ЕРГО：
 «EPГA EПE＝EPГA乏IA乏 KAI AIAOE $\Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~$ ミTO AГION OPOミ»

MEАETH ПEPIBAИИONTIKתN EПIПTתEERN EPISN EПEEEPГAEIA乏 KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \Lambda Y M A T \Omega N ~ I . ~ M . ~ Z \Omega Г Р А Ф О Y ~$

ANADOXOE MEAETHE

EYミTPATIO乏 KAPAГERPГIOY ПАПАФН 82， 54453 ӨЕささAへONIKH email：skarageo＠gmail．com

IEPA KOINOTHTA AГIOY OPOY乏 $A O \Omega$

EPTO：
 AIION OPOミ»

MEAETH ПEPIBAMAONTIKSN EПIITTSEERN

MH TEXNIKH ПEPI＾HயH

ANAAOXOE MENETHE

EYミTPATIOE KAPAГERPTIOY
ПАПАФН 82， 54453 ӨЕこさAМONIKH
email：skarageo＠gmail．com

חINAKAE MEPIEXOMENRN

2. MH TEXNIKH ПEPIAHYH 3
2.1. ПерIгРАФН ЕРГОХ 3
 3
 3 3
 3
2.1.4 Перıүрафй лєıтоьрүіац. 4
2.2. AMOETALEIL - EYNTETACMENEL 6
2.3. ПEPIBAAAONTIKEL EIIITT $\Omega \Sigma E I \Sigma$ 7
2.4. METPA KAI \triangle PALEIE TIA THN IPOLTALIA TOY IEPIBAA^ONTOL, 11
2.5. ОФЕАН 11
2.6. ENAAAAKTIKEE AYEEIE 11
 12

2．MH TEXNIKH ПEPI＾H ΨH

2．1．Перıүрачґ́ в́руои

 бu入入єктท่pıo aүшүó．

 параквінєvo ре́на．

 бu入入દктท่pio aүшүó．

 аүшүó

E．E．A．

параквінєvo рغ́иа．

 бu\غкктipio ayшyó．

 аүшүо́

 кик久ороріас，

 ठıктن่ou．

Фáon 「＇：Enavenixwon opuyućrovv aywy⿳亠二口刂

2.1.4 Пєрıүрачй Аєıтоuрүiac

 ваөиiठ̄a).

 ठ̈аппрато́тпта UVT 70\%/cm.

	ミuvtetayuėveç EГ乏A 87	
	X	X
Apxì－A． 5	513508，63	4461550，02
A． 4	513501，10	4461535，66
A． 3	513476，78	4461537，38
A． 2	513450，71	4461515，69
A． 1	513439，17	4461506，09
Tह̇入oc－A． 0	513426，04	4461497，52

	ミuvtetayuėveç EİA 87	
	X	X
Apxi＇－B． 12	513470，00	4461372，01
B． 10	513441，70	4461365，06
B． 9	513434，66	4461365，79
B． 8	513430，82	4461359，67
B． 5	513414，45	4461358，75
B． 3	513401，56	4461362，03
B． 1	513397，88	4461370，23
Tと̇入os－B． 0	513385，31	4461372，33

 ou入入єктПpiou $\dot{\varepsilon} \omega \varsigma ~ T \eta V ~ E E \Lambda ~ \varepsilon i v a l: ~$

Kんбıко̇¢ опиعiou	ミuvteraypėveç EIEA 87	
	X	X
Apxí－C． 3	513253，41	4461226，26
C． 2	513234，72	4461220，17
C． 1	513232，71	4461190，06
Ṫ̇入OC－C． 0	513231，16	4461163，26

 513223,75 ка। $Y=4461158,25$ ．

Kんб̃кко́s опиعiou	ミuvtetayuėvec，E［EA 87	
	X	Y
＇Ȩoठoc anó EEへ	513219，17	4461153，68
ミท	513181，09	4461150，15

2. avtiotoIXEi $\sigma \varepsilon$ ENAIAME ΣH KATA乏TA乏H－EחIITT $\Omega \Sigma H$
3．KOKKINH ENAEIEH avtıotorzi $\sigma \varepsilon$ APNHTIKH EПIITTI Ω IH

ФAEH EPROY	IEPIBAMAONTIKO ETOIXEIO	EMintseeis			BAPYTHTA				$\triangle I A P K E I A$		ANAETPEWIMH		
		$\frac{4}{2}$	W్ᅢ゙	징	¢	$\begin{aligned} & \frac{S}{2} \\ & \frac{1}{\Sigma} \end{aligned}$			\sum_{i}^{2}		증		砍
	Клıцатıка́ каı ßıоклıцатіка่ характпрıттіка		$\sqrt{ }$			$\sqrt{ }$				\checkmark	$\sqrt{ }$		
	Мор甲о入оүıка́ каı тополоүіка่ характпрıттıа̇		$\sqrt{ }$				\checkmark			\checkmark			$\sqrt{ }$
	характпріөткк்			\checkmark									
	Фưıк̇́ перıßà入入ov		$\sqrt{ }$				\checkmark			\checkmark			$\sqrt{ }$
				\checkmark									
		\checkmark			\checkmark					$\sqrt{ }$			
			$\sqrt{ }$					$\sqrt{ }$		\checkmark			$\sqrt{ }$
				\checkmark									
	Поıо́тпта тои аغ́pa	\checkmark				\checkmark				$\sqrt{ }$		$\sqrt{ }$	
		\checkmark					\checkmark			\checkmark		\checkmark	
	Н入екронаүVๆтіка̇ пеס̇ia			\checkmark									
	＇Үбата			\checkmark									
		\checkmark				\checkmark				\checkmark		$\sqrt{ }$	

M．П．E．EPTSN EПEEEPRAEIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ I . ~ M . ~ Z Q R P A Ф O Y ~-~ M H ~ T E X N I K H ~ П E P I A H \Psi H ~-9-~$
EPFO ：«EPTA ETIE＝EPIAइIAE KAI $\triangle I A Q E \Sigma H \Sigma A \Sigma T I K \Omega N ~ A Y M A T S 2 N ~ \Sigma T O ~ A I T O N ~ O P O \Sigma » ~$

ФAEH EPTOY	ПЕРIBAMONTIKO ETOIXEIO	EMIMT®天Eİ			BAPYTHTA				$\triangle I A P K E I A$		ANAETPEYIMH		
		2	W	8	工	$\frac{S}{5}$	¢		$\sum^{\text {E }}$	들 등 읃	8		를
	К入ıцатıка́ каı ßıок入ıиатıка́ характпрıотікӑ		$\sqrt{ }$					$\sqrt{ }$	$\sqrt{ }$			\checkmark	
	Мор甲олоүıка́ каı тополоүıка̇ характпрıотıкӑ												
	характпріотіка́			$\sqrt{ }$									
	Фuđıкó перıßà入入ov	$\sqrt{ }$			\checkmark				\checkmark				
		$\sqrt{ }$			$\sqrt{ }$				$\sqrt{ }$				
		$\sqrt{ }$			$\sqrt{ }$				$\sqrt{ }$				
				$\sqrt{ }$									
		$\sqrt{ }$			$\sqrt{ }$				\checkmark				
	Поıо́тпта тои аغ́pa	\checkmark						\checkmark	$\sqrt{ }$				\checkmark
		\checkmark					$\sqrt{ }$		\checkmark				\checkmark
				$\sqrt{ }$									
	＇ ¢бата $^{\text {a }}$	$\sqrt{ }$			$\sqrt{ }$				$\sqrt{ }$				
		$\sqrt{ }$				\checkmark				$\sqrt{ }$		$\sqrt{ }$	

 леітоupyia тоис．

2．5．O甲ع́Aク

 періßа̀Mov．

 перıß்̀入hov．

 $\lambda u \mu a \dot{T} \omega \mathrm{v}$ ．
 MnXaviká oưтńцaтa ón

[^0]

TПS OXETIKウ́s KYA

Mع тПv катабкєиர่ тоu غ่pүou：

Tŋ λ. ： 2310902321
Email：skarageo＠gmail．com
ミ甲раүіठ̈а－Yпоүра甲ர்

KAPAГERPTIOY A．EYETPATIOE $\triangle I \Pi \Lambda \Omega$ М．ХНМIKOE MHXANIKOE A．П．Ө． MEAOE T．E．E．APIOMOE MHTPSOY 87022 ПАПАФН 22 ККОҮMIA 54453 OEE／NIKH THA 2310，992．321

Өraбa入ovikn 14／41
2022
TIA TON EAETXO
O EПIBAEMRN TH MEAETH
 Δ aбo入óyos $\mu \varepsilon A^{\prime} \beta$ ．

EAETXOHKE

 $14 / 4 / \ldots 20.22$

O TPOİETAMENOE
tmhmatoi aazang nghbainontos
Móoxoc T\％unąıஸ́tns．
$\Delta a \operatorname{on} p y o s \mu \varepsilon A^{\prime} \beta$

OERPHPHKE Oeaбoגovikn．．．4．4／．20．2．8

O AIEYOYNTH：THE TEXNIKHE YIHHPEEIAS

Геம́pүıos Marpanáל̧ņ
Hoגıtкós Mnxavikós $\mu \varepsilon$ A＇${ }^{\prime}$ ．

IEPA KOINOTHTA
 AГIOY OPOY乏
 $A \Theta \Omega$

ЕРГО：
 ＜EPГA EПEEEPTA乏IA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ \Sigma T O ~$ AIION OPOE»

MEAETH ПEPIBAMAONTIKRN EITIITREERN
EPISN EППE＝EPГAEIAE KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A ~ Y M A T \Omega N ~ I . ~ M . ~ Z \Omega Г Р А Ф О Ү ~$

ANAAOXOE MEAETHE

EY 2 TPATIOE KAPAГESPIIOY ПАПАФН 82， 54453 ӨЕГऽAへONIKH email：skarageo＠gmail．com
\bigcirc

