 epyaciec,

 тоиаде்тес.

А

 та ако́入оиӨа：

 ह入áxıтто ठuvató

Yypá kal otepeda anóß入nta

 1312）о́п $\omega \varsigma$ عка்бтотє Ібхйย।

Oópußoc - סovñoeıs

 סıaтáそ̧ıı п прі Өорúßou

Фáón גeItoupvias

 фaıvó $\mu \varepsilon$ va п $\AA \eta \mu \mu u \rho \omega \dot{v}$

Áǵpia Aпóß λn nta

 проßлпиатт $\omega \mathrm{v}$.
 غ̇үкаıр каІ тактıкウ่ апоконіठ́n் тоис,

¿uүкєкрıц்̇va va yiveтaı:

 тПऽ вүката́бта⿱㇒㠯я

 avtippúnavons．

Yypá AпÓß入nta

 праүратопоıітаı $\mu \varepsilon$ ßáö та ако́入оиӨa：

 үıа тıৎ aváүкะৎ тоu غ́pyou．

 тПऽ періохウ்ऽ

 (B^{\prime} 1909) каı ото N. 4042/2012 ($\mathrm{A}^{\prime} 24$), о́п $\omega \varsigma ~ \varepsilon к а ́ \sigma т о т \varepsilon ~ І б х и ̆ o u v . ~$

 єка́oтотє Іохúouv.

ミтеред́ Aпóß入nта

 （ФЕК 24／A＇／2012）．

 NоноӨعбіас，Еіठıко்тєра：

 41624/2057/E103/10 (ФЕК 1625 B') ónமఢ ıXúouv.

 ón ω ç ıбXúઘ.
 (ФЕK 81 A').

 1312 B' $^{\prime}$) ón $\omega \varsigma$, ıxúยા.
 13588/725/28.3.06 (ФЕК 383 B'), 24944/1159/30.6.06 (ФЕК 791 В'), 8668/2.3.07 (ФЕК 287 B') каІ

 10xu̇ouv.
 oTnv KYA 114218/1997 (ФЕK 1016 B'/17-11-1997).

 Еүкик入ішv．

 Пєріßа́ММоитоя，

 о入ок入ウ்р ω on touc，

Maúon \eıtoupvias

EPIO ：«EPIA ETIEEEPTASIAI KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K S N N ~ A Y M A T S N ~ I T O ~ A I I O N ~ O P O \Sigma " ~$

ФAH EPROY	ПEPIBAMONTIKO ETOIXEIO	EMIITREEİ			BAPYTHTA				AIAPKEIA		ANAETPEUIMH			ПAPATHPHEEIE
		$\frac{1}{2}$	W	8		容	㐌				－		$\frac{1}{2}$	
	К入ıцатіка̇ каı ßıок久ıцатіка́ характпріттікд		\checkmark			\checkmark				$\sqrt{ }$	\checkmark			 anó та $\mu \eta$ Хаvฑ̇ната катабквий́
	Морфодоүіка́ каı тополоүіка́ характпріотіка்		$\sqrt{ }$				$\sqrt{ }$			$\sqrt{ }$			$\sqrt{ }$	Перıрі弓оитаı о। єкбка甲ӹv．
	Гع $\omega \lambda$ оүıка́，тєктоvıка́ ка। єठацолоүıка характпріотıка			$\sqrt{ }$										
	Фưıкó пعрıßà λ 入ov			\checkmark										
				$\sqrt{ }$										
	пعріßд்入入оv	\checkmark			$\sqrt{ }$					$\sqrt{ }$				
			$\sqrt{ }$					\checkmark		$\sqrt{ }$			\checkmark	Yпоүधıопоinon тuxóv vغ $\omega \mathrm{V}$ ठıктu่ $\omega \mathrm{v}$ ． ¿uvtónદuan Xpóvou катабквийс．
	ото перıßà λ גоv			\checkmark										
	Поıо́тПта тои aغ̇pa	\checkmark				\checkmark				$\sqrt{ }$		$\sqrt{ }$		бкóvŋ̧ каı каuđaepiev апо́ та $\mu \eta$ Хаvŋ́ната катабквuท̆c．Eпıスоүท்

$\begin{aligned} & \text { ФAEH } \\ & \text { EPROY } \end{aligned}$	חEPIBAMAONTIKO ETOIXEIO	Enintseis			BAPYTHTA				AIAPKEIA		ANAETPEYIMH			ПAPATHPHEEİ
		$\frac{Y}{2}$	W్ㅐㅜ	중	$\begin{aligned} & \frac{\pi}{\Sigma} \\ & \frac{1}{3} \\ & \hline \end{aligned}$	$\frac{\Sigma}{E}$			$\sum_{\sum}^{\text {를 }}$		징	$\begin{aligned} & \text { W } \\ & \text { y } \\ & \text { à } \\ & \text { 씰 } \end{aligned}$	$\frac{\text { 블 }}{2}$	
														цєтафора́ц ад̄раvळ்v. $\Delta ı a \beta \rho o x \dot{~} \sigma \omega \rho \dot{\omega} v$ $\chi \omega \mu a ் т \omega \mathrm{v}$ каІ $\mu \varepsilon т \omega ் п \omega v$ єкбкафф́v
		\checkmark					\checkmark			$\sqrt{ }$		\checkmark		$Ө$ орúßou anó та $\mu \eta \chi a v \grave{\eta} \mu a т а$ катабквиท่я. Típnon opiav vouörciac anó tous epyo久áßous.
				\checkmark										
	'Үбата			$\sqrt{ }$										
	¿оßара́ атихŋ்ната ர் катаотрорغ́я			\checkmark										
	Кגıцатіка́ каı ßıоклıдаткка́ характпрюттка́		\checkmark					$\sqrt{ }$	\checkmark			\checkmark		 àvӨрака $\mu \varepsilon$ єфариоүп่ биотர்иатоя ع६оп入ıбиоu்
$\stackrel{\text { T }}{\substack{\text { N }}}$	Морфолоүіка́ ка топоגоүіка́ характпрюттка́		v					v						Мє та μ ह́тра поu протвіvovtaı перюорі६тта। брабткка́ η опткк่ ó $\times \lambda n \sigma \eta$.

EPIO ：«EPIA ETEEEPTALIAL KAI $\triangle T A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ I T O ~ A / T O N ~ O P O \Sigma * ~$

ФAEH EPROY	IEPIBAAAONTIKO ETOIXEIO	Enintaseis			BAPYTHTA				AIAPKEIA		ANAETPE ${ }^{\text {I }}$ IMH			TAPATHPHEEİ
		$\frac{1}{2}$	W్W	荅	$\begin{aligned} & \text { I } \\ & \frac{s}{3} \\ & \hline \end{aligned}$	$\frac{\Sigma}{\frac{L}{E}}$			$\sum_{i=1}^{\sum_{i}^{2}}$		징	$\begin{aligned} & \text { W } \\ & \text { 플 } \\ & \text { ㅆㄷ } \end{aligned}$	$\frac{2}{2}$	
	вбородоүіка́ характпріотіка			\checkmark										
	Фuбiкó перıßà入入ov	$\sqrt{ }$			\checkmark				\checkmark					
		\checkmark			\checkmark				$\sqrt{ }$					
	перıß̈̀̀ λ lov	$\sqrt{ }$			\checkmark				\checkmark					
	TЕXVIKと̇¢ unoठouȩ̇，			\checkmark										
	ото перıß்̀Mov	\checkmark			\checkmark				$\sqrt{ }$					
	Поıо́tпта тоu aépa	$\sqrt{ }$						\checkmark	\checkmark				$\sqrt{ }$	ठє $\xi a \mu \varepsilon v \dot{v} \mathrm{vaı}$
		\checkmark				－	$\sqrt{ }$		$\sqrt{ }$				$\sqrt{ }$	плعктропараүшүо் ＜દúyoc．
	Н入єкроиаүvๆтіка̇ п¢ठia			\checkmark										
	Үбата	\checkmark			\checkmark				$\sqrt{ }$					
	¿оßара́ атихи́ната ض́ катаотрорє́я	$\sqrt{ }$				$\sqrt{ }$				\checkmark		\checkmark		

Tax．$\Delta / v \sigma \eta$ ：Папа́甲п 82，Өعбба入оviкп，Т．К．54453，
Tク入．： 2310902321
Email：skarageo＠gmail．com
¿甲раүіठа－Үпоүра甲ர́

－EAETXOHKE

Өгобалоviкп．．．．14．／4／．．．20．22
O ПPOÏITAMENOE

Móoxos Jopra̧ıútns $\triangle a 00 \%$ YOC $\mu \varepsilon A^{\prime} \beta$

QERPHOHKE
deaonlovikn．．14．／4／20．2\％
O AIEYOYNTHE THE

Tetópyos Marpará̧̧ņ

11. ПEPIBANAONTIKH $\triangle I A X E I P I \Sigma H ~ K A I ~ П A P A K O N O Y O H \Sigma H ~$

11.1.Перıßа入Аогтıкп́ бıахвірıбп

 Plan (EMP) qival:

 avaӨع $\omega \rho \dot{\eta} \sigma \varepsilon \omega \mathrm{v}$

11.2.Пعрıßа入Аоитıкі́ паракоАои́Өпоп

- Opia x -
- Opıa ктıpíav Movís

	Пардиєтроऽ	Ми́धобоऽ	Апатท்бєıร EPA үІа бохвіа oukhoyís	Mé日oठ̃os ouvinipnons ठеıүца́тни	Xpóvos mapauovīs	
					E¢̧aywy	Aviduoun
Eioozocy Е́ ε обоऽ	BOD-5	MCAWN Method 405.1	One $500-\mathrm{mL}$ amber glss jar with TeflonTM-lined cap	Store at $4^{\circ} \mathrm{C}$	48 hours	5 days
	COD	MCAWM Method 410.4	One $500-\mathrm{mL}$ amber glas jar with Teflon ${ }^{\text {TM }}$-lined cap	$\mathrm{H}_{2} \mathrm{SO}_{4}$; store at $4^{\circ} \mathrm{C}$	NA	28 days
	TSS	MCAWW Method 160.2	One $500-\mathrm{mL}$ polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	7 days
	O\&G	MCAWW Method 413.2	One 1-L amber glass jar with Teflon ${ }^{\mathrm{TM}}$ lined cap	HCl ; store at $4^{\circ} \mathrm{C}$	28 days	40 days
	Chloride and sullate	MCAWN Method 300	One $250-\mathrm{mL}$ polyethylane bottle	Store at $4^{\circ} \mathrm{C}$	NA	28 days
	Micobiolog. parameters		$120-\mathrm{mL}$ sterilized borosilicate glass bottle	Store at $4^{\circ} \mathrm{C}$	1 hr	48 hours
	DO	MCAWM Method 360.1	One $250-\mathrm{mL}$ polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours
	pH	MCAWM Method 150.1	One $250-\mathrm{mL}$ polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours

 غ்६оठ̄ం.

ПAPAMETPOE	EIEOAOE	EEOLOE	INYE	$\triangle E I T M A$	ПAPATHPHEEİ
Парох'̆		+			
$B^{\prime} D_{5}$	\#	\#		M.H	
COD	\#	\#		M.H	
SS	\#	\#		M.H	
vitpiká	\#	\#		M.H	
TP	\#	\#		M.H	

* : ミпораб̈ıка́

- $\Omega \varsigma$ аvштغ̇р ω пivaкая

ПAPAMETPOE	£YTKENTP $\Omega \mathbf{\Sigma} \mathbf{H}$
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{tt})$	<10
COD (mg/t)	<100
Alwpoúheva oteped, SS ($\mathrm{mg} / \mathrm{lt}$)	≤ 10
Өоло́tira	<2

－Еßб̄онаб̈аіос $\dot{\varepsilon} \lambda \varepsilon ү \chi о \varsigma$,

－Opıa ктьрі ω v Movís

－＇ҮпарЕп סıарроळंv

11．2．4 Парако入ои̇Өŋัワ Өорúßou

－Opia xஸ்pou EEA
－＇Opia ктірíwv Movウ́s

－Auछппદ̇voc Өо́pußos

11．2．5 Паракоגои̇Өпоŋ ооцஸ்v

 घ६оп入ıбนоบ่．

 عуо́тптє६：

Yס̈pqu入ıко́s ミxEס̈ıaouós

KaӨapiouós－Euvtṅpnon

－KaӨпицріvá

－Opıa Xஸ́pou EEA
－Opıa ктірі ω v Movท̀s

11．3．1 Еıоаүюүர்

 апоठЕ̇ктๆ．

 перıхй́ каı та vepá．

 uппрєбі६ऽ عпıбкยు山่v．

11．3．3 Evepүonoinon tou इxeठiou

阝．Екठ̄̀̀ $\lambda \omega$ оп пиркаүıа́я

－Aןغ̇えغıı
－YпєрӨغ́puavan

ү．Епıßapпи $\dot{\text { viva aпо́ß入пта }}$

－\quad дıаррой бг аушүó

 Acquisition or SCADA）каı ठ६ıүнато入n $\psi i \varepsilon \varsigma-a v a \lambda u ́ \sigma \varepsilon ı \varsigma$,

11．3．4 Anevepyonoinon tou Exeठ̃iou

Naı OXI
A. Ектротп́ tףऽ тарохи́s عıбóōou

B. Xpர்on ßutiopópwv

 к.л.т.

Г. Мદ́бa єктákтоu aváyкクラ

 типиátwv ins عүкатáoтаons

12．K』ムIKOПOIH亡H AПOTEイELMATתN KAI ПPOTA乏EתN IIA THN EГKPİH חEPIBAAONTIKתN OP＠N

12．2．1 Karára૬̆n غ̇pyou

 2703／B75－10－12）．
 1931B／27－12－2004）．
 3－2007）．

KatàtaEn кatá ミTAKOム 2008 каI NACE Rev． 2

	इuvtetayuévec E［さA 87	
	X	X
A． 2 （apx＇̆）	522488，04	4458979，78
A． 1	522478，97	4458967，96
	522441，29	4459002，15

	ミuvtetayuėveç EГГA 87	
	X	X
D．0．0	522532，15	4459025，49
D．0．2	522490，29	4459019，27
A． 0 （Tغं λ O¢－K．Ф．）	522441，29	4459002，15

 E．E．＾．عival：

	ミuvtetayużveç EГГA 87	
	X	X
A． 0 （apxウ่－K．Ф．）	522441，29	4459002，15
B． 1	522420，21	4459030，07
B． 0	522421，20	4459052，76

 522415，06 каІ $Y=4459058,37$ ．

	ミuvtetayuėvec E［EA 87	
	X	Y
＇Ȩoठ̃oc anó EE＾（C．1）	522410，70	4459053，76
	522396，09	4459045，68

12.2.3 Перıүрачй 'Eруои

Aпохعтеutiká діктиа

 по入uпропи

－НДєктріко́ пivaка $\varepsilon \lambda \varepsilon ́ \gamma x о u ~ \lambda \varepsilon ı т о u p y i a c, ~$

TAPAMETPOE		ПAPOYEA ФAEH	ФAEH EXEAIAEMOY
Е६uпn	кат．	220，00	290，00
	$\mathrm{m}^{3} / \mathrm{d}$	33，00	43，50
акаӨápтшv	$\mathrm{m}^{3} / \mathrm{d}$	49，50	65，25
	$\mathrm{m}^{3} / \mathrm{h}$	2，06	2，72
	$\mathrm{m}^{3} / \mathrm{h}$	7，42	9，79
Elठıкỏ Punavtikó ¢optio BOD_{5}	gr／kat／d	60	60
Eıठıкó Punavtıkó ¢ортio TSS	gr／kat	70	70
Eıठıк⿺尢丶 Pumavtikó 甲ортio TN	gr／kat／d	10	10
Eıర̈ıкó Puпavtikó 甲ортio TP	gr／kat／d	3	3
Фортіо BOD_{5} охદठıабนой	kg／d	13，20	17，40
	kg／d	15，40	20，30
	kg／d	2，20	2，90
	kg／d	0，66	0，87

K ω бъıóç E．K．A．：19．08．05

Пєріпои $10 \mathrm{~m}^{3} /$ غ่тऽ

 145116／2011．

12．2．5．1 Аघ́рıа апо́ß入птт

 ठıaтá६ıı；：

 Koivotitituv．
II．KYA $\mu \varepsilon$ 14122／549／E103／24．3．11（ФEK 488／B／30．3．11）«MĖтрa yia Tn Be入timon Tns

12．2．5．2 Yvоó апо́ßлпта

Мацßávovtaç uпó $\psi \eta$ ：

 KYA）

ПAPAMETPOE	£YTKENTP $\Omega \mathbf{\Sigma} \mathbf{H}$
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{lt})$	≤ 10
COD（ $\mathrm{mg} / \mathrm{lt}$ ）	≤ 100
	≤ 10
Єоло̇тпта	<2
pH	5，5－8，5

 Парápтпиа 1 тПऽ KYA 5673／400／97．

Катá тп 甲áoŋ Катабквuņ̃：
－KYA 9272／471／07，ФЕК 286／B／2．03．07：«Tpononoinon tou ápӨpou 8 Tņ un＇api $\theta \mu$ ．

 81／1051／EOK ка।
Katá Tŋ 甲áon＾हाтoupyiac：

 μ ováס̄aç．

12.2.7. 1 Kaтá тп 甲áवп Kaтабкеuŕc:

 12, пар. 2 тпऽ К.Y.А. Н.П. 50910/2727/03 (ФЕК 1909 В'/03) каı В) ота єпıкіvठuva aпóß入пта
 $\left.287 B^{\prime} / 07\right)$.

 тоиц ap

 кal $\varepsilon \kappa п \lambda u ̇ \sigma \varepsilon \omega V ~ u \lambda ı \kappa \dot{\omega} v$.

 x ω pous．

 u

 ако்入ouӨa：

 ह入áxıaтo סuvató

Yyod каи отвовá anóß入nta

 б

 апоррıииа்шш．

 عえáxiotov va tnpoúvтaı та aко่’оuӨa：

 єрүота६іои бє бинио́рфшоп проц тія обпүүієц 79／113／EOK，81／1051／EOK каІ 85／405／EOK тои

 єпо́нєvクఢ параүра́фои

 коıvウ่я поuxias，

－Aпауорعúधтаı η vuxtepivn் epyacia．

12．2．7．3 Kaтá тп ゅáon \हाтоupviac：

 фaıvó $\mu \varepsilon$ va п п $\lambda \eta \mu \mu u p \omega ் v$

 проßлпиа்тшv．
 غ̇үкаıрク каІ тактıкク่ апоконіठ்ற тоuc．

इuүкєкрıщغ́va va үiveтal：
 каӨapoú тоu X＇்pou тпऽ вүката́oтабпऽ．

 тПऽ £үката́oта⿱㇒冋я

 ठuvaтท่ モкпоипท் рún ω v．

Yypá Anóßגnta

 праүнатопоєітаı $\mu \varepsilon$ ßáon та ако́入оиӨа：

 4042/2012 (A' 24), о́nшऽ єка́бтотє ıбхủouv.
Ta $\lambda u ́ \mu a t a ~ Ө a ~ o o ̄ n y o u ́ v t a ı ~ Y ı a ~ a n o \lambda u ́ \mu a v a \eta . ~$

ミтереа́ AпóßАnta

24/A72012).

 41624/2057/E103/10 (ФЕК 1625 B') ón $^{\prime} \omega \varsigma$, Iסxúouv.

 ón $\omega \varsigma$ וбхи்ย.

 $1312 B^{\prime}$) ón ω ¢ , ІбXúधા.
 13588/725/28.3.06 (ФЕК 383 В'), 24944/1159/30.6.06 (ФЕК 791 В'), 8668/2.3.07 (ФЕК 287 В') ка।

 ıoxúouv.
 KYA 114218/1997 (ФЕК 1016 B'/17-11-1997).
O ap

 Еүкикスi ω v．

 Періßы̀入лоитоц

 катабкєบฝ́v．

13．ПРO乏OETA 乏TOIXEIA

2．Yүıєıvoגоүıкоі uпо入оүıбноі

13．2．ПроßАர́ната єкпо́vŋбпร

14．ФЛТОГРАФIKH TEKMHPI Ω 上

15. XAPTE - £XEAIA

15.1.Xáptпৎ пробаvatoגıбนои́

15.1 Xápтŋ̧ пробаvaтоגıоцои̇

$15 . A$

阴队

 парако入ои்Өпопц.

16. ПАРАРТНMA

16.1. YГIEIONOAOГIKOI YПOАOГIEMOI THE E.E.А.

IEPA KOINOTHTA АГIOY OPOY乏 $A \Theta \Omega$

ЕРГО：«EPГA EПEEEPTA乏IA乏 KAI $\operatorname{\Delta IAOE\Sigma H~A\Sigma TIK\Omega N~}$ AYMATRN $\Sigma T O$ AГION OPOミ»

ANA \triangle OXOE	EYГTPATIOE A．KAPAГE Пaráq甲 82，T．K．54453，ӨEELA／ONIKH T η А．：2310－902321 \＆ 6976801783 Email：skarageo＠gmail．com

ПAPAPTHMA A：
YГIEIONOAOFIKOI YПOAOГIEMOI
EГКАТАГTAЕHE EПEEEPГAETAEAYMATRN I．M．
ПANTOKPATOPOE

חEPIEXOMENA

1．EIEAT Ω ГH 1
2．ПAPAMETPOI इXEAIAEMOY EEA 1
2.1 Парохย́ध каı Фортіа＾ица่тшv 1
2.2 Поо́тпта Екроп́s 1
 2
3．$\triangle I A \Sigma T A \Sigma I O \wedge O T H \Sigma H ~ M O N A \Delta \Omega N$ 3
 3
 3
 4
3．2．1 ГЕviкà 4
 5
3.3 Віофоүıк่ Eпє६६рүаоіа 6
3．3．1 Eıбаүшүウ்－періүра甲ர் 6
 7
 7
3．3．3 дıабтабıодо́үпоп－Үподоүıбноі 11
3．3．3．1 Enıßapúvorıç દוळóסou 11
 єп६६६pүабіа 11
 11
 11
 11
3．3．3．6 Параүшүท่ ı入úos， 12
 12
3．4．1 EІбаүшү＇் 12
 12
3.5 Апоגúhavoŋ 13
3．5．1 Eıбаүшү＇் 13
 14
 16

1．EIEAГRГH

 İpác，Movท́ৎ Паvтокрáторос．

2．ПAPAMETPOI EXEAIAEMOY EEA

2.1 Парохв́ऽ кал Форті́ Аица́таV

ПAPAMETPO乏		$\begin{gathered} \text { ПAPOYミA } \\ \text { ФAミH } \end{gathered}$	ФAミH EXEAIAEMOY
	кат．	220，00	290，00
	$\mathrm{m}^{3} / \mathrm{d}$	33，00	43，50
	$\mathrm{m}^{3} / \mathrm{d}$	49，50	65，25
	$\mathrm{m}^{3} / \mathrm{h}$	2，06	2，72
Парохй aıxu＇s Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	7，42	9，79
Eıōıкȯ Punavtikó ¢ортio BODs	gr／kat／d	60	60
Eiơıkȯ Punavtikó ¢ортio TSS	$\mathrm{gr} / \mathrm{kat}$	70	70
Eıठ̈ıкȯ Punavtıкó ¢ортіо TN	$\mathrm{gr} / \mathrm{KOT} / \mathrm{d}$	10	10
Eıठ̃ıкȯ Punavtıkó ¢ортio TP	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	3	3
	kg／d	13，20	17，40
	kg／d	15，40	20，30
	kg／d	2，20	2，90
Фортіо TP охуठוаоиой	kg／d	0，66	0，87

2.2 Поо́ттта Екрогंя

ПAPAMETPOE		OPIA	
Оגıко́ BOD ${ }_{5}$	$\mathrm{mg} / \mathrm{lt}$	\leq	10^{*}
Aıюроúhzva oreped (TS)	$\mathrm{mg} / \mathrm{lt}$	\leq	10*
О入ıкò á̧んто (TN)	$\mathrm{mg} / \mathrm{lt}$	\leq	45

ПAPAMETPOE		OPIA
Eschericia coli (E.coli)	EC/100ml	\leq
	$50^{* *}$	

(**) үиа то 95% т ти ठбеуүát ωv

2.3 इuvoптткri Пepıypaprí EEA

 оріট̧таı отоv Піvaка 2 тПऽ КҮА 145.116/2011.

3. AIAETAEIOAOLHEBH MONAAQN

 то аvтлıота́бוо прокйrाтвı:
$3 \times[(145 \times 225) /(1000 \times 24)] \times 1.2=4,89 \mathrm{~m}^{3} / \mathrm{h} \eta \dot{1.36} \mathrm{l} / \mathrm{s}$

$V=0.9 \cdot \frac{Q_{\mathrm{pm}}}{z}$
ónou:
$\mathrm{V}=$ uypós óyко̧ $\sigma \varepsilon \mathrm{m}^{3}$
Qpm = парохй, бع I/s

$V=0.9 * \frac{1.36}{6}=0.20 \mathrm{~m}^{3}$

3.2.1 Гeviká

Ta $\lambda u ́ \mu a t a ~ a n o ́ ~ t o v ~ a y \omega ү o ́ ~ п р о \sigma a ү \omega ү n ่ s ~ o \delta ̄ n y o u ́ v t a l ~ \mu \varepsilon ~ \varepsilon \lambda \varepsilon u ́ \theta \varepsilon p n ~ p o n ่ ~ \sigma \varepsilon ~$

 $\mu п о р \varepsilon i ~ v a ~ \chi р \eta \sigma ן \mu о п о ı ŋ Ө \varepsilon i ~ ठ \varepsilon \xi a \mu \varepsilon v ท ่ ~ т u ́ n o u ~ I m h o f f . ~$

 отрعळ்้.

 घп६६єрүабіас,

 ßıо入оүıкп்ऽ єпє६६рүабіас.

 oxદ்øך:
$\mathrm{q}=\mathrm{Q}_{\mathrm{d}, \mathrm{m}} / \mathrm{A}$

ПAPAMETPOE	MONA 4	TIMH
	$\mathrm{m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$	0,6
	$\mathrm{m}^{3} / \mathrm{hr}$	9,79
	m^{2}	16,32

 $45 \mathrm{~m}^{3}$.

Пivakas 2.2. Yпо入оүıбцós xpóvou kaӨiZ̨nons

ПAPAMETPOE	MONA \triangle A	TIMH
	$\mathrm{m}^{3} / \mathrm{hr}$	2,72
	m^{3}	8,16
	m^{3}	36,80
	hr	13,53
	hr	3,76

 aб甲á入દıa $\omega \varsigma$ ако入оú $\theta \omega \varsigma$（ATV－Handbuch，Mechanische Abwasserreinigung，1996）：

ПAPAMETPOE	MONA 4 A	TIMH
BOD_{5}	\％	25
COD	\％	25
Aımpoúhzva otepeá SS	\％	60
О入ıко́ àZんто	\％	10
Фஸ்оцороऽ，	\％	9

ПAPAMETPOE	MONADA	TIMH
BOD5	mg／l	300，00
	kg／d	13，05
COD	mg／l	540，00
	kg／d	23，49
Aı ω poủ	mg / l	186，67
	kg／d	8，12
	mg／l	60，00
	kg／d	2，61
Фట்ण¢ороऽ，	mg／l	18，20
	kg／d	0，79

3．3 BıoAoyıкர் Eneร̧epyaवia

3．3．1 Еıбаүюүण்－перıура甲ர่

H દछغ่入દ

 ı̀̀úoc.

 $0.0049 \mathrm{~m}^{3} / \mathrm{m}^{2}$ घпıф́̀veıac.

甲áबŋ, поu кuцaivovtaı anó 90 ह́ $\omega \varsigma ~ 95 \% ~ \omega \varsigma ~ п р о \varsigma ~ т о ~ B O D . ~$

 тоuç عivaı η єпіт

 ßuӨıбцદ̇voI бто aváयıкто uүро́.