MINAKAE MEPIEXOMENRN

1．EILAГ $\Omega \Gamma H$ 9
1．1．Titaos eproy ．． 9
1．2．Einos Kal mereeos eproy ． 9
1．3．ГЕ®ГРAФIKH＠ESH KAI $\triangle I O I K H T I K H ~ Y T I A Г \Omega Г H ~ E P I O Y ~$ ．． 9
1．3．1 Ө仑ढण 10
 11
 11
 11
 12
 12
 12
 12
1．4．Katatazh toy eproy 12
1．5．ФOPEAE EPTOY 13
1．6．ПEPIBAAAONTIKOL MEAETHTHL EPIOY 14
2．MH TEXNIKH IEPIAH Ψ 15
3．$\Sigma Y N O I T T I K H ~ I E P I Г P A Ф H ~ T ~ \Omega N ~ E P Г \Omega N ~$ 16
3．1．BASIKA STOIXEIA EPIOY 16
 16
 16
 16
3．2．BALIKA ETOIXELA KATALKEYHE KAI AEITOYPIIAL， 17
3．2．1 Перıүрацй iertovpyias 18
3．3．AПAITOYMENE ПOLOTHTEL ПPQTQN YA Ω ，NEPOY，ENEPIEIAL KAL A $I O B A H T \Omega N$ 19
 19
 20
4．ГTOXOL KAI $\Sigma K O I I M O T H T A ~ Y A O H O I H \Sigma H \Sigma ~ T O Y ~ E P I O Y-E Y P Y T E P E \Sigma ~ \Sigma Y \Sigma X E T I \Sigma E I \Sigma . ~$ 22
4．1．ミTOXOE KAI इKOHMOTHTA 22
 22
 غंplod 2222
4．2．IETOPIKH EEEAIEH TQN EPIQN 23
4．3．OIKONOMIKA ETOLXEIA TQN EPI Ω N 23
 23
 23
4．3．3 Тро́тоя ұрпиагобо́тиапя． 23
4．4．इYEXETILH TOY EPROY ME AAAA EPLA 23
5．इYMBATOTHTA TOY EPГOY ME OE Σ MOOETHMENE Σ XPIKE Σ KAI ПOAEOAOMIKE Σ AE MEY 25
5．1．©esh toy eproy 25
5．1．1 Oрıа оькıбиக́м 25
 25
 25
 25
5．1．4．1 Оӧко́ діктјо 25
 25
 25
5．1．4．4 Атодీtevol 25
5．1．4．5 Үठреит 26
 26
5．2．ILXYOYZEL X Ω POTAEIKEE KAI ПOAEOAOMIKEE PY＠MILEIL THE IEPIOXHL TOY EPIOY． 26
5．2．1 Проßів́чяцц 26
5．2．2 Өвбдико́ каӨелтळ்ऽ． 26
 27
 27
6．ANAАYTIKH ПEPIГPA Φ Г $\Sigma X E A I A \Sigma M O Y ~ T O Y ~ E P Г О Y ~$ 28
6．1．ANAAYTIKH IEPITPAФH TEXNIK Ω N－IE Ω METPIK Ω N $\Sigma T O I X E I \Omega N$ 28
 28
 28
 28
6．2．ANAAYTTKH ПEPITPAФH KYPIIN，BOHӨHTIKДN KAI YHOETHPIKTIK 2 ／EYNOA Ω N EIKATALTALESN KAI EPRIN 31
6．3．Enimepoys epra 32
6．3．1 Kтірıака́ е́pүа． 32
 32
 32
 32
 33
6．3．4．2 Вюдлоүкі етеберүабіа 34
 36
 37
 38
 38
6．4．Фa己H Katazkeyhi tan nean epr Ω N 38
 38
6．4．2 Eпtú̂pouç texvicá épva 38
 39
6．4．4 Avaүкаіа рдкќ катабкері！ 40
 40
6．4．6 Mhrová̧̧ovta v̀̀acḱ． 40
 41
 41
 42
6．5．ФAгH AETTOYPIIAE 42
 42
 42
 43
6．5．4 Eкров́s бтересіv аловідітон 43
 44
 44
 44
6．6．ПAYEH AEITOYPILAL－AПOKATALTALH 44
 44
 45
 45
6．7．＇EKTAKTE EYN＠HKEE KAI KIN $\triangle Y N O I ~ \Pi A A ~ T O ~ I E P I B A A A O N ~$ 45
 45
 45
 46
 46
6．8．EIIIAPALH TOY EPIOY SE KOITES PEMATSN 46
7．ENAAAAKTIKE AYEEIL 47
7．1．ПAPOYEIASH BIOSIMHE AYEHE 47
 47
 47
 48
7．1．3．1 ГЕики́． 48
7．1．3．2 Eर́oтпиa evepүoó t̀vóos 49
 55
9．4．EIIITTת工EIL EXETIKEL ME ГE $\Omega \wedge O$ IIKA，TEKTONIKA KAI EAAФOAOГIKA XAPAKTHPILTIKA 119
9．4．1 Махроокотьке́я таратир 119
 119
 119
 119
9．4．2 Поьткќ харакдррıбики́ вঠафф́v， 119
 120
 120
 120
9．5．EITITTSLEIL ETO ФYEIKO ПIEPIBAAAON 120
 120
 120
 120
 121
 122
 122
 122
 122
 122
 122
 122
9．6．EПIITREEIL \＆TO ANӨPQПOГENEE HEPIBAAAON． 122
 122
 122
 123
 123
 123
 123
9．6．3 Поіппоткй к入лроуоцй． 123
9．6．3．1 Eлuttboctc， 123
 124
 124
9．7．EIIITTSEELL LTO KOINQNIKO－OIKONOMIKO IEPIBAANON． 124
 124
 124
9．7．3 Єв́वгцс ерүабіас 124
 124
 124
 124
9．8．Emitrolele stil texniee ymodomez 124
9．8．1 Елитшыаац 124
9．8．2 Eли́ркzıа 125
9．9． इYZXETILH ME TIL AN＠PQHOIENEIL IIELEIL ETO IEPIBAAAON 125
9．9．1 Пı日аvóтих evioдvors 125
 125
9．10．EIIIITREEIL ETHN HOIOTHTA TOY AEPA 125
9．10．1 Eлитю́кас 125
 126
 126
9．11．EmITT 2 EEL AПO＠OPYBO H \triangle ONHLEIL 127
 127
9．11．2 Елитш்वвц 127
9．12．EIIIITQEELE EXETIKEL ME HAEK TPOMAINHTIKA IIEAIA 128
9．12．1 Eлитыава 128
9．12．2 Пi月avónta 128
9．13．EIIIITQEEIL ETA Y $\triangle A T A$ 128
 128
 128
 128
9．13．2．2 Eสurtéवstç סtaf\＆ouítाтaç 128
9．13．2．3 Ектіцךоा цетаßодо́v． 128
 128
 128
 129
 129
 129
 129
 129
 ／KAI TO HEPIBAAAON，KYPI Ω AOI Ω ATYXHMATQN KAI KATAこTPOФ Ω N 130
9．15．Σ YNOYH EIIITTREESN SE IINAKEE 130
10．ANTIMET Ω IILH ПEPIBAAAONTIK ΩN EIIIIT $\Omega \Sigma E \Omega N$ 133
10．1．ME＠OAOAOFIKE ALAITHEELE KAI ПPOL＠ETA METPA 133
 XAPAKTHPILTIKA 135
 XAPAKTHPIETIKA 135
 XAPAKTHPILTIKA 136
10．5．METPA AПOKATAETALHE KAI ANTIMET』ПILHL EIITTSEE Ω N Σ TO ФYEIKO ПEPIBAAMON 136
 137
10．7．METPA AПOKATASTALHE KAI ANTIMETQHILH亡 EIIITQEE Ω N $\Sigma T O$ KOINQNIKOOIKONOMIKO IIEPIBAAAON 138
10．8．METPA AПOKATALTALHE KAL ANTIMETQ IILLL E EIITRIE Ω N Σ TIL TEXNIKE Y YOOAOMEL 138
 IEPIBAMAON 139
10．10．METPA AПOKATAETALHE KAI ANTIMETQПILHL EIIITR工E Ω N $\Sigma T H N$ ПOIOTHTA TOY AEPA 139
10．11．METPA AПOKATALTALH亡 KAI ANTIMET $\Omega \Pi I L E$ EIIITSLE Ω N AПO ӨOPYBO H $\triangle O N H \Sigma E L \Sigma$ 140
 141
 141
 EYTIA＠EIA TOY EPIOY EE KINAYNOYE इOBAP ΩN ATYXHMATתN H KATALTPOФ Ω N 142
10．15．AПOTEAEEMATIKOTHTA METPQN 142
11．ПEPIBAAAONTIKH AIAXEIPI工H KAI ПAPAKOAOYӨНЕH 170
11．1．ПEPIBAAAONTIKH $\triangle I A X E I P I L H$ 170
11．2．ПЕРIBAAAONTTKH ПАРАКОАОҮӨНटН 170
 170
 170
 170
 170
 170
 171
 171
 172
 172
 172
 172
 172
 173
 173
 173
11．2．4 Паракоіои́Өทоп Өори́рои． 173
 173
 173
 173
 173
11．2．5 Паракоіоо́Өпро обиа́s 173
 174
 174
 174
 174
11．3．EXEAIO ANTIMET』IILHL EKTAKT $2 N$ IEPILTATIK Ω N 174
11．3．1 Eloxみผभी 174
11．3．2 Avtusíuevo ton Exedion 174
11．3．3 Evepyoтойण tov इxediov． 175
11．3．4 Алеvерүотоіроा tov Eүеסío 176
 177
12．K IEPIBAAAONTIK』N OPSN 184
12．1．©EMA－ONOMAEIA EPROY H \triangle PAZTHPIOTHTAE． 184
12．2．EПLSNYMIA ФOPEA H \triangle PALTHPIOTHTAL 184
12.2 .1 Катх́таழ̆ク е́pүod 184
 184
 184
 185
 185
 185
 185
12．2．3 Периурарй Ерүои． 186
 терирйд llovtos． 188
 188
 188
 188
 189
 190
 190
 190
 193
12．2．7．4 Пе́pas 入etrouppiac tov épyou каl aлокатdotaon 197
 198
13．IIPOE＠ETA ETOIXEIA 199
13．1．EEELAIKEYMENE MEAETES 199
13．2．ПPOBAHMATA EKIIONHLHL 199
14．Ф Ω TOГРАФІКН ТЕКМНРI $\Omega \Sigma Н$ ． 200
15．XAPTE - EXEAIA 202
15．1．XAPTHE IIPOEANATOAIEMOY 202
15．2．XAPTHE IIEPIOXHE MEAETHZ 202
15．3．XAPTHE ENAAAAKTIK Ω N AYEE Ω N 202
15．4．ГEяAOГIKOL XAPTHL 202
15．5．XAPTHE XPHLE Ω N KAI KAAY Y HL IHE 202
15．6． EXEAIA TOY EPIOY H THE APAETHPIOTHTA乏 202
15．7．Xaptes E！imiosegn 202
15．8．XAPTHЕ ПPOГРАММАТОЕ ПAPAKOAOYӨHLHZ． 202
16．IIAPAPTHMA 211
16．1．YTIEIONO＾OГIKOI YПOАOГIミMOI THะ E．E．Λ 212
16．2．ITYXIO ME＾ETHTH． 213
16．3．EIAIKH OIKO＾OГIKH AミIOムOГНЕH 214