		Аєитероßд́ध $\boldsymbol{\mu \varepsilon}$ таuто́хроип virponoinon	$\mu \varepsilon$ virponoíqon бє छехшріото́ ơáठ̋o
$\left(\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}\right)$	0.08-0.16	0.03-0.08	0.04-0.1
Opyaviкก் ¢о́pтıоп			
$\mathrm{Kg} \mathrm{SBOD} / \mathrm{m}^{2} . \mathrm{d}$	0.003-0.01	0.002-0.007	0.0005-0.001
$\mathrm{Kg} \mathrm{TBOD} /{ }^{\text {/ }} \mathrm{m}^{2} . \mathrm{d}$	0.01-0.017	0.007-0.015	0.001-0.003
фо́ртіб ото прஸ்то णव்ठ்॰			
$\mathrm{Kg} \mathrm{SBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0.02-0.03	0.02-0.03	
$\mathrm{Kg} \mathrm{TBOD} 5 / \mathrm{m}^{2} . \mathrm{d}$	0.04-0.06	0.04-0.06	
$\begin{aligned} & \text { Фópтіबп а a } \mu \omega \text { viac (} \mathrm{Kg} \\ & \mathrm{NH}^{3} / \mathrm{m}^{2} . \mathrm{d} \text {) } \end{aligned}$		0.0007-0.0015	0.001-0.002
Yס̄раu入ıко́s Xpóvos параноvís (hr)	0.7-1.5	1.5-4	1.2-2.9
	15-30	7-15	7-15
A $\mu \mu \omega v i a$ $(\mathrm{mg} / \mathrm{lt})$		<2	1-2

	（mg／l）	（ Kg / d ）
BOD_{5}	300，00	13，05
COD	540，00	23，49
SS（aıضроủnzva oteped）	186，67	8，12
Oגıко́ àそんто（орүаvıкó N ， $\left.\mathrm{NO}_{3}-\mathrm{N}, \mathrm{NH}_{4}-\mathrm{N}\right)$	60，00	2，61
	18，20	0，79
Өяриократіа	$12-20^{\circ} \mathrm{C}$	
pH	7，5	

 25\％
 $13,05 \mathrm{Kg} / \mathrm{d}$

$\mathrm{BOD}_{5} \leq 20 \mathrm{mg} / \mathrm{l}$
COD
$\leq 125 \mathrm{mg} / \mathrm{l}$
Alwpoứneva otepgá（SS）
$\leq 25 \mathrm{mg} / \mathrm{l}$

$6 \mathrm{~g} /\left(\mathrm{m}^{2} \mathrm{xd}\right)$
$13,05 \times 1000 / 6=2175 \mathrm{~m}^{2}$
$2500 \mathrm{~m}^{2}$
1
$1,10 \mathrm{~kW}$

O入ıкウ่ धпифávยıa $2500 \mathrm{~m}^{2}$

3．3．3．6 \quad Параушуウ் ıAúos

 $\mathrm{kg} \cdot \mathrm{SS} / \mathrm{kg} \cdot \mathrm{BOD}_{5}$ апоцакриvó $\mu \varepsilon v o$.
 апоиакриvóuevo．

Параүшү＇̆ ठєитєроßäӨuıaç ı入ủos
ミuvo入ıкn่ параүшүク் ı入ủos，
$13,05 \mathrm{~kg} / \mathrm{d}$
$20 \times 43,5 / 1000=0,87 \mathrm{~kg} / \mathrm{d}$
0,55 ＊$(13,05-0,87)=6,70 \mathrm{~kg} / \mathrm{d}$
$12,18+6,70=18,88 \mathrm{~kg} / \mathrm{d}$

3.4 पIÚAıOワ

3．4．1 Eıбаушүท่

 （Andreadakis 2003，Metcalf \＆Eddy 2003，Titley 2014）．

 фо́ртıоп тои фїтрои θ а віvaı $<8 \mathrm{~m}^{3} / \mathrm{m}^{2}$－ hr ．

8
$\mathrm{m}^{3} /\left(\mathrm{m}^{2} \mathrm{xh}\right)$

	1,22	
	4	m^{2}
	2,45	$\mathrm{m}^{3} /\left(\mathrm{m}^{2} \mathrm{xh}\right)$

 mg / l.

$B O D_{\text {ss }}=0,65 * 1,42 * 0,68 * S S$
ónou:

$B O D_{5, \text { eff }}=B O D_{5, i n}-B O D_{s s}$
ónou:

$B O D_{5, \text { eff }}=9,96 \mathrm{mg} / \mathrm{l}$

3.5 Anoגúuavō

3.5.1 Eıбаүшүท่

 парадغ்троиц:
\Rightarrow Поוо́тпта тоu vepoú

- Aiwpoú $_\varepsilon v a$ oreped

 $\mu \varepsilon ү а \lambda u ́ т \varepsilon р \eta ~ а п о ́ ~ 70 \% . ~$
 10^{7} FC / 100 ml .

 Disposal Reuse, 1979, p. 287):

Eoxápwon
$\mathrm{Eff}_{\text {SCN }}=10-20 \%$
E६áu $\mu \omega \sigma$
$\mathrm{Eff}_{\text {SF }}=10-25 \%$
Bıолоүıкп́ BaӨціб̄а
Eff $_{\text {B }}=90-98 \%$

Прокаөіگлоп

$$
\begin{aligned}
& \mathrm{Eff}_{\mathrm{PC}}=10 \% \\
& \mathrm{Eff}_{\mathrm{BB}}=90 \%
\end{aligned}
$$

 прокйпттяı aпó тоv тúпо:

Colifeff $=$ Colifin $_{\text {in }}^{*}\left(1-\right.$ Eff $\left._{\mathrm{PC}}\right) *\left(1-\right.$ Eff $\left._{\text {BB }}\right)$
Мє avтıкатáotaõ прокúrाєı :
Colifeff $=10^{7}(1-0.10) *(1-0.90)$
Colifeff $=9 \times 10^{5} / 100 \mathrm{ml}$
 ланßávetaı ión $\mu \varepsilon 10^{6} / 100 \mathrm{ml}$.

 A' $^{\prime}$ тá $̧$ ns :

$$
N / N_{0}=e^{-k . i . t}
$$

ónou,
No: o apxıкós apı日иós, TC
N: о тعлıко́ц арıӨио́я TC
k: отаӨعрव́

$$
-k^{*} i^{*} * t=\ln \left(10^{-5}\right)=-11,51
$$

$$
\mathrm{i}^{*} \mathrm{t}=11,51 \mathrm{mWsec} / \mathrm{cm}^{2}
$$

 T $\omega \mathrm{v} \lambda \lambda^{2} \mu \mathrm{~m}+\dot{\rho} \rho \omega \mathrm{v}$

16．2．ITYXIO MEAETHTH

E．AAHNIKH AHMIOKPATIA
YHOYPTEH YTIOXOMEN
METAФOPQN \＆AKKTYON TEN．IPAMMATELA YTIOAOMQN IEN．ANEH TEXNIKHE VIIOLTHPIEHエ A／NEH MHTP $\Omega \Omega$ N
TMHMA MHTP』OY MEAETHTRN

IITYXIO ME $\boldsymbol{\Lambda}$ ETHTH

 ПА 138／2009／N．3316／2005AP．MHTP $\Omega O Y$ ：
A．Ф．M．：

A．O．Y．：

EПINYMO：
ONOMA：
ONOMA ПATPOL：
EIAIKOTHTA：
EAPA NOMOE：
EIIAГT．EAPA：
KATOIKIA：

19558
119767005
इT＇＠E工

KAPAГEתPГIOY

EYETPATIOE

ANAPEAE
XHMIKOE MHX．
©EL／NIKHL
ПАПАФН 82 ЄЕЕ／NIKH TK 54453
ПАПАФН 82 ӨЕट／NIKH TK 54453

KATHГOPIE MENETSN

a．KATHIOPIA YП＇API Θ \qquad
18 \qquad TAEH \qquad A
ß．KATHIOPIA YIT API Θ
27
Iбxúย1 aró ．．．．．．．．．．．．．．22／02／2016
TAEH \qquad A Ew̧．．．．．．．．．．．．．22／02／2026

16.3. ЕIДIKH ОІКОАОГIKH AЕIOАОГНЕH

EIロIKH OIKO＾OГIKH AミIONOГH乏H

 EPIתN EПEEEPTA乏IA乏 KAI DIAOE $\Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~$ ПANTOKPATOPO乏

ANADOXOE
 EYミTPATIOE KAPATEQP「IOY

ПАПАФН 82， 54453 ӨЕЕさAへONIKH
email：skarageo＠gmail．com

IOYNIOE 2021

O
o
Пívaкац̧ $\pi \varepsilon р เ \varepsilon \chi о \mu \varepsilon ́ v \omega \nu$ EIइAI®ГН－ПEPIOXH MEムETH乏 3
1．YФIミTAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBA＾MONTO乏 4
1．1 KATAГPAФH KAI ANANY乏H T Ω N $\Sigma T O I X E I \Omega N$ ФY乏IKOY ПEPIBANAONTO乏 $\Sigma T H N ~ \Pi E P I O X H ~$ MEAETH乏 4
 4
 5
 6
 10
 ПЕРIOXH MEЛETH乏 38
1．3 AMME乏 इXETIKE乏 ПЛHPOФOPIE П ПOY AФOPOYN इTHN ПEPIOXH MEムETH乏 38
1.4 ФЛTOГРАФIKH TEKMHPI $\Omega \Sigma H$ 39
1．5 KATATPAФH TH乏 KATAミTA乏H乏 TOY ФY乏IKOY ПEPIBA＾＾ONTO乏 $\Sigma T H N ~ П E P I O X H ~ T O Y ~ \triangle I K T Y O Y ~$ NATURA 2000 41
 41
 характпрьтєі η откі α лєрьохŋ́ Natura 2000 42
1．5．3 Kúpıє̧̧ тıи̧́ α vaфорás 48
 48
 49
 53
2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O \wedge O F H \Sigma H ~ T \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N$ 53
3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma T \Omega N ~ \Pi I \Theta A N \Omega N ~ E \Pi I \Pi T \Omega \Sigma E \Omega N$ 55
4．ANTIZTAOMIITIKA METPA 59
 4014／2011 59
 59
 60
 61
5．ПРОГРАММА ПАРАКОЛОҮОНГНГ 62
6．$\Sigma Y N O \Psi H ~ \Sigma Y M \Pi E P A \Sigma M A T \Omega N$ 66
7．BIBAIOГРАФIKEL ПHTE 68
8．OMA $\triangle A$ MEAETH Σ 72
ПАРАРТНМА I 73

EİAГQГН－ПEPIOXH MEЛETH乏

 סпŋцоuppoúvtal anó то épүo

 єлє乡врүабіас）

Eıkóva 1．Пeploxи́ Mèétワ̧，ópıa пepıoxńs Natura 2000 GR1270003（EZZ）

1．YФI乏TAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBA＾MONTO乏

1．1 КАТАГРАФН КАІ ANA＾YЕН TתN इTOIXEISN ФY乏IKOY ПEPIBA＾АONTO乏 ミTHN ПEPIOXH MEAETHE

 кotvotıкó סíktuo Natura 2000.

Гعшүрафıкท́ өモ́ণๆः E： $23^{\circ} 87^{\prime} 69^{\prime \prime} \mathrm{N}: 40^{\circ} 08^{\prime} 44^{\prime \prime}$
Eктабп：33．567，80ha

 $\beta \lambda \alpha ́ \sigma t \eta o ŋ ́ ~ t o u . ~ H ~ \chi \lambda \omega p i \delta \alpha ~ t o u ~ A y i o u ~ O p o u c ̧ ~ \varepsilon i v a t ~ t \delta t \alpha t \tau \varepsilon ́ p \omega c ̧ ~ \pi \lambda o u ́ \sigma i \alpha . ~ \sum u ́ \mu \phi \omega v a ~ \mu \varepsilon ~ t o u s ~$

 （Млацла入и́vaç 1998）．

Пlowviç, Pa: Zóvq Пákixov, Al: Ziovך

Pk: Zóvn Пapvaoood-Гкко́vas,
P: Ziour חlivoou,
G: Zövm Гaßpópou-Tpiroins:

 Comes

 оұпиатібนои́ Beptíбкои.

 aroppońs tou＇A $\theta \omega$（EL1043），$\mu \varepsilon$ غ́кта⿱㇒冋 239，44 km²．

 tou 24 pou.

 ठрáonç $\tau \omega v$ र $\varepsilon \mu \mu \dot{\alpha} \rho \rho \omega v$.

X \cap RPI $\triangle A$

 1．Eu

 $\pi \lambda \alpha ү \omega \omega ́ v$ ка兀 $\tau \eta$ фúoŋ $\tau \omega v \pi \varepsilon \tau \rho \omega \mu \alpha \dot{\tau} \omega \mathrm{v}$ ．

 lentiscetum.

 (Phlomis fruticosa), orapáyyt (Asparagus aphyllus), $\alpha \lambda$ оүо日ú $\alpha \rho \circ$ (Anthyllis hermaniae)k $\lambda \pi$.
 (Pistacia lentiscus), ot $\dot{\alpha} \rho \kappa \varepsilon \cup Ө$ ot (Juniperus sp.), $\tau \alpha$ реікı α (Erica spp.) к $\lambda \pi$.

 к $\lambda \mu \alpha т$ ккєц.

 confertae (frainetto)-cerris $\mu \varepsilon \phi \cup \lambda \lambda$ оßó $\lambda \alpha$ $\delta \dot{\alpha} \sigma \eta \quad \delta p u \omega ́ v ~ a r o ́ ~ Q u e r c u s ~ f r a i n e t t o, ~ Q u e r c u s ~ p u b e s c e n s, ~$

 Évமoŋ.

 to Carpinetum orientalis.