1．EİAГ Ω ГH

 EППEEPTAミIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \Lambda Y M A T \Omega N ~ I . ~ M . ~ Z \Omega Г P A Ф O Y » ~ T O U ~ \varepsilon ̇ p y o u ~ « E P Г A ~$

 каı tov N1650／1986．

1．1．Títıoc épyou

 IEPA乏 MONH Σ Z $Г Р Р А Ф О »$.

Ta протєıvó $\mu \varepsilon v a$ épya перı入außávouv：

 aүшүó $\mu \varepsilon$ тоv onoio θ a हvळ்vovtaı

 aүшүó $\mu \varepsilon$ тоv опоio Өa عvढ்veтaı
 aүшүó

1．3．1 Oと்ণ

Eıкỏva 1．1：Xápтп̧ пробаvatoגıбนоủ

1．3．2 Аıокктткர் uпаүшүฑ்

Kんठัıко́¢ опиعiou	ミuvtetayuéves，E［EA 87	
	X	X
Apxí－A． 5	513508，63	4461550，02
A． 4	513501，10	4461535，66
A． 3	513476，78	4461537，38
A． 2	513450，71	4461515，69
A． 1	513439，17	4461506，09
TĖ入os－A． 0	513426，04	4461497，52

Kんठัıко́¢ опиعiou	ミuvtetayuėvec，ETEA 87	
	X	X
Apx＇̇－B． 12	513470，00	4461372，01
B． 10	513441，70	4461365，06
B． 9	513434，66	4461365，79
B． 8	513430，82	4461359，67
B． 5	513414，45	4461358，75
B． 3	513401，56	4461362，03
B． 1	513397，88	4461370，23
Tह̇入os－B． 0	513385，31	4461372，33

	ミuvtetayuėvec ETEA 87	
	X	X
Apx＇்－C． 3	513253，41	4461226，26
C． 2	513234，72	4461220，17
C． 1	513232，71	4461190，06
	513231，16	4461163，26

1．3．3．4 EuルTETOVमÉVES OIKOПÉסOU EE1

 513223,75 ка। $Y=4461158,25$ ．

Kшбıкȯ̧ वпиعiou	इuvtetayuėvec，ETEA 87	
	X	Y
＇Ȩoסoc anó EE\	513219，17	4461153，68
£п	513181，09	4461150，15

1．4．Ката́таگ̆ף тои غ́pyou

катवтáवoovtal ఠ६：
－ 12 Oиáסॄऽ каı
－ 2 Katnүорієऽ：
－ 1^{n} катпүоріа（A）$\mu \varepsilon$ ठи̇о uпокатпүорієऽ（A1 каı A2）каı
－ 2^{n} катпүоріа（B）

 арио́бı६६，apхદ்¢．

EIAOE EPTOY＇H APAETHPIOTHTAE	$\begin{aligned} & \text { MATA ПEPIBAAN } \\ & \text { YTOKATHIOPIA } \\ & \text { A1 } \end{aligned}$	YПOKATHГOPIA A2	$\frac{\text { KATHIOPIA }}{\text { M }}$	חAPATHPHEEİ
a／a： 19 Еүкатаота̇бяı， عпє६६pyaciac aoctıкळ́v $\lambda u \mu a \dot{T} \omega \mathrm{v}$ （пȯג $\varepsilon \omega \mathrm{v}$ ка। ยпє६६pүабนغ̇v ω v uү $\bar{\omega} \dot{\circ} \sigma \varepsilon$ єпіраvєıако́ тп ө́̀лабәa	$\Pi \geq 100.000$ ı．к．	$\Pi<100.000$ ı．к．		П：Mováס̄ec Iooסúvauou П $\lambda \eta$ Өuбนой（MIП） a）इuипарабújovтаı $\mu \varepsilon \mathrm{T} \eta \mathrm{v}$ $\lambda u \mu a \dot{T} \omega v$（EEA）： －о1 кеутрікоі апохетвитткоі аүшүoi हкто́s oxદठiou －ol aywyoi ठı́áUعons поגєобо $п \dot{\eta} \sigma \varepsilon \omega \mathrm{~V}$ ， тоирıотікळ̈v Еүкатаотд்бєшv， к．д．п．，бuцпараби́povтаı апо́ браотпріо́тртея， у）Гіа то عбштеріко́ ঠіктио

 1^{7} Kатпүоріа каı Үтокатпүорік A2．

KatátaEn катá ミTAKOД 2008 каı NACE Rev． 2

1． 37.00 Enをદॄрүаテіa $\lambda u \mu a ́ т \omega v$

1．5．Фор $̇ a \varsigma ~ \varepsilon ́ \rho Y o u ~$

Δ / v п	.	Пanàpn 82, Өعбба入оviкп, Т.К. 54453
$T \eta \lambda$. عпıкоıvшvias,		2310902321 / 6976801783
e-mail	.	skarageo@gmail.com

2. MH TEXNIKH ПEPI^H ΨH

3．इYNOПTIКН ПЕРІГРАФН TתN ЕРГЛN

3．1．BaбIкá бтоıरદía غ́คүou

 бu入入єктท்pıo aүшүо́．

 параквіццхо ре́ца．

 бu入ไعктйpıo аүшүo்．

 аүшүó

E．E．A．

ПAPAMETPO乏		ПАРОУЕА ФАЕН	ФAEH EXEAIAEMOY
Е६uпn¢etoù	кат．	250，00	330，00
	$\mathrm{m}^{3} / \mathrm{d}$	37，50	49，50
акаӨápтшv	m ${ }^{3} / \mathrm{d}$	56，25	74，25
	$\mathrm{m}^{3} / \mathrm{h}$	2，34	3，09
Пapox＇́ aıx	$\mathrm{m}^{3} / \mathrm{h}$	8，42	11，12
Elöıк̇ Puпavtıкó ¢ортіо BOD_{5}	gr／kar／d	60，00	60，00
Elöıкó Punavtıkó ¢ортio TSS	gr／Kat	70，00	70，00
Elöıó Punavtikó 甲ортio TN	gr／kar／d	10，00	10，00
Eıठıко̇ Punavtikȯ 甲ортio TP	gr／kar／d	2，00	2，00
ФортіО BOD_{5} бхहరıабนоบ่	kg／d	15，00	19，80
	kg／d	17，50	23，10
Фортіо TN охغరెІабиои่	kg／d	2，50	3，30
Фортіо TP охદठıабиои่	kg／d	0，75	0，99

 киклофоріас，

 бıктบ̇ou．

Фáon 「＇：Enavenix ω on opuyuát ωv avcuvảv

Фáon E＇：Eykctáotaon H／M हEon入ıouoú

3．2．1 Періүрафй Авıтоирүіая

 $\beta а Ө \mu і \bar{б})$ ．

 ठıапعрато́тпта UVT 70\%/cm.

апоßАர்тшv

3.3.1 Anaıтоủ $\boldsymbol{\varepsilon v \varepsilon \varsigma ~ п о ד о ̇ т \eta т \varepsilon ৎ ~ п р \omega ் т \omega v ~ u \lambda \omega ் v ~}$

- Катабкєиغ́ц апо́ бкиро́ঠ̄єца $85 \mathrm{~m}^{3}$.

- \wedge ®об̄оцє́ 163 m².

Xpíon عvépyeias

 50 kWh avtiotoixa.
Xpróon xпuıкळ̈v

3．3．2 Побо́тптея апоß入ウ่тшv

Кшठัıко่̧ E．K．А．：19．08．05

Yyod́ anóB入nto

Aغ́pia aпо́ß入nta

 ठાદ \cup Uuvon avغ̇ $\mu \omega v$ ）．

 вүката́бтабๆ．

عivaı oı ако̇入оuӨと¢:

Періүрафй	Xpóvos גеıтоируіая (h/ĖTO¢)							
		CO	NOx	SO_{2}	vOC	PM10	PM2.5	CO_{2}
$\begin{gathered} \text { H/Z } \\ \text { (İXu̇ç } 25 \\ \text { kVA) } \end{gathered}$	20	1,39	3,68	0,50	0,29	0,27	0,27	359,25

4. $\Sigma T O X O \Sigma$ KAI $\Sigma K O \Pi I M O T H T A ~ Y А O П O I H \Sigma H \Sigma ~ T O Y ~ E P Г O Y ~-~$ EYPYTEPE Σ Y $\Sigma X E T I \Sigma E I \Sigma$

4.1. इто́хо̧ каІ бкопино́тпта

ouvŋүopoúv unép m̧ uגonoinoŋs tou غ̇pyou

 тпऽ апохе்тعuōs "६про́".