 $\mu \varepsilon \varepsilon \varepsilon ́ \chi o u v ~ \tau \alpha ~ \xi \cup \lambda \omega \dot{\omega} \eta \eta$ हíخ Ilex aquifolium, Fraxinus ornus, Sambucus nigra, Clematis vitalba, Rosa canina, Hedera helix, Sorbus aucuparia, Sorbus torminalis, Quercus conferta,Alnus glutinosa ($\sigma \alpha$

Пivakac 1：Eí $\eta \eta \lambda \omega \rho i \delta \alpha c$

Eíठn B $\lambda \alpha \dot{\alpha}$ otnons

Abies cephalonica／£üv $\eta \vartheta \varepsilon \varsigma$
Aethionema orbiculatum／$\Sigma \pi \dot{\alpha} v i o$
Allium chamaespathum／חa $\alpha o ́ v$
Anthemis sibthorpii／Σ návivo
Arabis bryoides／חa oóv
Arctostaphylos uva－ursi／Пapóv
Asperula aristata ssp．nestia／חapóv
Asperula aristata ssp．thessala／Пapóv
Astragalus thracicus ssp．monochorum／Enávio
Atropa bella－donna／£návio
Aubrieta erubescens／Mapóv
Beta nana／Erávio
Campanula lavrensis／Mapóv
Centaurea pannosa／Mapóv

[^0]Sorbus chamaemespilus／โnávıo
Stachys leucoglossa／חapóv
Thymus thracicus／Mapóv
Valeriana alliariifolia／End́vo
Viola athois／חoरú Erávio
Zerynthia polyxena

 immanuelis－loewii，Centaurea peucedanifolia，Silene orphanidis，Viola delphinantha，Viola athois，
 $\pi \alpha \rho \dot{\rho} \rho \tau \eta \mu \alpha$ 3．3．13），घvผ́ $\tau \alpha$ عíठŋ Arctostaphylos uva－ursi，Atropa bella－donna，Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．orbelicus，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus $\pi \rho \circ \sigma \tau \alpha \tau \varepsilon$ v́ovtaı $\alpha \pi$ र́ тo $\Pi \Delta 67 / 1981$ ．T α Heracleum humile，Saxifraga juniperifolia ssp．sancta，Ophioglossum vulgatum eivaı onávi α otnv E入入 $\alpha \delta \alpha$ ń kat

 $\tau \mu \dot{\mu} \mu \alpha \pi \bar{\tau}$ ．

－$\Delta \varepsilon v \delta \rho o \varepsilon t \delta \dot{~ M a t o r r a l s ~} \mu \varepsilon$ Juniperus spp．（Arborescent matorral with Juniperus spp．）－ 5210
－$\Delta \varepsilon v \delta \rho o \varepsilon i \delta \dot{n}$ Matorrals $\mu \varepsilon$ Laurus nobilis－ 5230

－Фpúyava anó Sarcopoterium spinosum－ 5420

－A入入oußıак $\alpha \dot{\alpha} \delta \dot{\sigma} \eta \mu$ Alnus glutinosa каı Fraxinus excelsior－91E0
－$\Delta \alpha ́ \sigma \eta \mu \varepsilon$ Castanea sativa－ 9260

－$\Delta \alpha \dot{\alpha} \sigma n$ o६tác $\mu \varepsilon$ Quercus frainetto－ 9280
 Xepoovíбou（Securinegion tinctoriae）－92D0
－Δ dán δ puóç tou Atyaiou $\mu \varepsilon$ Quercus brachyphyllo－ 9310
－$\Delta \dot{\alpha} \sigma \eta \mu \varepsilon$ Quercus ilex каı Quercus rotundifolia－ 9340
－$\Delta \alpha ́ \sigma \eta \mu \varepsilon$ Quercus macrolepis－ 9350
－（Үло）$\mu \varepsilon \sigma о ү \varepsilon ı \alpha к \alpha ́ ~ \pi \varepsilon и к о \delta \alpha ́ \sigma \eta ~ \mu \varepsilon ~ \varepsilon v \delta \eta \mu к к \alpha ́ ~ \mu \alpha \cup \rho о ́ \pi \varepsilon \cup к \alpha-9530 ~$

A

 $\theta \alpha \lambda \alpha \dot{\sigma} \sigma ı \alpha \varsigma ~ \beta \lambda \alpha ́ \sigma t \eta \sigma \eta \varsigma \mu \varepsilon$ Posidonia．

N17－$\Delta \dot{\alpha} \sigma \eta$ к κv vфф́ $\rho \omega v(10,03 \%)$
N18－Aहíфu入入人 $\delta \dot{\alpha} \sigma \sigma_{n}(20,42 \%)$

 фaivovtal otov रáptף tou ПAPAPTHMATOE I．

Abstract

 Meooveíou），к $\omega \delta$ ıкó 5420 （ Φ púvava aró Sarcopoterium spinosum），к $\omega \delta$ ıкó 9260 （ Δ áon $\mu \varepsilon$ Castanea tnc E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha c_{\text {，}}$ кат α touc NTáфП к．α ．（2001）．

CORINE 32.7 Чعиסонаккі．Kんסıко́s 5350.

 Quercus coccifera，Juniperus oxucedrus，Quercus trojana，Carpinus orientalis，Ostrya carpinifolia， Pistacia terebinthus，Buxus sempervirens，Jasminus fruticans，Fraxinus ornus，Cercis siliquastrum （Coccifero－Carpinetum Honvat）．

 $\alpha \varepsilon i \phi \cup \lambda \lambda \alpha \varepsilon i \delta \eta$（ $\mu \varepsilon$ ки́pıo єкпро́б \quad ло то Quercus coccifera）к $\alpha \iota$ фи $\lambda \lambda$ оßó $\lambda \alpha$（ó $\pi \omega \varsigma$ Carpinus orientalis，

 $\pi \lambda$ оибเо́тєро̧．

X $\lambda \omega \rho เ \delta \iota \kappa \eta \dot{\sigma} \sigma \cup ́ v \vartheta \varepsilon \sigma \eta$

 eupatoria，Acer campestre，Carpinus orientalis，Chrysopogon gryllus，Silene italica，Juniperus oxycedrus，Ballota acetabulosa，Trifolium repens，Fraxinus ornus，Berberis cretica，Ostrya carpinifolia， к．$\dot{\text { ．}}$
 Pinus mugo kaı Pinus leucodermis．K ω бukós 9540.

 $\alpha v u ́ \pi \alpha \rho к т о \varsigma ~ \sigma t \eta v ~ \pi \varepsilon \rho i \pi \tau \omega \sigma \eta ~ \delta \alpha \sigma \omega ́ v ~ \pi o u ~ \varepsilon ́ x o u v ~ \pi \rho о \varepsilon ́ \lambda \theta \varepsilon t ~ \alpha \pi o ́ ~ \tau \varepsilon \chi v \eta \tau \eta ́ ~ \alpha v \alpha \delta \alpha ́ \sigma \omega \sigma \eta . ~ H ~ ф и \sigma t к \eta ́ ~$

ミта $\delta \alpha ́ \sigma \eta ~ \chi \alpha \lambda \varepsilon \pi i o u ~ \pi \varepsilon u ́ k \eta \varsigma ~ t o ~ \varepsilon i \delta o c ̧ ~ P i n u s ~ h a l e p e n s i s ~ s u b s p . ~ h a l e p e n s i s ~ \varepsilon i v a l ~ t o ~ к u \rho i \alpha \rho \chi o . ~ \sum \tau \eta ~$
 Lentiscetum aegaeicum（Pistacia lentiscus，Olea europea ssp．oleaster）$\alpha \lambda \lambda \alpha \dot{\alpha} k \alpha \iota$ tņ Quercetea， Quercetalia ilicis（Arbutus unedo，Quercus ilex，Myrtus communis，Smilax aspera）．A $\lambda \lambda \alpha \varepsilon(\delta \eta$ nou бu $\mu \mu \tau \varepsilon$ ย́Xouv عivaı ta：Phillyrea latifolia，Smilax aspera，Lonicera implexa，Hypericum empetrifolium， Pinus pinea，Scaligeria napiformis，Crepis fraasii，Rhamnus alaternus．
 Quercus coccifera，Genista acanthoclada，Prasium majus каı понкı入ia ло $\omega \delta \dot{\omega} v \varepsilon เ \delta \dot{\omega} v$ ó $\pi \omega \varsigma$ ת．Х．Carex flacca，Brachypodium retusum，Hypericum empetrifolium к．α ．Muк $\rho \varepsilon ́ \varsigma ~ \sigma u \sigma t \alpha ́ \delta \varepsilon \varsigma ~ \alpha r o ́ ~ \alpha ́ r o \mu \alpha ~ \chi \alpha \mu \eta \lambda$ оú
 uпоóрофо каt бuvurápXovta عiठף та：Juniperus phoenicea，Anthyllis hermaniae，Helichrysum siculum，Coridothymus capitatus．

 avayevvioúvtaı，kupitw̧ Cistus monspeliensis，Cistus creticus，Anthyllis hermanniae，Genista eívaı

 latifolia，Aetheorhiza bulbosa，Stipa bromoides，Leontodon tuberosus，Trifolium campestre，Anthyllis hermaniae，Micromeria graeca，Luzula nodulosa，Cistus creticus，Alyssum lesbiacum，Crepis fraasii， Bupleurum trichopodum，Stipa bromioides，Allium sipyleum，Campanula hagielia，Stachys cretica subsp．smyrnaea，Lithodora hispidula，Genista fasselata，Rubia tenuifolia，Olea europaea ssp．oleaster，

Rhamnus lycioides ssp．oleoides，Prasium majus，Asparagus acutifolius，Cistus salviifolius，Piptatherum miliaceum，Leontodon tuberosus，Helichrysum conglobatum
 aкódouӨa：Erica arborea，Juniperus phoenicea，Quercus ilex，Arbutus andrachne，Arbutus unedo， Quercus coccifera，Acer monspessulanum．
 europaea ssp．oleaster，Rhamnus lycioides ssp．oleoides，Arisarum vulgare，Aetheoriza bulbosa，

Katáotaon סıatńpnons－AתEi入És

CORINE 33．3 Фpúyava $\mu \varepsilon$ Sarcopoterium spinosum．Kんסıkóc 5420.

 tпऽ \triangle ．Meбoүعiou．

Oико入оуıке́s वuvӨńkes

 Sarcopoterium spinosum，Coridothymus capitatus，Genista acanthoclada，Anthyllis hermanniae， Euphorbia acanthothamnos，Cistus spp．，Phlomis fruticosa $\kappa \lambda \pi$ ．Ot סıar λ áбहıç qutoú tou túrou

X $\lambda \omega \rho ı \delta ı k n ́ ~ \sigma u ́ v \theta \varepsilon \sigma n$

 побобтó $\mu \varepsilon ү$ али́tгро ало́ 25 \%.

Sarcopoterium spinosum (61\%), Coridothymus capitatus (58\%), Phagnalon graecum (46\%), Genista acanthoclada (30\%), Helichrysum conglobatum (30\%), Cistus creticus (29\%), Erica manipuliflora (25\%), Fumana thymifolia (21\%), Anthyllis hermanniae (19\%), Fumana arabica (18\%), Cistus
salviifolius (18\%), Satureja thymbra (17\%), Teucrium microphyllum (16%, μ óvo Alүaio), Teucrium capitatum (15%), Micromeria nervosa (12%), Asperula rigida (12%, عvסппикó Kри́tп¢), Euphorbia acanthothamnos (12\%), Asparagus aphyllus (11\%), Convolvulus oleifolius (11\%), Teucrium brevifolium (10%), Cistus parviflorus (10%), Ballota acetabulosa (9%, uлعvסŋ μ uкó), Hypericum empetrifolium (9\%), Phlomis fruticosa (8\%), Teucrium divaricatum (8\%), Centaurea spinosa (7\%, hóvo Aıүaio), Lavandula stoechas (6\%), Phlomis cretica (5\%, हvסпиккó), Lithodora hispidula (4\%, μ óvo Atүaio), Ballota pseudodictamnus (4\%, нóvo Aıүaio), Stachys spinosa (4\%, evסп μ кó, N. Aıүaio), Carlina

 hirsuta (1\%), Phlomis lanata (1\%), Micromeria juliana (1\%), Phlomis pichleri (1%, єvסп μ ккó, KáбoৎKג́p $\pi \alpha$ ©ç), Hypericum empetrifolium ssp. empetrifolium (1\%), Stachys mucronata (1%, evס $\eta \mu$ ккó
 (1%), Ononis spinosa ssp. diacantha (1%, ev $\delta \eta \mu$ кó N. Alpaiou), Chamaecytisus creticus (1%, हv $\delta \eta \mu$ кó), Cytinus hypocistis ssp. orientalis (1\%), Helichrysum species (1\%), Asperula idaea (1%,
 floccosa (1%, μ óvo Káooç-Kápr $\alpha \theta$ oç), Genista fasselata ($<1 \%$, óvo Káбoç-KápraӨoç), Salvia pomifera ($<1 \%$, unモvঠŋпutкó), Convolvulus dorycnium ($<1 \%$), Micromeria myrtifolia ($<1 \%$), Hypericum rumeliacum ($<1 \%$), Helianthemum apenninum ($<1 \%$), Phlomis bourgaei ($<1 \%$, uпعvסŋ μ uкó), Fagonia cretica ($<1 \%$, цóvo Aváфn-Kprín)), Helichrysum microphyllum ($<1 \%$), Teucrium massiliense ($<1 \%$),
 μ óvo NA Alyaio).
 та: Pistacia lentiscus (34%), Calicotome villosa (28%), Olea europaea ssp. oleaster (15%), Prasium majus (14\%), Juniperus phoenicea, Rhamnus lycioides ssp. oleoides, Quercus coccifera, Ceratonia siliqua, Osyris alba, Euphorbia dendroides, Juniperus macrocarpa, Clematis cirrhosa, Prunus webbii,
 Pinus halepensis kat P. brutia.

 tuberosus (48\%), Trifolium campestre (47\%), Urginea maritima (46\%), Anagallis arvensis (45\%), Dactylis glomerata (45\%), Hypochoeris achyrophorus (41\%), Trifolium scabrum (37\%), Linum strictum
(37\%), Valantia hispida (36\%), Asphodelus ramosus (36\%), Avena barbata (34\%), Lagoecia cuminoides (33\%), Catapodium rigidum (32\%), Asterolinon linum-stellatum (30%), Brachypodium distachyon (30\%), Galium murale (29%), Briza maxima (29%), Rostraria cristata (28%), Sherardia arvensis (26%), Trifolium stellatum (24\%), Brachypodium retusum (24\%), Tordylium apulum (24\%), Bromus fasciculatus (24\%), Ononis reclinata (23\%), Urospermum picroides (23\%), Lagurus ovatus (22\%), Biscutella didyma (21\%), Euphorbia peplus (21\%), Valantia muralis (20\%), Aira elegantissima (20\%), Crucianella latifolia (20\%), Plantago lagopus (18\%), Bromus intermedius (18\%), Centaurea raphanina ssp. mixta (18%, Aıүaio eкtó̧ Kpクtıkńs перıoxńs) kaı Centaurea raphanina ssp. raphanina (6\%, Kрпtıкท́ лepıoxń), Carlina corymbosa ssp. graeca (17\%), Hedypnois cretica (17\%), Scorpiurus muricatus (17\%), Allium rubrovittatum (17\%), Plantago bellardii (16\%), Crepis cretica (16\%), Arisarum vulgare (16%), Medicago coronata (16%), Atractylis cancellata (16%), Tuberaria guttata (15%), Euphorbia exigua (15\%), Hymenocarpos circinnatus (14\%), Centaurium tenuiflorum (14\%), Cuscuta palaestina (13\%), Selaginella denticulata (13\%), Bupleurum gracile (13\%), Crupina crupinastrum (13%), Gagea graeca (13%), Psilurus incurvus (13%), Trifolium uniflorum (13%), Hyparrhenia hirta (12\%), Asteriscus spinosus (12\%), Piptatherum coerulescens (12\%), Scaligeria napiformis (11\%), Daucus involucratus (11\%), Filago species (11\%), Blackstonia perfoliata (11\%), Linum trigynum (11\%), Lotus edulis (11\%), Melica minuta (10\%), Poa bulbosa (10%), Plantago afra (10%), Reichardia picroides (10%), Filago gallica (10%), Aetheorhiza bulbosa ssp. microcephala (10%), Vulpia ciliata (10%), Bromus madritensis (10%), Stipa capensis (10%), Aetheorhiza bulbosa (10%), Petrorhagia dubia (10\%), Vicia cretica (10\%), Crepis commutata (9%), Crepis hellenica (9%), Onobrychis caput- galli (9%), Piptatherum miliaceum (9\%), Scandix australis (9\%), Lotus ornithopodioides (9\%), Paronychia macrosepala (9\%), Ballota acetabulosa (9\%), Knautia integrifolia (9\%), Galium setaceum (9\%), Gastridium phleoides (9%), Ranunculus paludosus (9%), Trifolium angustifolium (9%), Senecio vulgaris (9\%), Medicago disciformis (9\%), Eryngium campestre (9\%), Scandix pecten-veneris (9\%), Sideritis curvidens (9%), Helianthemum salicifolium (9%).
 chamaepeuce, Asperula taygetea, Campanula carpatha, Hypericum cuisinii,k.., evผ́ $\sigma \alpha$ лара́ктıа
 halimus, Salsola aegaea, Lotus cytisoides, Silene sedoides к. α.