4.3.1 Ектіцŋоŋ бuvoגıкои̉ проӥпоגоүıоцои̉

 бદ 726.305,04 Eupஸ́.

 проүра́диата.

 'Opoc.

5．โYMBATOTHTA TOY EPLOY ME OEEMOOETHMENE XRPIKE乏 KAI ПONEOAOMIKE乏 $\triangle E \Sigma M E Y \Sigma E I \Sigma$ TH乏 ПEPIOXHE

5．1．Oモ́aŋ тоu દ́คүou

 тои параквіцвvои рє́натос．

5．1．1＇Opıa oıкıбцळ்v

5．1．2＇Opıa проотатєuó $\mu \varepsilon v \omega v$ пعрıохஸ்v

5．1．4．1 Оঠіко́ ঠіктио

5．1．4．3 Аіктиа техиіктіс Yпобоий́с Апороіниата

5．1．4．4 Апохغ́тعиот

5.1.4.5 'Yסрєиоп

tou ع́pyou

 uпоठ̄оцผ்v.

5.2.1 Проßлд̇шєı¢

 3.496 Pف்ool, ol 286 Pauoúvol, ol 307 Boúגyapoı, ol 16 £ $\dot{p} \beta$ oı kaı ol 51 Г $\varepsilon \omega$ pyıavoi. Ynápxouv

 4% avá ठєкавті́a.

5.2.2 Oعбนико́ каӨєотळ்̧

 ГХООАП, ПЕРПО К.Т.А.).

 бúu $\mu \omega \mathrm{va} \mu \varepsilon$ та крітท́pıa тоu àp θ роu 19, $\omega \varsigma$:

 хعроо́vクоо тои 'AӨ ω.

6．ANAAYTIKH ПEPIГРАФН ГXEAIA乏MOY TOY EPГOY

 бu入入єктท่pio aүшүó．

 бuМІкктท்pıo аүшүó．

 аүшүó

 ठıáӨzoņ.
 513223,75 ка। $Y=4461158,25$.

 evepyoú ยпıфáveıaç $2500 \mathrm{~m}^{2}$.

入upát $\omega \mathrm{v}$.

 ठ̈аперато́тŋта UVT 70\%/cm.

Пivaкас 6．1．Парохદ́ц $\lambda \cup \mu a ́ т \omega v ~$

ПAPAMETPOE		ПAPOYミA ФAEH	ФAEH EXEAIAEMOY
	кलт．	250，00	330，00
	$\mathrm{m}^{3} / \mathrm{d}$	37，50	49，50
акаӨ́а́ртшv	$\mathrm{m}^{3} / \mathrm{d}$	56，25	74，25
	$\mathrm{m}^{3} / \mathrm{h}$	2，34	3，09
	$\mathrm{m}^{3} / \mathrm{h}$	8，42	11，12
Eıठıко̇ Puпavtıкȯ ¢ортio BOD_{5}	gr／Kar／d	60，00	60，00
Eiठıко̇ Punavtıкó ¢ортio TSS	gr／kat	70，00	70，00
Eıठıкó Puпavtıкó 甲ортіо TN	gr／kat／d	10，00	10，00
Eıठıко̇ Puпavtıkó ¢ортіо TP	gr／kat／d	2，00	2，00
Фортіо BOD ${ }_{5}$ охहठІІбน๐บ่	kg／d	15，00	19，80
Фортіо TSS охहסıабนои่	kg／d	17，50	23，10
Фортіо TN охEठıабиои่	kg／d	2，50	3，30
	kg／d	0，75	0，99

 ка入入ıєрүєıш்v

Парáцвтроя	KYA 5673/400/97	KYA 145116 - Hiv. 2
Апобદ̇ктทऽ	($\mu \eta$ عuaioӨ η тоऽ, апоб̈غ்ктПऽ)	
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{l})$	≤ 25	
COD (mg/l)	≤ 125	
Aı ω poúusva otepeà (mg/l)	≤ 35	
Өо入о́тпTa (NTU)		
Eschericia Coli (E.coli) (EC/100 ml)	*	

H тع
 tou Ay. 'Opouc (દiठоৎ ठıáӨعoņ D8).

 50 Hz .

 єпє६६pyaciac.

－ミúoтпиa үعiшons
－Еүката́бтаоп аvтıкєраиvıкウ்я проотабіая
－ПЕрі甲раگ̆п каı Өúpa عıбóठ̄оu

6．3．Enıuغ́pou̧ ह́pүa

 $\mu \eta$ Хavooтáбio．
 2，70 ．

 m.

 $\varepsilon \vee т \dot{\mu} \mu \mathrm{v}$.

 єпічávधıac,

 пєрıттрєфо́ $\mu \varepsilon$ vouc ßıодоүıкойя ठїкоиц,

 $\lambda u ́ \mu a t a ~ Ө a ~ \varepsilon i v a ı ~ a n o ́ ~ a v o \xi \varepsilon i ठ \omega т о ~ x a ́ \lambda u ß a . ~$

- Poùzцáv
- Poठ̇غ̇ฝEऽ
- \triangle акти́入ıo аоралді́as

 Titley 2014).

 $8 \mathrm{~m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$.

 прокаӨiznons

6.3.4.4 Anohúnavom

 ठıаперато́тŋта UVT 70\%/cm.

 нікрооруаvібиш́v.

 парако入ои́Өпоך каı $\lambda \varepsilon ı т о и р ү і а ~ \mu \varepsilon ~ п р \omega т о ́ к о \lambda \lambda а ~ \varepsilon п ı к о ו v \omega v i a c, ~ C A N, ~ E t h e r n e t, ~ U S B, ~ S e r i a l ~(M o d b u s, ~$ TCP／IP，CANopen）．

ката入аиßávetaı

6．4．2 Enıцモ̇pous техvıкá غ̇pya

Ta véa غ̇pya перı入außávouv：

 киклофоріая．

Фáon B＇：Evkatóotaon av $\omega \mathrm{y} \omega \mathrm{v}$－ －ppeati $\omega \mathrm{v}$ ， $\mathrm{k} \lambda$ п

 вүкıß

ठ̈ктu่ou.

Фáon 「': Enavenix ω on opuy $\mu a ́ t \omega v$ avcuvóv

6.4.3 YпоотПрıктıкєৎ вүкатаота́бвıৎ̧ катаокєиท่ৎ

 єкпоvŋӨєi.

 IKAO．

6．4．4 Avayкаía uגıкá катаóкєuท̀я

6．4．5 Екроє̧́ uypळ்v anoß入ク̇тшv

 yivovtaı عvтóc тои єрүота६ıакой хढ்pou．

6．4．6 ПАعováそ̧ovta uגıкá

 uпо入оүіZоvтаı бє пєріпоu $813 \mathrm{~m}^{3}$ ．

 घiठouc epyaテia．

 ठıєن́Өuvon avè $\mu \omega \mathrm{v}$ ）．

－ 1 Mпहтоvı́ра
－ 1 MпХаvіко́s єкбкарєаৎ

Mıxảvๆua	LWa dBA	Leq／LWa	Eủvodo				Аıápкııа			dB（A）
			$\begin{array}{\|c} \text { Res.Laeq } \\ \text { dBA } \end{array}$	Dist． Ratio	Equiv． On－time	Equiv． On－time	Active dur．	Corr． On－time	PNi	
Eкокаче́ac 200kW	109	Lwa	61.00	4.00	0.32	0.32	8	21．6\％	0.02	54
Фортпуо்－ $\mu п \varepsilon т о v i \varepsilon ̇ р a ~$	106	Lwa	58.00	4.00	0.32	0.32	8	21．6\％	0.01	51
Avaтpenȯ μ हvo 25Tv 120kw	108	Lwa	60.00	4.00	0.32	0.32	8	21．6\％	0.02	53

Хроviкฑ் перioঠoc: 8h
Combined (Leq): 59 dBA

 $\eta \lambda \varepsilon к т \rho о п а р а ү \omega ү o ́ ~ \zeta \varepsilon u ́ y o \varsigma ~ T \eta \varsigma ~ E E \Lambda . ~$

6.5. Фáवך Аعıтоupviaৎ

 парои́бая $\mu \varepsilon \lambda$ غ́тп̧.