 Cisto- Micromerietalia η ́, $\kappa \alpha \tau^{\prime}$ à $\lambda \lambda$ ous $\sigma \not \subset \nu$ Sarcopoterietalia. Mapatnpeitaı $\mu i \alpha \mu \varepsilon \gamma \alpha \dot{\lambda} \eta \eta$

 orientale，Euphorbia acanthothamnos，Thymelaea hirsuta，Cichorium spinosum．

Katáotaon סıatńpnonc－Arei入és

 avá $\pi \varepsilon \rho i \pi t \omega \sigma=0$

($\kappa \alpha \sigma \tau \alpha v \omega \tau \alpha \dot{\alpha})$.

 medwediewii, Carpinus orientalis, Sorbus domestica, Fagus sylvatica s.l. k. $\dot{\alpha} ., ~ \kappa \alpha \theta \omega \dot{c}$ к каı $\alpha \varepsilon i \phi u \lambda \lambda \omega v$ $\varepsilon \iota \delta \dot{\omega v}$, ón $\omega \varsigma ̧ \tau \alpha$ Pinus nigra, Abies cephalonica, Abies borisii-regis, Ilex aquifolium, Quercus ilex к. α. Ot

 карлњ́v (Kабтаvapı́́, Кабтаvолеріßода).
$\chi \lambda \omega \rho \iota \delta \kappa \kappa \dot{n} \sigma \cup ̛ ́ v \vartheta \varepsilon \sigma \eta$
Castanea sativa, Pteridium aqulinum, Alliaria petiolata, Carpinus orientalis, Corylus avellana, Fragaria vesca, Campanula spatula, Calamintha grandiflora, Fagus sylvatica, k.d.

 medwediewii, Carpinus orientalis, Sorbus domestica, Fagus sylvatica s.l. к. $\dot{\alpha}$, , к $\alpha \theta \dot{\omega} \varsigma ̧, \kappa \alpha \iota ~ \alpha \varepsilon i \phi u \lambda \lambda \omega v$

 $\mu u ́ k \eta t \alpha$ Pseudonectria (Endothia) parasitica.

 $\sigma u v \eta \dot{\eta} \omega \varsigma$ ç $70-90 \%$) (Cakiletea maritimae).

 Tétota eival ta：

Salsola kali，Cakile maritima，Xanthium strumarium，Euphorbia peplis，Atriplex tatarica，Cynodon dactylon，Atriplex hastata，Polygonum maritimum к． ．

 $\pi \alpha \rho \alpha \theta \varepsilon \rho เ \sigma \varepsilon \varepsilon \varsigma$ ．

$\chi \lambda \omega \rho \iota \delta$ кर́ $\sigma \dot{v} v \vartheta \varepsilon \sigma \eta$

Cakile maritima，Salsola kali，Euphorbia peplis，Atriplex prostrata，Matthiola tricuspidata，Xanthium italicum，Xanthium strumarium，Polygonum maritimum，Suaeda spledens，Spergularia salina，Salsola soda，Zygophyllum album，Glaucium flavum，Beta vulgaris ssp．maritima，Anthemis tomentosa， Atriplex recurva，Medicago litoralis，Plantago weldenii，Hordeum marinum，Chenopodium ambrosioides，Chamaesyce peplis，Parapholis incurva，Lotus cytisoides，Anthemis tomentosa，Silene colorata，Medicago littoralis，Echium arenarium，Silene sartorii，Hordeum murinum， Mesembrianthemun nodiflorum，Pseudorlaya pumila．

 avoukoठó $\mu \eta$ пך．

 tou $\mu \varepsilon \sigma о ү \varepsilon เ \alpha к о и ́ ~ о \iota к о б и \sigma т ท ́ \mu \alpha т о \varsigma ~$

ПANIDA

Opvtधoravi $\delta \alpha$

 Handrinos and Akriotis（1996），Birdlife Intenational（2004）ка兀 Mлоúбuroupac（2009），η

 （Xpuøaとtós），Bubo bubo（Mпоúфо̧），Buteo buteo（Гعракiva），Caprimulgus europaeus

 $\mu \alpha u \rho o \kappa \varepsilon ́ \phi \alpha \lambda \eta$ ），Hieraaetus fasciatus（ $\left.\sum \pi \imath \zeta \alpha \varepsilon \tau o ́ \varsigma\right)$ ），Larus audinii（Aıүaıó $\lambda \lambda \alpha \rho \circ \varsigma$ ），Lullula arborea
 Tetrao urogallus（Aүptókoupkoç）．

 Eıбıко́тера：

$\Phi=$ ФӨıvón ω ро
$X=X \varepsilon \mu \omega \dot{v} \alpha \varsigma$
$A=A v o ı \xi n$

2）Kатпүорієя＂Kóккıvou B¿ß入iou＂：
K1＝Kıvסuveúouv $\dot{\mu} \mu \varepsilon \sigma \alpha$
$K 2=K ı v \delta u v \varepsilon u ́ o u v$
$T P=T \rho \omega \tau \alpha$
$\Sigma=\Sigma \pi \alpha{ }^{2} v i \alpha$

A $=$ Arрообіо́рtот α

79／409	＝	
BEP．	＝	
BON．	＝	

2．SPEC1＝Eí $\eta \pi \alpha ү к о \sigma \mu i \omega \varsigma ̧ ~ \alpha \pi \varepsilon ı \lambda о u ́ \mu \varepsilon v \alpha$

EIAH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Koıví Ovouáoia	Ertortп									
＾аилроßои́ті	Gavia arctica			＋				11	11	3
£коuфоßоutnXtápt	Podiceps cristatus		＋	＋						
Kоккıvoßoutף\çápt	Podiceps grisegena		＋			A		II	11	
Maupoßoutnxtápt	Podiceps nigricoiiis		＋			$A \Gamma$		11		
Aрtéun¢	Caionectris diomedea	$+$		＋	＋			11		2
Múzos	Puffinus yeikouan	$+$	＋	＋	＋		＊	II		
Kориорávos	Phalacrocorax carbo	$+$								
Өалаббоко́рака¢	Phaiacrocrax aristoteiis	$+$				$T P$	＊	II		
Kрилтотоикviás	Ardeoia raiioides						＊	II		3
＾ıuкотоıкиıás	Egretta garzetta	$+$					＊	II		
ミtaxtotoukviás	Ardea cinerea	$+$								
Maupore入apyós	Ciconia nigra	$+$		＋	＋		＊	II	11	3
Пе入аруó¢	Ciconia ciconia	$+$					＊	11	11	2
Воиßо́кикvos	Cygnus oior		＋						II	
Bapßápa	Tadorna tadorna		$+$			TP		11	11	
Прабтขокย́фа入П	Anas piatyrhynchos	$+$	$+$						11	
इаров́入 α	Anas querqueduia	$+$		＋		$A \Gamma$			11	3
¿фпкıápŋ¢	Pernis apivorus	$+$		＋	＋		＊	11	11	
Toítrnc	Miivus migrans	$+$				K1	＊	II	11	3
Aomporaipns	Neophron percnopterus	＋				TP	＊	II	II	3
	Circaetus gallicus	＋		＋	＋		＊	II	II	3
Ка入ацо́кıркоя	Circus aeruginosus	＋				TP	＊	II	II	
ミтело́кıркоऽ	Circus macrourus	＋						11	11	
＾ıßабо́кьрко¢	Curcus pygargus	＋		＋		K1	＊	II	II	

EIDIKH OIKO＾OГIKH AミIO＾OTHEH（EOA）EPTRN EПEEEPTAEIAE KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~$ IEPAI MONHE ПANTOKPATOPO乏

EIAH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovouaoia	Eпtoтпиоvıкй Ovouacía									
$\Delta u r \lambda o \sigma \alpha ́ t v o ~$	Accipiter gentiiis	＋	$+$	＋	$+$			II	11	
Тоıх入оүк்рако	Accipiter nisus	＋	$+$		$+$			11	11	
Eaivt	Accipiter brevipes	$+$			＋		＊	11	11	2
「epakiva	Buteo buteo	$+$	$+$	$+$	＋			II	11	
Xıovoүepakıva	Buteo lagopus		$+$					II	11	
Kpauyaztó¢	Aquilia pomarina	＋				TP	＊	11	11	2
Xpuoartós	Aquiia chrysaetos	＋	$+$	＋	＋	TP	＊	11	11	3
ミпи̧aztó¢	Hieraaetus fasciatus	＋	$+$	＋	＋	TP	＊	11	11	3
ミtaupaztó¢	Hieraaetus pennatus	$+$				TP	＊	11	II	3
Kıpкıvȩ̇，	Fa／co naumanni	＋		＋		TP	＊	II	1／11	1
Врахокьркіvє̧о	Fa／co tinnuncuius	$+$	$+$	$+$	＋			II	II	3
Маирокıркіvȩ̧\％	Fa／co vespertinus			＋				11	II	
－вvтроүќрако	Fa／co subbuteo	$+$						11	11	
Mauporetpitns	Fa／co eieonorae	$+$				Ar	＊	11	11	2
Хрибоуе́рако	Fa／co biarmicus		$+$			TP	＊	11	II	3
Пetpitns	Fa／co peregrinus	＋				AT	＊	11	11	
Ayplókoupkos，	Tetrao urogaiius	＋	$+$	＋	＋	Σ		II		
Петропе́рб゙кк α	Aiectoris graeca	＋	＋	＋	$+$					2
Optúkı	Coturnix coturnix	＋		＋	＋	AI			11	3
Nepóкота	Gailinuia chioropus	$+$	＋	＋	$+$					
Фа＾арi ${ }^{\text {\％}}$ 人	Fuilica atra		$+$						11	
Потанобфирихт！s	Charadrius dubius	$+$						11	11	
Oaraocooфuptxtrs	Charadrius aiexandrinus	＋	$+$					11	11	3
K $\alpha \lambda \cap \mu \alpha{ }^{\text {a }}$ 人	Vanellus vane／us		$+$						11	2
Mrekáto α	Scoiopax rusticoia		＋						11	3
Потано́трuү\％as	Actitis hypoieucos	＋	＋					11	11	3
¿теркора́pıo¢	Stercorarius parasiticus			＋						
Maupoке́фа入оऽ	Larus meianocephaius		＋			TP	＊	II	11	
Navóy ${ }^{\text {apos }}$	Larus minutus	＋						II		3
	Larus ridibundus	$+$	＋							
＾елтто́рацфо¢	Larus genei		＋			K2	＊	11	II	3
Atyaıóy ${ }^{\text {a }}$ 人pos	Larus audouinii			$+$		K2	＊	II	1／11	1
Aопиóү入аро̧，	Larus cacchinans	$+$	＋	＋	＋					

 IEPAE MONHE TANTOKPATOPOE

EILH		（1）	X	A	K	К．ВIBA．		79／409	BEP．	BON．
Kotví Ovouaoia	Erıotquovıkí Ovouãia									
「ع入oү入ápovo	Gelochelidon ni／otica	$+$				K1	＊	II	II	3
	Sterna sandvicensis		＋			A	＊	11	11	2
Потацоү入д́povo	Sterna hirundo			＋			＊	II	II	
Aүрıотврі́ттеро	Co／umba iivia	$+$	＋	＋	＋					
Фабботвріогеро	Columba oenas	＋	＋	＋	＋	Σ				
Ф́́oóa	Co／umba pa／umbus	＋	＋	＋	＋					
$\Delta \varepsilon к о \chi$ тои́pa	Streptopelia decaocto	$+$	＋	＋	＋					
Tpupóve	Streptopelia turtur	＋		＋	＋					3
Kои́кos	Cucu／us canorus	$+$		$+$	$+$					
Tutú	Tyto alba	$+$	$+$	＋	＋			II		3
Гкıแ゙vク¢	Otus scops	$+$			＋			11		2
Мтоúфо̧	Bubo bubo	＋	＋	＋	$+$		＊	II		3
Kouкоußáyıa	Athene noctua	$+$	＋	＋	＋			II		3
Xouxouptotis	Strix aluco	$+$	＋	＋	＋			II		
Navóurouфоs	Asio otus	＋	＋	＋	＋			II		
「ıסoßúद̆	Caprimulgus europaeus			＋	＋		＊	II		2
Eraxtáp α	Apus a pus			＋	＋					
ミкعларvác	Apus melba	＋		＋	＋			II		
A入kuóva	Alcedo atthis	$+$	＋				＊	II		3
Me入ıoбoфáyos	Merops a piaster			＋	＋			II	11	3
Х $\alpha \lambda$ кокоирои́v α	Coracias garrulus			＋	＋	TP	＊	II	II	2
Tба入алعтвıvós	Upupa epops			＋	＋			II		3
	Jynx torquilla			＋				II		3
	Dendrocopos syriacus	＋					＊	II		
「 α 入ıávtp α	Melanocoryha calandra			＋			＊	II		3
Katoou入tépŋ̧	Galerida cristata	$+$	＋	＋	$+$					3
$\triangle \varepsilon v \tau \rho о о \tau \alpha \rho \eta^{\prime \prime} \theta \rho \alpha$	Lululla arborea	＋	＋				＊			2
£ $\tau \alpha \rho \dot{\theta} \theta \rho \alpha$	A／auda arvensis		＋	＋						3
OxӨохع入iסo＾	Riparia riparia	＋		＋				II		3
Врохохє入í＇ovo	Ptyonoprogne rupestris	$+$			$+$			II		
Xe入toóvi	Hirundo rustics	＋		$+$	$+$			II		3
	Hirundo daurica	＋		＋	＋			II		
Erutoxenióovo	Delichon urbica	＋		＋	＋			II		3

EIAH		（1）	X	A	K	K．BIB＾．	79／409	BEP．	BON．
Kotvij Ovouaoia									
Δ ¢vtpoкe入́á α	Anthus triviaiis			＋	$+$		11		
Kıtpıvơovđoup α б́ α	Motaciiia fiava	＋		＋	＋		11		
¿тахтобоибоир χ^{δ} 人	Motacilla cinerea	＋		$+$	＋		11		
	Motaciiia alba	$+$	＋	$+$			11		
Nероко́тбифац	Cinc／us cinc／us	＋	＋	＋	＋		11		
Tрuroфpóxtrs	Troglodytes troglodytes	＋	＋				11		
	Prunella modularis		$+$				11		
Xıovo廿皎tns	Prunella collaris	＋	＋	＋	＋		II		
Kouфanరóvı	Cercotrichas galactotes	＋		$+$	＋		11	11	3
	Erithacus rubecula	$+$	$+$	$+$			II	II	
AПסóvi	Luscinia megarhynchos	＋		＋	＋		II	11	
Kapßouvid́pns	Phoenicurus ochruros	＋	$+$		＋		11	11	
Kokkıvoúpns	Phoenicurus phoenicurus	＋		$+$	$+$		II	11	2
Kaotavohaiphs	Saxicola rubetra	＋		$+$			11	11	
Maupohaijns	Saxicola torquata	＋					11	11	
ミтахтотетро́к入入¢	Oenanthe oenanthe	$+$		＋			11	11	3
Аопрокढंла	Oenanthe hispanica	＋		＋			11	11	2
Пetpokótouфa̧	Monticola saxatilis	＋		$+$	＋		11	11	
Га入аदоко̇тоифа¢	Monticola solitarius	＋	＋	＋	＋		11	11	3
Kȯtou¢as	Turd us merula	＋	＋	$+$	$+$			11	
Toix $\lambda \alpha$	Turd us philomelos	＋	＋	＋	＋			11	
	Turd us viscivorus	＋	＋					11	
Ueutanరóvt	Cettia cetti	＋					11	11	
	Locuste／a luscinioides	＋		＋			11	II	
Tоххлопот $\alpha \mu$ i $\delta \alpha$	Acrocephalus	＋		＋			II	11	
Qxpootpıтбi δ 人	Hippolais pallida	＋		$+$	$+$		II	11	3
Atootpıtoiסa	Hippolais olivetorum	＋		$+$	4	＊	11	II	2
Kıtpıvootpıtoí α	Hippolais icterina	＋					11	11	
	Sy／via cantillans			＋			II	11	
Маирототоßд́коя	Sy／via melanocephala		＋				11	11	
	Sy／via hortensis	＋		＋	$+$		II	11	3
＾а入оточоßа́ко¢	Sy／via curruca	＋		＋	＋		11	11	
	Sy／via communis	$+$		$+$	＋		11	II	

EIDIKH OIKO＾OГIKH AシIO＾OIHEH（EOA）EPTQN EПEEEPTAEIA乏 KAI DIAQE IEPAI MONHE TANTOKPATOPOE

EIAH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kowñ Ovouacia	Eruotquovikń Ovouacia									
Kпrotorpoßáко¢	Sy／via borin	＋						II	11	
Maupooкои́фп¢	Sy／via atricapiiia	＋	＋					II	II	
Bouvoфu入入ооко́ros	Phyloscopus boneili	＋		$+$	$+$			II	11	2
Аехтрофи入入обко́ro¢	Phyloscopus coilybita	＋	＋	$+$				11	II	
Өациофидлоско́лоя	Phyloscopus trochiius	＋						11	11	
Хрибоßабиіткоя	Regu／us reguius	$+$		＋				11	11	
Baju入iokos	Regu／us ignicapilius	$+$	$+$					II	11	
Muyoxáфṫ¢	Muscicapa striata	$+$		＋	＋			II	II	3
Navopuyoxádtns	Ficeduia parva	$+$					＊	II	11	
Maupouиүохдंфтпร	Ficeduia hypoieuca	＋						11	II	
Alyiөaros	Aegithaios caudatus	＋	＋	＋	＋			11		
Kaoravoraraסíto	Parus pa／ustris	＋	＋	＋	＋			11		
	Parus iugubris	＋	＋	＋	$+$			11		
＾офопалабітба	Parus cristatus	＋	＋	＋	$+$			11		
	Parus ater	＋	＋	＋	$+$			11		
「аra̧̧попабito	Parus caeruieus	＋	＋	$+$	$+$			II		
Kа入óyepoş	Parus major	＋	＋	＋	$+$			II		
Kаиroסevtpoßátns	Certhia brachydactyia	＋	＋	$+$	$+$			II		
\evtpotoonavákos	Sitta europaea	$+$	＋	$+$	$+$			11		
Bpaxorooravákos	Sitta neumayer	$+$	＋	$+$	＋			II		
¿ß α pviotp	Tichodroma muraria		＋			Σ		II		
¿uкофх́yos	Orioius orioius	$+$		$+$	＋			11		
Astouáxos	Lanius coilurio	＋		$+$	＋		＊	II		3
Гаıסоирокефа入а́¢	Lanius minor	$+$		$+$	$+$	Ar	＊	11		2
Коккıvоквф $\alpha \lambda \alpha$ ¢́	Lanius senator	＋		$+$	$+$			II		2
	Lanius nubicus	＋				Σ		II		2
Kiøø α	Garruius giandarius	＋	＋	$+$	$+$					
Kаракג́ $¢ \alpha$	Pica pica	＋	＋	＋	＋					
Kápyla	Corvus moneduia	＋	＋	$+$	$+$					
Koupoúva	Corvus corone	＋	＋	＋	＋					
Kópakas	Corvus corax	＋	＋	＋	$+$					
Yapóvt	Sturnus vulgaris	＋	＋	$+$	$+$					3
ミroupyiths	Passer domesticus	$+$	＋	＋	$+$					3

EIAH		（1）	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kovví Ovouacia	Erıotףuovtкı́ Ovouaoia									
Xwpaфoonoupyitns	Passer hispaniolensis	＋		＋	$+$					
Петроопоupvitns	Petronia petronia	＋	＋	$+$	$+$			II		
	Fringilla montifringilla		＋							
Enivos	Fringilla coe／ebs	$+$	$+$	$+$	＋			11		
	Serinus serinus		＋					11		
Ф\ف́pos	Cardueiis chioris	$+$	$+$	$+$	＋			11		
K α ¢ δ عрiv α	Cardueilis cardueils	＋	$+$	$+$	＋			11		
＾óuyapo	Carduelis spinus		＋					11		
Фavéto	Cardueiis cannabina	$+$	＋					11		2
Xovtpouútns	Coccothraustes	＋	$+$	$+$	＋			11		
	Emberiza cirius	$+$	$+$					11		
Bouvotoixhovo	Emberiza cia	$+$		$+$	＋			11		3
B入áxos	Emberiza hortuiana	$+$		$+$	$+$		＊	II		2
	Emberiza caesia	＋		$+$	$+$		＊	11		
	Emberiza meianocephaia	$+$		＋	$+$			11		2
Toı¢tás	Miliaria calandra	＋		＋						2
£úvo入o：	173					29	40	134	81	68

Өa入aбооко́ракац̧（Phalacrocorax aristotelis）

Oıколоүіа

Arモt $\lambda \varepsilon$ ह́，

£ \quad uZaعtóc（Hieraaetus fasciatus）

 $\varepsilon к \tau \iota \eta \theta \varepsilon i ́ \sigma \varepsilon$ 100－140 そعuүápıa（Bourdakis \＆Xirouchakis 2008）．

Oıколоүіа

 каı $\eta \eta \lambda \varepsilon к т \rho о \pi \lambda \eta \xi i \alpha$.

Фiठaعtós（Circaetus gallicus）

K $\alpha \vartheta \varepsilon \sigma \tau \dot{\omega ̧ ~ \pi \alpha \rho о \cup \sigma i \alpha \varsigma ~-~ \pi \lambda \eta \vartheta v \sigma \mu o ́ \varsigma ~}$

 §₹хєцน

Otкодоуía

 ठабока́ $\lambda \cup \psi \eta$ ．

Xpuoaetóc（Aquila chrysaetos）

K $\alpha \vartheta \varepsilon \sigma \tau \omega ่ \varsigma ~ \pi \alpha \rho о и \sigma i a \varsigma ~-~ \pi \lambda \eta \vartheta v \sigma \mu o ́ \varsigma ~, ~$

 ota Sutuká tou Avtiá $\theta \omega v \alpha$ ．

 そeuүápıa（Tucker \＆Heath 1994，BirdLife International 2004）．

Оєколоүіа

 व́крес т $\omega v \delta \alpha \sigma \omega ́ v$ ．

 пробтатєบ́бouv та Өпра́ $\mu \alpha \tau \alpha ́$ тоus．

 то ε हiठoc．

Пetpitnc（Falco peregrinus）

 $\mu \varepsilon \tau \alpha \xi \dot{u} 100$ каı 250 そとuүápı α（Tucker \＆Heath 1994）．

Оєкодоүік

 $\alpha \varepsilon ́ p \alpha$ ．

Areıléร

 $\varepsilon \mu \pi о ́ \rho ı о ~ \alpha u ү \omega ́ v ~ к \alpha \iota ~ v \varepsilon о б \sigma \omega ́ v ~ ү ı \alpha ~ \iota \varepsilon р а к о Ө \eta \rho i \alpha . ~$

Bouvootaxtápa（Apus melba）
$K \alpha \vartheta \varepsilon \sigma t \dot{\omega}$ ఢ $\pi \alpha \rho о \cup \sigma i \alpha \varsigma-\pi \lambda \eta \vartheta v \sigma \mu o ́ \varsigma$

Оıкодогіа

Алєا入е́ऽ

On ${ }^{\text {Onotik } \alpha}$

 $\pi \lambda \eta \theta u \sigma \mu$ оú $\tau \omega v \lambda \alpha \gamma \omega ́ v$（Lepus europeus），$\pi$ оu $\pi \alpha \rho \alpha \tau \eta \rho o u ́ v \tau \alpha ı ~ \alpha \rho \alpha ı \alpha ́ . ~ A \pi o ́ ~ \tau \alpha ~ \sigma \alpha \rho к о ф \alpha ́ y \alpha ~ \varepsilon i ́ \delta \eta, ~$

 （Erinaceus concolor），η vavouupa入i $\delta \alpha$（Sorex minutus），η кппонuү $\alpha \lambda i \delta \alpha$（Crosidua suaveolens），$\eta$
 citelus），о μ ккотифлопóvtıкаৎ̧（Spalax leucodon），о траvoпovtıкó̧（Spalax mikrophthalmus），o бтахтопоvtikó̧（Mus musculus），o $\mu \alpha u$ ропоvtıkós（Ratus ratus），o סekatıotńs（Ratus norvegicys），o бабопоvtıкó̧（Sylvaemys sylvaticus），o apoupaioç（Microtus arvalis），o β рахопоvtккó̧（Apodemys ystacinus）．
 η vavovuxtepi $\delta \alpha$（Pipistrellus pipistrellus），η vuxtoßátn¢（Nyctalus noctula），zivat $\mu \varepsilon \rho ı \alpha \alpha ́ \alpha \pi o ́ ~ \tau \alpha ~ \varepsilon i \delta \eta ~$

 （Murr．）Barr，ouv．Endothia parasitica（Murr．）Anderson каı モ́ $\chi \varepsilon \iota ~ \varepsilon ү к \alpha \tau \alpha \sigma \pi \alpha \theta \varepsilon i ~ к \alpha ı ~ \varepsilon \pi \varepsilon к т \alpha \theta \varepsilon i ~ \sigma \tau \eta V ~$

 veкрท́ орүаvккท́ ú $\lambda \eta$ к $\lambda \pi$ ）．

 arudinaceum，Apiospora montagnei，Porpolomyces farinosus，Microthyrium ilicinum кає по $\lambda \lambda \dot{\omega} v$
 катаүрафє́ऽ $\varepsilon i v \alpha t ~ \varepsilon к \varepsilon i v \varepsilon \varsigma ~ \tau \omega v ~ \mu u \kappa \eta ́ t \omega \nu ~ S t o m i o p e l t i s ~ p i n a s t r i, ~ P h a c i d i u m ~ l a c e r u m, ~ S e p u l t a r i a ~ a r e n o s a, ~$ Amanita virosa，Paxillus panuoides（ $\Pi \alpha ́ \xi \imath \lambda \circ \varsigma$ о $\pi \eta$ vıó $\mu \circ \phi \circ \varsigma$ ），Suillus collinitus，Mycena atrocyanea

 катаүрафвi ot onáviol $\alpha \sigma к о \mu u ́ к \eta \tau \varepsilon \varsigma ~ M o l l i s i a ~ c i n e r e a, ~ C i b o r i a ~ a m e r i c a n a, ~ L a n z i a ~ e c h i n c e p h a l a, ~$ Rustroemia firma，R．sydowiana，Sarcoscypha coccinea（ $\Sigma \alpha \rho к о \sigma к u ́ \phi \eta ~ \eta ~ к о ́ к к ı v \eta) ~ к . ~ \alpha . ~ М \varepsilon \tau \alpha ६ u ́ ~ \tau \omega v ~$

 Crucibulum leave（K $\rho o u \sigma i ß o u \lambda o$ to $\lambda \varepsilon i o$ ），Tremella foliacea（ $T \rho \varepsilon \mu \varepsilon ́ \lambda \lambda \alpha \Omega \eta$ $\eta \lambda \lambda o ́ \mu о \rho \phi \eta$ ），Auricularia

 фрдои入ó $о \rho ф о$ ）к．α ．（Nтג́фПৎ к．α ．1997）．

1．2 ANAФOPA AAA ΩN YФIइTAMENSN H／KAI ETKEKPIMEN ΩN EPISN＇H $\triangle P A \Sigma T H P I O T H T \Omega N ~$

ITHN ПEPIOXH MEAETHE

1．3 AМАЕЕ ГXETIKE乏 ПЛHPOФOPIE乏 ПOY AФOPOYN ГTHN ПEPIOXH MEАETH乏

1.4 ФЛТОГРАФІКН ТЕКМНРІ $\Omega Н$

1．5 КАТАГРАФН TH乏 KATAミTAEH乏 TOY ФYЕIKOY ПEPIBAAMONTO乏 ミTHN ПEPIOXH TOY AIKTYOY NATURA 2000

1．5．1 Etóxol δ เatńpnons tns olkías π reploxńs Natura 2000

Aтó to d́p日po 8 тоu N．3937／2001

 $\mu \varepsilon$ ßáoŋ та ларака́тш крıтท́pıа：

ع．Tn ouvo入ıkń đuvoxń tou סiktúou «Natura 2000＂．

 סıatrípnóns tou．

 tou入áxıoтov Éva μ ñ́va

 $\kappa \alpha \iota 5 \tau \omega v \varepsilon เ \delta \dot{\omega} \nu \mu \varepsilon \mu \circ \rho \phi \eta \dot{\mu} \mu \eta \dot{\tau} \rho \alpha \varsigma$.