Xoñon evépyeias

IINAKA亡 KATANAA $\Omega \Sigma H \Sigma ~ H A E K T P I K H \Sigma ~ E N E P T E I A \Sigma ~ K A I ~ A E I T O Y P I I K O ~ K O \Sigma T O \Sigma ~$ E．E．A．lepác Movis Zoypáqoo							
A／A		Tegáx̧á бe גetrovpyíe	Eywarsartipion Iogúg 斤тя．	Аторреро́яауп Iogiẹ／ten．	\qquad «хоррочориет IGどく	Xpóvos detrovepiac	watavỉue or ехерраамя
	Iериурароџ	Te上．	kW	kW	kW	h／d	$\mathrm{kWh} / \mathrm{d}$
1	Ниод．Bubuíón	1	0，55	0，44	0.44	12	5，3
2	Kivๆтipas терıтрочй； Buosiokion	1	1.10	0，88	0，88	24	21，1
3	Avtiia nisuopg Proöionov	1	0，55	0，44	0，44	2	0，9
4		1	0，18	0，14	0，14	2	0，3
5		1	0，90	0.72	0，72	2	1，4
6	Avciia ouparyibioev	1	0，90	0，72	0，72	2	1，4
7		1	0，44	0，35	0,35	12	4，2
8	Аитонаппоро́s	1	0，50	0，50	0.50	24	12，0
9	Фxomopós	1	0，25	0.25	0，25	12	3，0
	SYNOAO						50

Xorion xпиікळ́v

6．5．3 Екроモ́¢ uүрஸ́v anoßגク̇т由v

 апоб́кккт（параквіцєvo рغ́ца）．

Кшбıко̧́ E．K．A．：19．08．05

 عival ol aкó入ouӨ६̧:

Перıүрафй	Xpóvos גеıтоupyias (h/Ėтос)							
		co	NOx	SO_{2}	voc	PM10	PM2.5	CO_{2}
$\begin{gathered} H / Z \\ \text { (IOXúc } 25 \\ \text { kVA) } \end{gathered}$	20	1,39	3,68	0,50	0,29	0,27	0,27	359,25

Eпıп

 проц avaкu்к久шon．

 anó tqv Iepà Movì．

6．7．Ектактє̧ бuvӨர்кє̧ каı кívঠ̄иvoı yıa то перıßáג入оv

 $\pi \lambda \dot{\rho} \rho \omega$ ，

 апаптधाта．

- Aотохіа тпऽ $\lambda \varepsilon$ -

 єпо́ $\mu \varepsilon ข \% ~ к \varepsilon \varphi a ̀ \lambda a ı o . ~$

7. ENAMAKTIKE $\boldsymbol{\Lambda} Y \Sigma E I \Sigma$

- η aпóoтaõ anó та u甲ıбтáuદva ктipıa
- η ठоцர் тои обıкои́ ঠıкти̉оu

 aпо́ Tп Өżon TПऽ E.E.^.

7．1．3．1 「EVIKÓ

1．ミuotǹ $\mu a t a$ Evepyoú I λ úos，
i．$\Sigma u \mu \beta$ атıкó бúбтпиа

4．Періотрєфо́ивvoı ßıо入оүıкої ठітко৷

1．ミuotinuara Bpaঠziaç Eфариоүท́s

3．ミuotíuara Eпı甲aveıakí̧ Pońs
4．乏иотர்иата TEXvๆтஸ்v Yүроßıо்топ ωv

7．1．3．2 ミúaтпиa eveproú ılúos

ミuयßaтікó oúotnua evepyoú i入úos

 пои ovoнáそоvтаı ßıокрокіঠ̈єц．

 апо́ то би́бтпиа．

Пivaкас 7.1. Характпрıотıкд́ бuцßатıкой биотйцатос Е.I.

Anopákpuvón BOD_{5} (\%)	Opyavikí фо́ртїп (KgBOD ${ }_{5} / \mathrm{kg}$ ı λ u̇oç $\eta \mu \varepsilon \dot{\varepsilon} \mathrm{p}$)		Aváuıкто uypó MLSS (mg/lt)	Xpóvos Парароvìs (hr)	Avakuклофоріа ıגủos	Xpóvos Параиогі̆я ıAủos
85-95	0.2-0.4	0.3-0.6	1500-3000	4-8	0.25-0.50	5-15

 Xанплой чортіои.

 BOD_{5} (85-95\%).

 inủoc,

ミúotnua naparetauغ̇vou aعpıouoú

 паратвтаиغ̇vou aعpıбцоủ．

Aпоца́криvö BOD_{5}（\％）	Opyaviкп่ фо́ртіоп （KgBOD ${ }_{5} / \mathrm{kg}$ เイúoç $\eta \mu$ ह́pa）		$\begin{aligned} & \text { Aváuıктo } \\ & \text { Uypó } \\ & \text { MLSS } \\ & \text { (mg/It) } \end{aligned}$	Xpóvos Параиогท่я （hr）	Avaкиклочоріа IAúos	Xpóvos Параиоvìs ıไủos （ $п \mu \varepsilon \dot{\rho} \rho \varepsilon \varsigma)$
85－95	0．05－0．15	0．16－0．4	3000－6000	18－36	0．95－1．50	20－30

 ท் нєбаіас к入інакас．

\checkmark Nाтропоіпоп $\lambda u \mu a ́ t \omega v$.
\checkmark Aп入оúбтधро aпó то тuпıкó đúotnua evepyoú ı入ủoç．
 тои $\mu \varepsilon$ үà̀ou Xpóvou aعpıø

 паратвтанв́vou aعрıศนои่．

 каı anouákpuvon tou a்̧̧̧тои.

 tпद vitponoinons.

 ı \úos.

 прєціас отоv пuӨرદ̇va.

 ı λ ùoc.

 aпонáкри

$\Theta c=300 / T \eta \mu \varepsilon \rho$.

 náxuvan．

Anouákpuvơn BOD_{5}（\％）			Aváuıктo uypo MLSS （mg／It）	Xpóvos Параиоvìs （hr）	Avaкик入офоріа ı入úos，	Xpóvos Параиогท்я ıAủos （ $\eta \mu \varepsilon \dot{\rho} \varepsilon \varsigma$ ）
85－95	0．05－0．30	0．08－0．24	1500－5000	12－50	－	－

 аитонатоповітв．
 фортішv．

7．1．3．3 £úoтnua alwpoúusvou Biohovikoú pilu（MBBR－Moving Bed Bio Reactor）

 воочі $\lambda \mu$.

 (Rusten et al., "Upgrading to nitrogen removal with KMT moving bed biofilm process", Water Science

 Өгриократіа ото عйрос， $10-20^{\circ} \mathrm{C}$ ．

Anouákpuvön BOD 5 （\％）	Opyavikì фóption （KgBOD $_{5} / \mathrm{kg}$ เ\u̇oç $\eta \mu \varepsilon ̇ p a)$		$\begin{gathered} \text { Aváuıкто } \\ \text { UYpó } \\ \text { MLSS } \\ \text { (mg/lt) } \end{gathered}$	Xpóvos Параиогท்я （hr）	Avaкиклофоріа tAúos，	Xpóvos Пlapapovís ıגủos （ $п \mu \varepsilon \dot{\rho} \varepsilon \varsigma$ ）
85－97	0，05－0，3	－	2－10．000	0．25－1．5	0．95－1．50	20－30

\checkmark Y $\Psi \eta \lambda \dot{~ a n o ́ \delta o o n ~ \varepsilon п \varepsilon \xi ६ p ү a \sigma i a c . ~}$

 ı入úos عival та кàтшӨı：

 aпоб̄отाкá $\mu \varepsilon$ бuYкغ̇vTp

 $\mu غ \dot{\gamma} \varepsilon Ө \circ \mathrm{~s}$ ．

 $\mu \varepsilon$ avt 1 Ioctáoo．

 ouvexoús autoú kaӨapıø

Пара́иятроя	Tıи்	Аıгруабia nou anaırвitaı
Өо入о́тпта	＜1 NTU	
Апоגúnaovn	＞LRV 5	
BOD	＜ $5 \mathrm{mg} /$／	
A Аццшvaка́ ［ NH_{4} ］	＜ $1 \mathrm{mg} / \mathrm{l}$	
ОХıко̇ àzんто	＜ $5 \mathrm{mg} / \mathrm{l}$	
Oגıќ் фш்оророя	＜ $1 \mathrm{mg} / 1$	Avaعро́ßıa апоршбф́́р ω on＋Aпоviтропоinon＋

Aпоца́криvón BOD_{5} (\%)	Opyaviкท่ фо́ртіт (KgBOD ${ }_{5} / \mathrm{kg}$ เ λ úoç $\eta \mu \varepsilon \dot{\varepsilon} p a)$		Aváuıктo uypo MLSS ($\mathrm{mg} / \mathrm{It}$)	Xpóvos Параиогท்s (hr)	Avaкuклочоріа ıAÚos,	Xpóvos Парацогท் inúos ($\eta \mu \varepsilon \dot{\rho} \varepsilon \varsigma$)
95-99	0,02-0,06	0,2-0,4	5-15.000	6-30	3-5	20-50

тПऽ عvepyoủ ı入úoc，

 $\varepsilon \mathrm{\Sigma}$ ธ่ $\mu \mathrm{\omega}$ ．

 m^{2} عпіфàvョiaç．

 нккрウ่.

$\triangle \varepsilon \cup т \varepsilon \rho о \beta \dot{\theta} \boldsymbol{\mu}$ о	$\Delta \varepsilon \cup т \varepsilon \rho о \beta \dot{\theta} \theta \mu ı \rho \mu$ тачто́хроип vıтропоіпоך	$\Delta \varepsilon \cup \tau \varepsilon \rho о \beta a ́ \theta \mu ı о \mu \varepsilon$ virропоіпоп $\sigma \varepsilon$

Үбраилıк่ фо́ртоп $\left(m^{3} / m^{2} d\right)$	0．08－0．16	0．03－0．08	0．04－0．1
－Kg SBOD $/ m^{\prime} m^{3} d$	0．003－0．01	0．002－0．007	0．0005－0．001
－ Kg TBOD ${ }_{5} / \mathrm{m}^{3} d$	0．01－0．017	0．007－0．015	0．001－0．003
прш́то бтд்бо			
－Kg SBODs／m $/{ }^{3} d$	0．02－0．03	0．02－0．03	
－Kg TBOD $/ / m^{3} d$	0．04－0．06	0．04－0．06	
Фо́pтібп apرuvias（Kg SBODs／m $/ \mathrm{m}^{3}$ d）		0．0007－0．0015	0．001－0．002
	0．7－1．5	1．5－4	1．2－2．9
BODs EE¢OठOU（mg／t）	15－30	7－15	7－15
A $\mu \mu \omega v i a \operatorname{E\xi } \dot{\delta} \bar{\delta} \circ u$（ $\mathrm{mg} / \mathrm{lt}$ ）		＜2	1－2

\checkmark Ап入ótпта גєாтоирүіас，
\checkmark Ханп入ó лвıтоирүіко́ ко́ттос．

\checkmark பuvaróтпта viтропоinons，

 opyaviкoú мортіои．

 ठїк $\omega \mathrm{v}$ ．
х Про́ßллиа об $\mu \dot{\omega}$ ．
 oxeठ̋ıaवuou่．

7．1．4 Фuơкá ouotìjuata

7.1.4.1

 є甲арноуп்я.

 ßабікоús тúnouc:

 тоछાкой.

	Aрঠвvनウร	Δ vij $\theta \eta \sigma \square$
	$\mu \varepsilon ́ \theta o \delta o l$	$\mu \varepsilon ́ \theta o \delta o t$
	0．60－2．00	1．70－6．00
$\left(\sigma \tau \rho \cdot / 10^{3} m^{3} d\right)$	170－550	56－200
	Ал๙ıгغí\％	A $\pi \alpha$ тEit α

 B áotnons．

\checkmark H uчŋ入ウ́ anoцákpuvon opyaviкоú 甲ортiou．
 ка入入ıвंpyઘıৎ，

\checkmark Гovı䒑onoinon घס̈áqouc，

7．1．4．2 ミиoтrinata Taxeiac $\Delta ı i ́ \theta n \sigma n s ~$

 ठıако́пттетаі үіа 6－20 пиغ்реऽ．

Пара́иєтро¢		BaOuós anóठoonทs (\%)	Паратпрர்бвı¢
BOD ${ }^{\text {s }}$	4．50－18．0	86－100	
Аद弓то	0．33－4．10	10－93	Ȩaptátaı anó： －To घпinعठо проєпєछ६руасіая， －Tqv ava入oyia BOD／N －Tov кúкגо גєाтoupyias －To иठ́раu入ıко́ 甲ортіо
ФНб¢ópos，	0．11－1．34	29－99	ठıаठроипия

Ко入оßактпровıо́ற்	2－6 ¢орદ̇ऽ	H anoцà́крuvan охєтіद̨тaı：

 ßраб̈віас єфариоүйя．

7．1．4．3 ミuotrinata Eni甲aveiaknis Poŕs

غ̇xદા：

 отعрعஸ்v，a入入á каı тоu a்̧̧тоu．
 kal：

7．1．4．4 TEスиптоі Yyооßıо́топо৷

 （фutà tou yévouç Typha）．

 фибікоі uүроßıо́топо．

 Өрепттка́ каı фитофа́риака．

 T $\omega \mathrm{V}$ рún $\omega \mathrm{V}$ ．

 $\mu \varepsilon$ тіৎ μ орфє́ц аद்̆тои.

Yypoßıóтопоі धпіраveıaкй́ pońc（FWS）

 ß入áotпonc．

 отєрळंv.

Yypoßıótonol катако́puчpnc pońs (SWS)

 иүровіо்топшv．
 opyaviкoú 甲ортіоu

	Movóôr¢	इvírıй FWS	Ev́otnua SFS
	пиє́р¢¢	5－14	5－14
Bánoç vepovo	m	0．1－0．5	0．3－0．8
Opyavııí ¢óptiol	kgBOD／бrp．${ }^{\text {d }}$	8	8
	$\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}$	0．01－0．06	0．01－0．06
	$\sigma \tau p / \mathrm{m}^{3} \mathrm{~d}$	0．02－0．14	0．02－0．14
	－	2：1－10：1	4
＇Eheyरoç kouvovatóv	－	Aสоuteitau	$\Delta \varepsilon v$ arauteitou
 $\beta \lambda \alpha \sigma t \eta \sigma \xi$	yr	3－5	1－2

 ठІa入u

3．єпацчотвріそоvта avaعро́ßıa．

 лєाтоupyウ́oouv $\mu \varepsilon$ uчП入á opyaviкá фортia．

 tóvous，
 घпıпतह́ovta 甲utá．

Пара́цєтроІ				
	B＇$^{\prime}$ á̇ $\boldsymbol{\theta} \boldsymbol{\prime}$ агро́ßıo	B＇$^{\prime}$ д́̇ $\theta \mu ı$ aยрı̧̆о́यєvo	Аеро́ßıая Апона́криvапия （ $x \omega \rho i \varsigma$ аврıоио́）	इиотர்иата $\mu \varepsilon$ 甲итá тп¢ оוкоүย̇veıa̧ Lemnaceae
Тотıкф́ критŋ́pla бхељıабиои́				
Anaimon Проєпе६врүааіая	Eoxápoan ர் KäiZ̧̃on	Eoxáp ω on í Kaөiそnのп		Ekpor̀ anȯ єпаи甲отєріそоибєऽ入iцveऽ，
$\begin{aligned} & \text { BOD } \text { عIOÓDOU } \\ & \text { (mg/t) } \end{aligned}$	130－180	130－180	30	40
Opyaviкí фо́ртоп（Kg BODs／OTp．d）	4．5－9．0	16．8－33．6	1．12－4．50	2．24－3．36
Bátos vepoú（m）	0．5－1．0	1．0－1．22	0．6－1．0	1．22－1．83

Xóóvos параноvís（d）	10－36	4－8	6－18	20－25
үбоаидıко́ форті́ $\left(m^{3} / m^{2} d\right)$	$\begin{gathered} 0.019- \\ 0.056 \end{gathered}$	0．094－0．28	0．037－0．15	0．056－0．084
－ериокрабіа лица́тшン（ ${ }^{\circ} \mathrm{C}$ ）	＞10	＞10	＞10	＞7
Про́үраниа оиүкоибס்́s	Eпохіакп் 	$\triangle u ̉ 0$ 甲орદ́я To μ ท̇va ह̇ं ouvexต்c，	ムúo 甲орદ̧́ то $\mu \grave{i v a}$ ह̇ं $\omega \varsigma$ ouvex＇்̧	μ quiaia
Avauعvóusvn пою́ттта екрою́я				
$\begin{aligned} & \text { BODs } \varepsilon \text { וó்ठou } \\ & (\mathrm{mg} / \mathrm{lt}) \end{aligned}$	<20	＜15	＜10	＜30
SS（mg／t）	<20	＜15	<10	＜30
TN（mg／t）	＜15	<15	<5	＜15
TP（mg／t）	<6	＜1－6	＜2－5	＜6

\checkmark То ханпло́ ко́отоц катабквийя．
\checkmark Tо хацп入̀́ 入єітоирүіко́ ко́бтоц．

7．1．4．6 TEXVПTÉS Míuvec（Мíuvec इTaOEponoinonc）

 тои апо́ß λ дтои отп $\lambda i \mu v \eta$.

 Kaı TIÇ aعpı̧̧ónغvec．

\checkmark Tо ханŋ入ó 入вıтоирүіко́ ко́отоऽ，

7．1．5．1 ГعปIKف́

 апоठモ̇ктєऽ）

 каı $\varphi \omega \sigma$ о́рои．

Enavaxpnoıuonoinon via àpठをuon

 проб̈ıаурафш்v тףఢ KYA 5673／400／1997．

 про́бßaon．

 $\mu \varepsilon \mu \varepsilon \mu \beta$ рávєऽ）каı ano入ú uavoŋ．

 апоррофптікой β о́ θ рои.

вछॄта́бтŋкаи

 каӨळ்с:

 $\lambda \cup \mu a ่ т \omega v$.

votioōutiká tnc I. Movnic (ENAN. OEEH 1).

ミuиßatiká ouotn่uata evepvoú ìúos \& napaterauèvou aعpiouoú

 عпıßápuvon.

- тпऽ -

 عпıßápuvon.

ミúornug aıwpoúuzvou Bıo入oyikoú piגu（MBBR－Moving Bed Bio Reactor）

 Reactor），入óvш：

 عпıßápuvō．

 $\lambda o ́ y \omega:$

 हva入Лактıка́ биотйиата．

 عпıßápuvon．

－$\varepsilon \mu \varphi a ́ v i o n ̧ ~ п р о ß \lambda \eta \mu a ̀ т \omega v ~ o \sigma \mu \omega ் v, ~ \varepsilon v т о ́ \mu \omega v . ~$

ミuotńuata عпı甲aveıakńs pońs

 tous．

－Еи甲ávioņ проßлпиáт $\omega \mathrm{v}$ об $\mu \dot{\omega} \mathrm{v}$ ，हvто́ $\mu \omega \mathrm{v}$ ．

 tous．

TExvntéc λ iuves ota日eponoingns

 tous．

 отŋマ перıох＇்．
 то хро́vo）
 رıкро́ßıa тшv 入u $\mu a ́ t \omega v$ ．

 عוбعрхо்
－МЕүá入п апло́тпта ото хеıрıбио́．

 そんウ்я，к．入．п．）．

[^1]

 бораотпріоттттє,
入єкàvๆ.
 uठ́á ω v

 uппргбís,

 охЕтікウ่ ठıаб̈кабіа

 avєп६६غंрүаотшv $\lambda u \mu a \dot{T} \omega \mathrm{v}$.

 E1ß/221/65.

ото параквіuعvo ре́ua.

 пароибıáद̨ı ó

8．YФIइTAMENH KATA乏TA乏H ПEPIBAMMONTO乏

 $\mu \varepsilon ~ T \eta \vee ~ Y A ~ 5980 / 16-10-1965 ~-~ Ф Е K ~ 714 / B / 29-10-1965 . ~$.

 घıкóva．

8．1．2 ミпиعıако́ غ̇рүo

8．1．3 Kaтnүopia épyou

8．1．4 Проотатвио́иєvŋ періохй

8．1．5 Үүротопикй перıохй

 tou $A \theta \omega$ ．

8．2．КДıнатодоүıка́ каı 乃ıокौıиатıка́ характпрıотıка́

avépxยтaı $\sigma \varepsilon 16-17^{\circ} \mathrm{C}$.