TÚTO¢ OLKOTÚTKOU	KんరıKó̧	періохпя Natura	Avтut ＊2	Erııф́áveıa ミхモтıKи́ ＊3	K $\alpha \dot{\alpha} \sigma \tau \alpha \sigma \eta$ ＊4 ถı α tị	Euvo入ıkń $\alpha \xi$ เо入óvŋoŋ ＊5
－AsuKnnsi ń́ Matorrals $\mu \varepsilon$ Juniperus spp．	5210	1	D			
$\mu \varepsilon$ Laurus nobilis	5230	1	C	A	C	B
－इuotá	5310	1	C	A	C	B
Funhorhia knurá as $\alpha к \tau \varepsilon ́ \varsigma$	5320	2	A	A	B	A
－Wnívavar Sarrnnoterium spinosum	5420	4	A	C	B	B
－AnRentríyol $\alpha \lambda$ rtkoí $\lambda \varepsilon \not \mu \omega \dot{v} \varepsilon \varsigma$	6170	3	C	B	B	B
－Aiflíuertitre Avato λ ики́c Méoүeiou	8140	3	B	B	B	B
－Aáran ofisár aாก่ Luzulo－Fagetum	9110	1	D			
Alnus olıtinnca кrıt Fraxinus excelsior	91E0	1				
－Aŕrrn $\mu \varepsilon$ Castanea sativa	9260	39		A	A	A
－FA入nvik ̛̉ Káarin nesiár $\mu \varepsilon$ Abies borisii－regis	9270	1		C	B	C
－Δ áon okiác $\mu \varepsilon$ Quercus	9280	5		B	A	A

α / α		1	2	3	4
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii			V	
4	Asperula aristata ssp. thessala		X		
5	Astragalus thracicus ssp. monochorum		X		
6	Atropa belladona	「			A \triangle
7	Aubrieta erubescens			R	
8	Beta nana		X	R	
9	Campanula lavrensis		X		
10	Centaurea pannosa		X		A
11	Centaurea peucedanifolia	A			A

α / α		1	2	3	4
12	Cephalanthera longifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		$\mathrm{A} \triangle$
15	Fritillaria euboeica		X	R	
16	Fritillaria graeca		X		$\mathrm{A} \triangle$
17	Helichrysum sibthorpii			V	
18	Hypericum athoum		X		
19	Isatis tinctoria ssp. athoa		X		$\mathrm{A} \triangle$
20	Limodorum abortivum	B			A
21	Linum leucanthum		X		
22	Linum olympicum ssp. athoum		X		
23	Neotinea maculata	B			
24	Neottia nidus-avis	B			
25	Polygonum icaricum		X		A
26	Silene echinosperma		X		
27	Silene multicaulis ssp. genistifolia		X		
28	Silene orphanidis	A		V	
29	Viola athois		X		A \triangle

EreEnvíasic Пivaka 3

2. Evסף μ uкó. $N \alpha a: X$.

α / α		E入入ŋvıки́ ovouaбia	
1	Phalacrocorax aristotelis	Өалаббоко́ракац,	H meninví fiveri vir to fíKac illa каı ф(גо६ғияi > 1% тпи) عӨvıкоú $\pi \lambda \eta$ Өибนои́.
2	I-lieraaetus fasciatus	£ π Ļ̧ątó¢	H π roninvń sivan via to sifone ma aாÓ tí 5 anumutikótener mfniovés $\pi \lambda \eta \theta$ иб μ ои́.
3	Puffinus yelkouan	Múxos	Kpıtท́pıo Bird Life : B1ii, C3

α / α			
1	Circoetus gallicus	ФiठaEtós	
2	Aquila chrysaetos	Xpuoartós	

α / α	Erıбппиоvıкй ovouaбia		Eión opıo日érnoņ
3	Falco peregrinus	Петрitıs	
4	Apus melba	Bouvoot $\alpha \chi$ T α ¢ α	

 au乡ávovtal－

1．5．3 Kúpıes tıиés avaфоpás

Mére®os	K ω ¢ıкó¢	Характпрıбио́я
$\chi \alpha \mu \eta \lambda$ ń	B01．02	ठévס $\rho \alpha$ ）
$\chi \propto \mu \eta \lambda \dot{\prime}$	$E 01.03$	ठıабкорлıбце́vŋ катоккiа
	A01	ка入入ı 1 ¢́рүعıı
μ е́тpıa	L09	ф ω tıá（фuđıкй）

 2000 －STANDARD DATA FORM

$160 \Delta \alpha \sigma$ เкท́ δ taxziptoŋ

 т α סáoŋ кабтаviác．

Пupkaviźs

 μ и́коऽ tทৎ Xepoovク́бou．

 Eppou．

 $\lambda i \mu v \varepsilon \varsigma$

 Δ t́́tаүна 67／1981）－OXI

 67／1981）－OXI

 －OXI

＞Mauremys rivulata IUCN－LC，Kókkivo BL $\beta \lambda$ io E $\lambda \lambda \dot{\alpha} \delta \alpha \alpha \varsigma-L C$ ，Annexes II of the EU Natural Habitats Directive－OXI
 uұо́иєтра

 67／1981）－NAI
 каı ठабика́ ßоокото́тьа．

 Diátaүна 67／1981），－NAl

 EKO n nүía 92／43／EOK，OXI
＞Platanus orientolis PD67／81 חoגú kotvó đध rotá $\mu \mathrm{I}$ OXI

$>$ Silene orphanidis Eínn nou avaфépovtaı oто áp日po 4 tทৎ oठnүiac 2009／147／EK каı

＞Trapa natans Annex II of Council Directive 92／43／EEC OXI
＞Pancratium maritimum Annex II of Council Directive 92／43／EEC OXI
＞Fraxinus angustifolia Annex II of Council Directive 92／43／EEC OXI
＞Groenlandia densa Annex II of Council Directive 92／43／EEC OXI

 трофท́
＞Monachus monachus Etín rou avaфépovtaı oto dpӨpo 4 tทৎ oסnүía̧ 2009／147／EK каt

$\Sigma \pi о \rho \alpha \delta \iota \eta \dot{\imath} \varepsilon \xi \alpha \dot{\pi} \lambda \omega \sigma \eta$ ．

 Пара́ $\tau \uparrow \mu \alpha$ V．Пробтабía CITES－OXI

$>$ Aquila pomorina 2009／147／EC：Парáptqua I，$\Sigma u ́ \mu \beta \alpha \sigma \eta ~ \tau \eta \varsigma ~ B e ́ p v \eta \varsigma ~ I I, ~ \sum u ́ \mu \beta a \sigma \eta ~ \tau \eta \varsigma ~ B o ́ v v \eta \varsigma ~ I I, ~$ CITESII／A，KBE－E $\lambda \lambda \alpha \dot{\delta} \alpha \varsigma$ ：EN，IUCN：D $\omega \lambda \iota \alpha ́ \zeta \varepsilon \iota ~ \sigma \varepsilon ~ \omega ́ \rho ц \mu \alpha ~ \delta \varepsilon ́ v \tau \rho \alpha ~ \sigma \varepsilon ~ \pi \alpha \rho \alpha \pi о \tau \alpha ́ \mu ı \alpha ~ \delta \alpha ́ \sigma \eta ~ \eta ́ ~ \alpha ́ \lambda \lambda \alpha ~ \delta \alpha ́ \sigma \eta ~$ K ωv voф́́p ωv OXI

 иүрото́лоич $\mu \varepsilon \alpha \mu \mu$ о́ офоис．OXI

＞Ciconia ciconia 2009／147／EC：Пара́ $\rho \tau \eta \mu \alpha$ I，$\sum u ́ \mu \beta \alpha \sigma \eta ~ B e ́ p v \eta \varsigma ~ I I, ~ K B E-E \lambda \lambda \alpha ́ \delta \alpha c ̧: ~ V U, ~ I U C N: N A I ~ E i ́ \delta o s ~$

$>$ Circaetus gallicus 2009／147／EC：Пapáptп $\mu \alpha$ I，$\sum u ́ \mu \beta \alpha \sigma \eta$ t7s Bépvns II，$\sum u ́ \mu \beta a \sigma \eta$ tnc Bóvvns II，

$>$ Circus aeruginosus 2009／147／EC：Парáptп $\mu \alpha$ I，$\Sigma u ́ \mu \beta a \sigma \eta ~ \tau \eta \varsigma ~ B e ́ p v \eta \varsigma ~ I I, ~ \Sigma u ́ \mu \beta a \sigma \eta ~ \tau \eta \varsigma ~ B o ́ v v \eta \varsigma ~ I I, ~$ CITESII／A，KBE－E $\lambda \lambda \alpha \dot{\alpha} \alpha c ̧: V U$, IUCN：OXI
＞E $\delta \alpha \phi$ ß́ßıo ε í
 E $\lambda \lambda \alpha ́ \delta \alpha c$ ．
 KBE－Eス $\lambda \dot{\alpha} \delta a c ̧ / v$ ，IUCN：OXI

＞Dendrocopos syriacus 2009／147／EC：Пара́ptп $\mu \alpha$ I，£ú β ß $\alpha \sigma \eta$ Bépvnc II，KBE－E $\lambda \lambda \alpha ́ \delta \alpha c$ ：NE，IUCN：
 єктд́бをıৎ．

＞Haliaeetus albicilla 2009／147／EC：Пар́́ptŋ $\mu \alpha$ I，£ú $\mu ß a \sigma \eta ~ B e ́ p v \eta \varsigma ~ I I, ~ B o n n ~ C o n v e n t i o n ~ I / I I, ~ C I T E S I, ~$

＞Lanius minor 2009／147／EC：Пара́ptnua I，¿ú μ ßaön Bépvnc II，KBE－E入入áよac：NT，IUCN：NAI

 OXI

 актіvо乃о入іес．

2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O \wedge O T H \Sigma H ~ T \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N$

－Eлıtt

 $\varepsilon \pi \varepsilon \xi \varepsilon \rho ү \alpha \sigma i \alpha \varsigma)$ ．

 Өعрцо́ $\beta t \omega \mathrm{v} \pi \varepsilon u ́ k \omega \mathrm{v}$ ．
 Ө α бифоротоиท $\begin{aligned} & \text { oúv．}\end{aligned}$

 δ เатп $\rho \eta \theta \varepsilon i \alpha v \alpha \lambda \lambda$ oi ω to．

3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma T \Omega N ~ \Pi I O A N \Omega N ~ E \Pi I \Pi I T \Omega \Sigma E \Omega N$

 Quercus coccifera．

 Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．Orbelicus，Neottia nidus－ avis，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus）
 Saxifraga juniperifolia ssp．Sancta，Ophioglossum vulgatum）عivat orávi o otףv E入入á $\delta \alpha$ ń／T α $\beta \alpha \lambda_{\kappa \alpha v \kappa \kappa}$ ev $\delta \eta \mu$ uк α（Allium chamaespathum，Arabis bryoides，Asperula aristata ssp．Nestia， Colchicum doerfleri，Erysimum drenowskii，Stachys leucoglossa）к $\alpha \iota 1$ ta६ıvo μ ккó（Thymus thracicus）．

 tou入áxıøтov 420 عíßๆ．

 $\pi \alpha ́ v \omega$ anó 100 ह́tn．

 бє μ кро́тєро арı θ иó $\varepsilon \iota \delta \dot{\omega} v$ ．

 лиркаүıג́c вivaı η Fritillaria euboeica（Phitos et al．1995）．

 пП¢ $\pi \alpha v i \delta \alpha \varsigma:$

 $\tau \omega v$ ：
 סáō）

 $\alpha v \alpha \pi \alpha \rho \alpha ү \omega ү \iota \kappa \dot{~ \pi \varepsilon \rho i o \delta o, ~ \mu \varepsilon \tau \alpha \xi u ́ ~ A \pi \rho ı \lambda i o u ~ к \alpha \iota ~ l o u \lambda i o u . ~}$
 про́бкроибпя

 غ́pywv．

4．ANTI乏TAOMI乏TIKA METPA

N．4014／2011

Enirtwon	Métp α
そढ́vnc eppa⿱iac	 $\pi \varepsilon \rho \iota \beta \lambda \lambda$ оvtuk ω ข $\alpha \pi \alpha เ ท ่ \sigma \varepsilon \omega v . ~$
Проошрıvós катакериатıбцо́s	 $\pi \rho \circ \sigma \omega \rho เ v i ́ n \pi \rho i \phi \rho \alpha \xi \eta$ ．
avaไ̧́tnoņ трофńs	

Enirtwon	Métp α
ф $\omega \lambda$ हопоínons	 (то غ́ppo sivaı ro久ú μ нкро́)
Проowpivin óx $\lambda \eta$ оп.	

 $\mu \pi о \rho \varepsilon i$ va $\varepsilon \xi \alpha \lambda \varepsilon ı \phi \tau \varepsilon i)$.

 $\pi \lambda \dot{n} \rho \omega \varsigma$.

 tпv apuó $\delta \iota \alpha$ а $\rho \chi$ ŋ́．

5. ПРОГРАММА ПАРАКОЛОҮОНГН乏

 каӨор!бтои́v.