$\begin{array}{\|l\|} \hline \text { Періобоя } \\ \text { 1978-2004 } \\ \hline \end{array}$	Xapaктпріотікळ்v			
Mrivas	Өгриокрабіа (${ }^{\circ} \mathrm{C}$)	'Үшоя Bpoxńs	ミхєтікท่ uypacia aÉpos	
Iavouápıos	2,6	47	85	21
Феßpouápıos	3,4	55	83	21
Ма́pтіоऽ	6,5	50	80	34
Апрілıо,	11,0	51	73	51
Máıos,	16,2	50	71	59
Ioúvioç	20,9	41	66	76
Ioú入ıos,	22,9	54	65	84
Aúyouotos,	22,3	38	67	SO
इепте̇иßріоऽ	18,6	31	72	63
Окть́ßрıя	13,3	56	80	40
Noغ́цßрıоя	7,6	84	85	20

$\Delta \varepsilon к$ ¢̇цßрı¢	4,7	90	86	23
Mėon (o\ıкı̆)	12,5	649	76	568

8.3. Морчолоүıка́ каı топıо৯оүıка́ Характпрıотıка́

8.3.1 Катаүрафท่ топіои avaфорá̧

8.3.2 Eupळnaïкŋ் оủ μ ßaoŋ топiou

 проотатєن́धтаı anó autó.

 tou $A \theta \omega$.

8.3.4 Епиааткко்трта - трато்тпта топіои

 apкєтஸ்v onuavтıкஸ்v taxa.

8.4.1 Гعюגоүıка́ характтрıотіка́

 Пaoviaç, Pa: Zánๆ Пánoov, Al: Zóvq

P: Zóvin Ilivõov,

 O＾OKAINO）

 IOYPAEIKO）

 TPIA $\triangle I K O$ ）

11．Ец甲аviбвı̧ каı когтд́б μ ата Cr каı
12．Мвта入入віа．

8．4．2 Eठачолоүıка́ Характпрıотıка́

 ото＇Аүıо＇Оро̧（I．Г．M．E．1978，Nта́甲ク̧ к．á 1999）．

IZnuатоүعvท่ петрळ่иата

＇EDapos

 K入．1：50．000）عival of $\varepsilon \xi \dagger ֹ \zeta$ ：

 1:50.000)

8.4.3 Тєктоиіка́ Xарактпріотıка́

 oxદ̇ఠך:

$$
A=\mathbf{a} \cdot \mathbf{g}
$$

Onou:
g: عпıтáxuvon ßapúrqтaç кaı

NEO $~ X A P T H \Sigma ~ \Sigma E I \Sigma M I K H \Sigma ~ E \cap I K I N \triangle Y N O T H T A \Sigma ~$

8.5. Фuสıкó перıßád\ov

8.5.1 Гeviká otoryeia

$X \lambda \omega$ рiбの

AпЕı入оúueva kai пpootateuóueva عiön

 （Мпацпа入ふ̇vaç 1998）．

\mathbf{a} / \mathbf{a}		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii			V	
4	Asperula aristata ssp．thessala		X		

5	Astragalus thracicus ssp．monochorum		X		
6	Atropa belladona	Γ			A Δ
7	Aubrieta erubescens			R	
8	Beta nana		X	R	
9	Campanula lavrensis		X		
10	Centaurea pannosa		X		A
11	Centaurea peucedanifolia	A			A
12	Cephalanthera longifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		A Δ
15	Fritillaria euboeica		X	R	
16	Fritillaria graeca		X		A Δ
17	Helichrysum sibthorpii			V	
18	Hypericum athoum		X		
19	Isatis tinctoria ssp．athoa		X		A \triangle
20	Limodorum abortivum	B			A
21	Linum leucanthum		X		
22	Linum olympicum ssp．athoum		X		
23	Neotinea maculata	B			
24	Neottia nidus－avis	B			
25	Polygonum icaricum		X		A
26	Silene echinosperma		X		
27	Silene multicaulis ssp．genistifolia		X		
28	Silene orphanidis	A		V	
29	Viola athois		X		A \triangle

 Проєठрıко́ б̈а̀таүна 67／80．

2．Evঠ̄пиıко́．NaI：X．
 عiठ̄oc［（V）］，A5：इnávio عiठ̄oc（R）．
 K．à．（1998）

Пaviठo

 K．Поїраて̧їŋ（NTá甲クऽ 1992a）．

 пропүоúцعvŋ пара́үрачо.

 EIIIKA XAPAKTHPI $\Sigma T I K A: ~ E I A H ~ T H \Sigma ~ П P O \Sigma T A T E Y O M E N H \Sigma ~ П E P I O X H \Sigma-G R ~ 1270003 ~ E Z \triangle ~$ XEPEONHEO AOS

- $\Delta ı a n \lambda a ́ \sigma \varepsilon ı c ̧ ~ А р к \varepsilon u ̇ Ө \omega v ~ 5210 ~$
－Єauvف̇vec $\mu \varepsilon$ Laurus nobilis 5230

－Фpúyava Sarcopoterium spinosum 5420
－AбßeбтоÚxoı a入пıкоi $\lambda \varepsilon ı \mu \omega ் v e \varsigma ~ 6170 ~$

－Yполеıинатіка́ а入入оußıaкá סóón（Alnion glutinoso－incanae）91EO

－EMクそviká ठáon o६ıác $\mu \varepsilon$ Abies borisii－regis 92701 C C B C
－Δ áon o६ıá $\mu \varepsilon$ Quercus frainetto 92805 B B A A

－$\Delta a ́ o n n ~ \mu \varepsilon$ Quercus ilex 934025 A B A B
－Δ áon $\mu \varepsilon$ Quercus macrolepis 9350
 Pinus mugo kaı Pinus leucodermis 7 B C B B

（аvа甲ора́ отпр парака́ть 入ітта）：

Eiön Bגáotnons

Abies borisii－regis（Макะס̄оvıкó ह่̇＾ато）
Abies cephalonica
Acinos alpinus nomismophyllus

Aethionema orbiculatum
Allium guttatum sardoum
Allium moschatum
Allium chamaespathum
Alyssoides utriculata
Amelanchier ovalis ovalis（A $\mu \varepsilon \backslash a ̉ v \chi ı \varepsilon p ~ т о ~ \omega о \varepsilon ı ठ ́ \varepsilon ́ \varsigma) ~(~) ~$
Anthemis sibthorpii
Anthyllis montana jacquinii
Anthyllis vulneraria pulchella
Arabis brvoides
Arctostaphylos uva-ursi (Арктоотáqu入ос)
Arenaria biflora
Asperula aristata nestia
Asperula suberosa
Astragalus thracicus monachorum
Atropa bella-dorma
Aubrieta erubescens
Aurinia corymbosa
Beta nana
Berberis cretica (Bepßepis η крптікп่)
Bromus cappadocicus cappadocicus
Buxus sempervirens (Пuद̆óc)
Calamintha hirta
Campanula albanica sancta
Campanula chalcidica
Campanula lavrensis
Campanula orphanidea
Centaurea athoa athoa
Centaurea chalcidicaea
Centaurea huljakii
Centaurea pannosa
Centaurea peucedanifolia
Cephalaria flava flava
Cephalanthera longifolia
Cephalanthera damasonium
Cerastium banaticum speciosum

Colchicum doerfleri
Convallaria maialis
Coronilla varia
Corydalis integra
Crepis athoa
Cruciata glabra
Cruciata pedemontana
Cyclamen graecum graecum
Cyclamen persicum
Danthonia alpina
Delphinium fissum
Dianthus gracilis gracilis
Dianthus pinifolius pinifolius
Dianthus stefanoffii
Digitalis leucophaea
Erysimum calycinum
Erysimum drenowskii
Euphorbia amygdaloides amygdaloides
Euphorbia deflexa
Festucopsis sancta
Fritillaria euboeica
Fritillaria graeca
Fumana procumbens (Фoupáva η ह́pnouđa)
Gagea bohemica
Gagea pusilla
Gagea villosa
Galium asparagifolium
Galium demissum
Galium incanum incanum
Galium insularae
Galium pycnotrichum
Genista lydia (Гвviota Tņ ^uठ̄iac)
Geocarvum capillifolium
Globularia bisnagarica
Helianthemum nitidum (H入ıávӨع μ)
Helichrysum sibthorpii
Heracleum humile (Hрák $\lambda \varepsilon ı$ то ха \quad п λ ó)
Heracleum sphondylium ternatum
Hypericum athoum
Hypericum cerastoides
Hypericum montbretii
Hypericum rumeliacum rumeliacum
Hypericum vesiculosum
Isatis tinctoria athoa
Juniperus communis hemisphaerica（Bouvóк\＆ঠ̄о то пиıбфаıрıко́）
Juniperus foetidissima（Bouvoкuппа́pıбסo）
Linum elegans
Linum olvmpicum athoum
Matthiola fruticulosa valesiaca
Melica nutans
Neotinea maculata
Neottia nidus－avis Onosma paradoxum
Qphioglossum vulgatum
Orobanche purpurea
Qrthilia secunda
Paeonia peregrina
Platanthera bifolia
Platanthera chlorantha
Phyllitis scolopendrium
Pimpinella tragium polyclada
Pinus brutia（Tpaxzia пعúkn）
Pinus nigra pallasiana（Аvaто入ıкò μ аиро́пєико）
Poa compressa
Poa hybrida
Poa thessala
Polygala nicaeensis mediterranea
Potentilla speciosa
Pterocephalus perrenis perrenis
Rhamnus saxatilis prunifolius（Pá $\mu v o \varsigma$ o п пpouvó φ U λ 人ос）
Polvgonum icaricum
Rosa villosa（AvpıotoıavtaФu入入ıá η тpıX（Штí）
Satureia parnassica athoa
Saxifraga juniperifolia sancta
Saxifraga sempervivum
Scorzonera cana
Sedum cepaea
Sedum grisebachii grisebachii
Sedum reflexum
Sideritis perfoliata athoa
Silene compacta
Silene flavescens thessalonica
Silene multicaulis genistifolia
Silene orphanidis
Silene vulgaris prostrata
Sorbus aria cretica（Крптікウ் aonиооорঠ̄á）
Sorbus aucuparia aucuparia（Aypıooopßıá）
Sorbus chamaemespilus（Xaцaıц்́пп।入оৎ）
Sorbus umbellata（Мıкрர் aơךноборб̄ı́）
Stachvs leucoglossa
Taxus baccata（＇Iтанос）
Tephroseris integrifolia aucheri
Teucrium divaricatum athoum
Thymus praecox iankae
Thymus thracicus
Vaccinium mvitillus（Baккivio o μ úptiג入оc）
Veronica barrelieri
Valeriana alliariifolia
Veronica chamaedrys chamaedrys
Veronica officinalis
Vicia cracca stenophylla
Viola arvensis
Viola athois
Viola delphinantha
Viola orphanidis orphanidis
Viola reichenbachiana
Viola sieheana
Eión Onגaotikóv
Canis lupus（＾úkoc）
Sus scrofa（Aypioyoúpouvo）
Mustela nivalis
Felis silvestris