 K $\alpha \iota$ tఇท KYA 5673／400／1997（DEK 192／B－14．3．1997）

－Проотабia tп̧ $\delta п \mu$ о́бtas uүعías．

 «arєрtóptotך ápóعuõ》．

Etберхó $\mu \varepsilon v o$ opvaviкó بортio

A．$\Delta \varepsilon \xi \alpha \mu \varepsilon \vee \eta ́ ~ \pi \rho о к а \theta i Z \eta$ ППя

 $\lambda u \mu \alpha ́ \tau \omega v$.

 катабквиดотท́ ท́ в

 o λ ок λ ńp ω oń tous.

Mét α K KL ó ó

 би $\lambda \lambda о ү \eta ́ c ̧ ~ \tau \omega v ~ \delta \varepsilon \iota ү \mu \alpha ́ \tau \omega v, ~ \kappa \alpha \theta \omega ́ c ̧ ~ к \alpha \iota ~ \tau о \nu ~ \alpha \rho t \theta \mu o ́ ~ \alpha u \tau \omega ́ v, ~ к \lambda \pi$.

ПAPAMETPOE	EIEOAOE	EEOAOE	IAYE	\triangle EITMA	ПAPATHPHEEI乏
BOD_{5}	\#	\#		M.H	
COD	\#	\#		M.H	
SS	\#	\#		M.H	
A $\mu \mu \omega v เ \alpha k \alpha ́, v i t \rho \omega ́ \delta \eta$, vitpıкג́	\#	\#		M.H	
TP	\#	\#		M.H	

\# : Пєрtoठ七к $\alpha(\pi . \chi \cdot 1-2 / \mu \eta v t \alpha i \omega \varsigma)$

* : $\Sigma \pi о \rho \alpha \delta$ เк α

6. $\Sigma Y N O \Psi H ~ \Sigma Y M \Pi E P A \Sigma M A T \Omega N$

 $\lambda u \mu \alpha ́ t \omega v:$

 $\pi \varepsilon \rho \stackrel{\beta}{\alpha} \lambda \lambda$ оv.

Me тпи катабкеиท́ тоu épyou:

Н $\lambda \grave{\prime} \psi \eta \pi \rho o ́ \sigma \theta \varepsilon \tau \omega v \mu \varepsilon ́ \tau \rho \omega v \delta \varepsilon v$ к $\rho i v \varepsilon \tau \alpha \iota ~ \alpha \pi \alpha \rho \alpha i ́ t \eta \tau \eta$.

 $\beta a \theta \mu$ ó δ ı α tip

7．BIB＾IOГPAФIKEE ПHГE天

 Роб́rпŋ．A日ŋ́va．

－ELYE Aлоүрафท́ 1991.

－Dimou D，Gikas GD，Tsihrintzis VA：＂Water quantity and quality monitoring of Lissos river，North Greece＂，Proceedings of the Third International Conference on Environmental Management， Engineering，Planning and Economics（CEMEPE 2011）\＆SECOTOX Conference，2011，Skiathos， Greece，p．151－157
 Etaıpiac，Өzб／víkп Arpỉıos 2004
－「Lavvórou久os，PYחANEH T ΩN Y $\triangle A T I N \Omega N ~ \Sigma \Omega M A T \Omega N ~ A \Pi O ~ T H N ~ K Y K \wedge O Ф O P I A ~ T \Omega N ~ O X H M A T \Omega N ~$

－＂The AOPII Cost Effectiveness Study Part III：The transport base case Annex B4 Greece，The European Commission，Standard \＆Poor＇s DRI and KULeuven＂

－Taylor，E．C．，Green，R．E．，\＆Perrins，J．（2007）Stone－curlews Burhinus oedicnemus and recreational disturbance：developing a management tool for access．Ibis， 149 （1），37－44．
－Tucker，G．M．\＆Heath M．F．，（1994）Birds in Europe：Their conservation status．Cambridge，UK．： BirdLife International（BirdLife Conservation Series No 3）
－Barros，C．\＆De Juana，．E．（1997）Breeding success of the Stone Curlew Burhinus oedicnemus at La Serena（Badaioz．Spain）．Ardeola 44 （2），199－206．
－Bealey，C．E．，Green，R．E．，Robson，R．，Taylor，C．R．，Winspear，R．（1999）Factors affecting the numbers and breeding success of Stone Curlews Burhinus oedicnemus at Porton Down，Wiltshire． Bird Study 46 （2），145－156．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．
－Giannangeli，L．，De Sanctis，A．，Manginelli，R．，Medina，F．M．（2005）Seasonal variation of the diet of the stone curlew Burhinus oedicnemus distinctus at the Island of La Palma，Canary Islands． Ardea 92 （2），175－184．
－Green，R．E．，Tyler，G．A．，Bowden，C．G．R．（2000）Habitat selection，ranging behaviour and diet of the stone curlew（Burhinus oedicnemus）in southern England Journal of Zoology 250 （2），161－183．
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Thompson，S．，Hazel，A．，Bailey，N．，Bayliss，J．，Lee J．T．（2004）Identifying potential breeding sites for the stone curlew（Burhinus oedicnemus）in the UK．Journal for Nature Conservation 12， 229 － 235.
－Catry T．，Ramos JA．，Catry I．，Allen－Revez M．，Grade N．， 2004 Are salinas a suitable alternative breeding habitat for Little Terns Sterna albifrons？IBIS 146 （2）：247－257 APR 2004
－Fasola M．，（1993）Distribution，population and Habitat Requirements of the Vommon Tern and the Little Tern breeding in the Mediterranean in Aguilar，J．S．，Monbailliu，X．Paterson，A．M．Status and Conservation of Seabirds，Proceedings of the 2nd MEDMARAVIS，SEO，Madrid
－Goutner V．，Charalambidou T．，\＆Albanis A．（1997）Organochlorina Insecticide Residues in Eggs of the Little Term（Sterna albifrons）in the Axios Delta，Greece．Bull．Environmental Contamination and Toxicology 58－61－66
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Joris E．，\＆Stienen E．，（2009）Impact of wind Turbines on Terns in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．
－Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute （VLIZ）．Oostende，Belgium．Viii＋68 p．
－Medeiros R．；Ramos J．，Paiva V．，Almeida A．，Pedro P．，Antunes S．（2007）Signage reduces the impact of human disturbance on
－Little tern nesting success in Portugal，Biological Conservation 135 （2007）99－100

－Ruben F．，Krijgsveld K．，Camiel Heunks，Martin Poot \＆Sjoerd Dirksen．（2009）Nocturnal and Diurnal Flight Intensity and Altitude of Seabirds and Migrants in and around an Offshore WindFarm in the Dutch North Sea in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．
－Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute（VLIZ）．Oostende，Belgium．Viiit 68 p．

 EKӨE
 ミávӨn 2006．oع入． 64
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－BirdLife International（2008）Species factsheets．Downloaded from http：／／www．birdlife．org Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Mullarney K．，Svensson L．，Zetterstrom D．，\＆Grant P．，（1999）Ta Пou入ıá tņ E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha \varsigma$ ，tnç Kúrøpou

－Xavסрıvóc Г．，（1992）Пou入ıá oto Kapavסeıvóç M．，＾eyákıç A．To Kókкıvo Bı $\beta \lambda i o$ twv
 OpviӨо入оүчки́ Eт α рєí α ．
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．

- De La Montana, E., Rey-Benayas, J.M., Carrascal, L.M. (2006) Response of bird communities to silvicultural thinning of Mediterranean maquis. Journal of Applied Ecology 43, 651-659.
- Guerrieri, G., Pietrelli, L., Biondi, M. (1996) Status and reproductive habitat selection of three species of Shrikes, Lanius collurio, L. senator and L. minor in a Mediterranean area. (Proc. of the First Intern. Shrike Symposium) Found. Vert. Zool. 6, 167-171.
- Handrinos, G., \& Akriotis, T., (1997) The birds of Greece. C. Helm, A \& C Black, London.
- Isenmann, P., Debout, G. (2000) Vineyards harbour a relict population of Lesser Grey Shrike (Lanius minor) in Mediterranean France. Journal fur Ornithologie 141 (4), 435-440.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) Philopatry, dispersal patterns and nest-site reuse in Lesser Grey Shrikes (Lanius minor). Biodivers. Conserv. 16, 987-995.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) The importance of breeding density and breeding synchrony for paternity assurance strategies in the lesser grey shrike. Folia Zoologica 57 (3), 240250.
- Kristin, A., Hoi, H., Valera, F., Hoi, H. (2000) Breeding biology and breeding success of the Lesser Grey Shrike (Lanius minor) in a stable and dense population. Ibis 142 (2), 305-311.
- Lepley, M., Ranc, S., Isenmann, P., Bara, T., Ponel, P., Guillemain, M. (2004) Diet and gregarious breeding in lesser Grey Shrike (Lanius minor) in Mediterranean France. Revue d'Ecologie (La Terre et la Vie) 59 (4), 591-602. Pons P., Lambert B., Rigolot E., Prodon, R. (2003) The effects of grassland management using fire on habitat occupancy and conservation of birds at a mosaic landscape. Biodiversity and Conservation 12, 1843-1860.
- Ristow, D., Wink C., Wink M. (1986) Assessment of Mediterranean Autumn Migration by Prey Analysis of Eleonora's Falcon. Proc. 1st Conf. on Birds wintering in the Mediterranean Region, Aulla Feb. 1984. Supplemento alle Ricerche di Biologia della Selvaggina 10(1), 285-295.
- Tucker, G. M. \& Heath M. F., (1994) Birds in Europe: Their conservation status. Cambridge, UK.: BirdLife International (BirdLife Conservation Series No 3)
- Valera, F., Kristin, A., Hoi, H. (2001) Why does the lesser grey shrike (Lanius minor) seldom store food? Determinants of impaling in an uncommon storing species. Behaviour 138 (11-12), 14211436.
- Wirtitsch, M., Hoi, H., Valera, F., Kristin, A. (2001) Habitat composition and use in the lesser grey shrike (Lanius minor). Folia Zoologica 50 (2), 137-150

 Bıotwvi $\delta \alpha \varsigma$, l $\sigma \mu \alpha \rho i \delta \alpha \varsigma$), Boskidis et al., 2010 (J., Envir., Scien., Health, 45,11, 1421-1440, Changes of water quality and SWAT modelling of Vosvozis river basin),
 Өра́кпс),
- Economou et al., 2007 (Medit., Mar., Scien., 8,1,91-166, The freshwater ichthyofauna of Greece),

- Papastergiadou, Babalonas, 1993 (Willd., 23,137-142, Aquatic flora of N.Greece)Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),
- Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),

 ОППЕО 97
－B $\alpha \beta a \lambda \varepsilon ́ k \alpha \varsigma, ~ K . ~ 1998 . ~ H ~ \pi \alpha v i \delta \alpha ~ t o u ~ A y i o u ~ O \rho o u s . ~ Ф u ́ \sigma \eta ~ к \alpha ı ~ Ф u \sigma u k o ́ ~ П \varepsilon \rho ı ß \alpha ́ \lambda \lambda o v ~ A y i o u ~ ' O \rho o u s . ~$ Екס̋óбをıৎ̧ ОППЕӨ 97.
 A日 $\mathfrak{i} v \alpha$ ．
－Zagas，T．D．，P．P．Ganatsas，T．K．Tsitsoni and Marianthi Tsakaldimi．2004．Thinning effect on stand structure of holm oak stand in northern Greece．In：
－Arianoutsou，M．and V．P．Papanastasis（eds），Proceedings of the 10th MEDECOS Conference，April 25－May 1，2004．Rhodes，Greece．Millpress，Rotterdam．

 117.
－Grisebach，A．1841．Reise durch Rumelien und Brussa in jahre 1839， 1.2 Gottingen．
－Mattfeld，J．1927．Aus wald und macchie in Griechenland．Dendrol．Ges．38：106－151．
 Apvaiaç．Өعбба入ovíkn．
 1：50．00 AӨ ω ¢ к ки lєрเббóc．AӨńv α ．

 Про́үрацца Пєрьßа́入入оv，Үлопро́үрацца Δ ра́бך 3．3．

8．OMA \triangle A ME＾ETH乏

Тах．$\Delta / v \sigma \eta$ ：Пала́фף 82，Өєбб $\alpha \lambda$ оvíкп，Т．К．54453，
Tף入．／Fax： 2310902321 ／ 2310330630
$\Sigma \phi \rho \alpha ү i \delta \alpha-Y \pi о ү \rho \alpha \phi{ }^{\prime}($

Өeooriovikn．14／4／2022
TIA TON EAETXO
O EПIB＾EПЛ円）TH MEへETH
 $\Delta a \sigma o \lambda \notin$ yos $\mu \varepsilon A^{\prime} \beta$ ．

OERPHOKKE

Qeodadovikn．．．14．4／20．2．2
o \triangle TEYOYNTHE TH乏
HEXNIKHE YHHPE $I A \Sigma$

Гعш́pyıo̧ Matparážņ Подıико́ц Мпха⿱亠䒑кó¢ $\mu \varepsilon \mathrm{A}^{\prime}$＇ ．

ПАРАРТНMA I

[^0]: Cephalanthera damasonium／Пa oóv
 Cephalanthera longifolia／חapóv
 Colchicum doerfleri／П ρ óv
 Convallaria majalis／Mapóv
 Corydalis integra／$\Sigma \pi \alpha$ vio
 Cyclamen persicum／П $\alpha \rho o ́ v$
 Cystoseira spp／П α oóv
 Dianthus petraeus ssp．orbelicus／Пapóv
 Digitalis leucophaea／इ̃ávio
 Erysimum drenowskii／Inapóv
 Fritillaria euboeica／Пo入ú $\Sigma \pi \alpha \dot{v}$ o
 Fritillaria graeca／Пapóv
 Helichrysum sibthorpii／Moגú इnávio
 Heracleum humile／Парóv
 Hypericum athoum／$\Sigma \pi \alpha \dot{v}$ io
 Isatis tinctoria ssp．athoa／Σ náve
 Limodorum abortivum／Пapóv
 Linum leucanthum इúvŋधิธ，
 Linum olympicum ssp．athoum／Пoגú इTávio
 Neotinea maculata／ח $\alpha \rho o ́ v$
 Neottia nidus－avis／П α oóv
 Ophioglossum vulgatum／חapóv
 Osmunda regalis／Mapóv
 Oxytropis purpurea／£návio
 Platanthera bifolia／Mapóv
 Platanthera chlorantha／Mapóv
 Poa thessala $\Sigma u ́ v \eta \vartheta \vartheta \varepsilon$
 Polygonum icaricum／Enávio
 Saxifraga juniperifolia ssp．sancta／Пapóv
 Silene echinosperma／ППроóv
 Silene multicaulis ssp．genistifolia／П α рóv