Capreolus capreolus

Eiōn AucpıBiwv

Bombina variegata

Triturus karelinii

Triturus alpestris

Eiön عのпยтஸ்v

Podarcis muralis

Lacerta viridis

Testudo graeca
Testudo hermanni

Eiön opvıOonavióas

Accipiter brevipes（ （aîvi）
Accipiter nisus nisus（Tøıx入оүغ́рако）
Apus melba melba（ Σ кєтוapvác）
Aquila chrysaetos chrysaetos（Xpuoartóc）
Bubo bubo bubo（Mnoúqoc）
Buteo buteo buteo（Ггракiva）
Caprimulgus europaeus（Гиठ̄ంßuそ̧àxтра）
Ciconia nigra（Maupone入apyóc）
Circaetus gallicus（Фıర̄aદтóc）
Columba livia livia（Aypıoперiotepo）
Corvus corax corax（Кópaкас）
Delichon urbica urbica（ \sum nıroxe $\left.\lambda i \bar{\delta} o v o\right)$
Emberiza cirlus（ $\Sigma 1 \mathrm{p} \lambda$ otoix λ ovo）
Erithacus rubecula rubecula（Koкkivo入aipnc）
Falco eleonorae（Mauponहтрітп¢）
Fringilla coelebs coelebs（ \sum nivos）
Garrulus glandarius atricapillus（Kiara μ аupoкغ̇чa入 η ）
Hieraaetus fasciatus（ Σ пıZ̧atтós）
Lullula arborea arborea（ $\Delta \varepsilon v \tau p o \sigma \pi a p r i \theta \rho a)$

Tetrao urogallus（Aypıokoupvós）

92/43/EOK

1150 Пара́ктı६я, $\lambda ı \mu v o Ө$ à $\lambda a \sigma \sigma \varepsilon \varsigma ~-~ O X I ~$

2190 Yүрદ́ऽ коı入óтпт
2220 Oivec $\mu \varepsilon$ Euphorbia terracina - OXI

6420 Мعбоүعıaкoi $\lambda \varepsilon ı \mu \dot{v} \varepsilon \varsigma ~ u \varphi \eta \lambda \omega ் v ~ \chi o ́ p т \omega v ~ к a ı ~ ß o u ̉ p \lambda \omega v$. (Molinio - Holoschoenion) - OXI
92AO Σ Toє́ $\mu \varepsilon$ Salix alba кaı Populus alba - OXI

 m.

 ६u入oкápßouva.

 túnou Quercus frainetto 9280 . AvatoAıká - votıoavatoAıká kaı oe anóotaonn uıкрótepn twv
 91E0 (ANdoußıaká ठáon $\mu \varepsilon$ Alnus glutinosa kaı Fraxinus excelsior). $\Sigma \varepsilon$ aктiva перinou

8.5.3.1 Xapaктńpas tnc ह́ктаопя тои ह́pvou

 паviठ̈as $\eta \times \lambda \omega$ piठaç.

 каı tov плクӨибиó бг аквраı́ттта．

8．6．1 Хшрота६̆ко்я охЕб̈ıवоио́я

 uпа́рхоuv тонвіद параүшүıко்тптас．

 орүаvळ்vєтаı $\mu \varepsilon$ то П．$\Delta .227 / 1998$（ФЕК А＇176／28．7．1998）．Σ тп Аıоікпоп тои Ayiou＇Opouç avク́коuv

 Халкіб̈ккп̆я．

 ＇Opous eival hovaxoi．

 Movì．

8．6．2．2 Проотатєиóneva тиク́иата

 1965.

 غ̇xouv．

8．6．3 ПоАıтіотıкฑ่ кАпроvоиıа́

8．6．3．1 Apxaioloviкoí x由́pol－乙＇̈ves

 10-1965.

8.7. Коıvаvıко́ каı оıкоvоиıко́ перıßáג\оv

8.7.1 Апроүрафікп் ката́отаоך

 Ayiou Opous.

 Tıৎ Iモpé¢ Movéc.

 ठЕv катаүрá甲ovtav（Патрıvè̀nç 1997）．

8．7．2．1 Параушуікоі тонвія

$\Delta \varepsilon v$ uпápXouv параүшүікоі тонвіс，

8．7．3 ミтогугia anaoxóAŋoŋ̧

$\Delta \varepsilon v$ unápxモı отогхદia anaoxó入nons．

8．7．4 Кати́ кефа入r̀v ยıбо́ōпиа

8．8．1 Үпобооие்я $\boldsymbol{\mu \varepsilon т а ф о р ळ ் v ~}$

 ठєv uпа́рхєє ठро́ноৎ єпıкоıv ω viac，

8．9．1 YnápXoưę̧ ппүモ̧̇ púnavoŋŋ̧

8．10．Атиоофаıюıко́ перıßа́ДАоv－Поıо́тпта ав́ра

Характпрібио́я モпınย̇ठ ω v púnavoŋ̧s	$\begin{gathered} C O \\ \left(8 \omega \rho \varepsilon \varsigma, \pi \mu \varepsilon \dot{~ m g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \text { Kanvós } \\ (24 \omega \rho \varepsilon G \\ \left.T \\| \varepsilon \varepsilon_{,} \mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{SO}_{2} \\ (24 \omega \rho \varepsilon \varsigma \\ \mathrm{T} \mu \dot{\varepsilon} \mathrm{c}, \\ \left.\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{O}_{3} \\ (\omega \mathrm{i} \text { iaizc } \\ \left.\mathrm{T} \mu \dot{\varepsilon} \mathrm{c}, \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	\qquad
Ханп入à	<15	＜250	＜200	＜180	＜200
Мغ̇тpıa	$>15 \leq 20$	$>250 \leq 275$	$>200 \leq 250$	$>180 \leq 250$	$>200 \leq 350$
Y $\Psi \cap \lambda$ 入́	$>20 \leq 25$	$>275 \leq 300$	$>250 \leq 300$	$>250 \leq 360$	$>350 \leq 500$
По入ú uษŋ入à	＞25	＞300	＞300	＞360	＞500

8．10．1 Kủpıモৎ пワүモ̇¢ púncv

 ханп入ウ่я атноофаıрікйя púnavoņ．

8．11．Акочотıко́ перıßáג\оv каı доvฑ்бєıৎ

8．11．1 ППүモ̇с Өори́ßou

 λ латрєитıкє́，к．д．п．）．

перıßа̀ллоитоя

 піvaка тои ápӨpou 2 пар． 5 тои П．$\Delta .1180 / 81$（ФЕК－293 А＇）．

a／a	Перıохй（Xprjoŋ Yワ¢）	Avம்тато ópıo Өopúßou $\sigma \varepsilon$ dBA
1		70
2	Bıounxaviкó	65
3	 	55
4		50
5		45

Өópußo.

8.12. НАЕктроиаүvптіка́ пебіа

unóßa日pou

8.13. ' 'бата

¿то Аүıo Opos ठev anavtoúv потa

 λ и́цата.

8.13.2 Enıфаveıaкá úठ̄aтa

8．13．2．1 Періура甲ர் ио́роура甲ікои́ ঠікти́ои

 aпоотраүүі६६ı Tпр періохウ่．

－Үठ́рєữ
－＇Apס̄єuõ

 otףv катаvà $\lambda \omega$ ōn μ óvo．
$\Delta \varepsilon v$ uпápxદı púnavon anó проїóvта 甲uтопробтабia̧，

8．13．3 Yпóyعıa úб̄ata

 о опоіос，трофоботвітаı $\mu \varepsilon$ vєро́ апо́ тои парака́тш трєıद，тро́поиц．

 періохйя．

－Үбреишп
－＇Apঠ̄عuan

 катаvà $\lambda \omega$ ōn μ óvo．
$\Delta \varepsilon v$ unápxモı púnavoŋn aпó проїóvта фитопроотабia̧，

катабтрофผ́v

a．Аıакопй Н入єктрıкой Рعййато̧，
β ．Екठ̄ர̀ $\lambda \omega$ оп пиркаүıа́я
ү．Eпıßapпиદ̇va aпо́ß入пта

 Control And Data Acquisition or SCADA）каı ठєıүнато入n $\psi i \varepsilon \varsigma-a v a \lambda u ́ \sigma \varepsilon ı \varsigma, ~$

 норфо入оүіка́ үєш入оүіка́ характпрıттіка́ тпя．

 актіvoßo久izc．

9．EKTIMH乏H KAI AEIO＾OГH乏H ПEPIBAMAONTIKתN EПIMTREERN

9．1．МвӨобо৯оүıкє́ц апаıтர்бвıৎ

 عпıாтஸ்øع $\omega \mathrm{v}$ ．

 عпıाтஸ்ळॄ $\omega \mathrm{V}$ ：

 оиб̈́̇тعрос，
ii．ПіӨаvótпта عица́vioņ．

 unápxouv．

 'Epyou:

- Фáon Kатабквuņ̃ı,
- Фáon ^eıтoupyias,

характпрıотіка́

9.2.3 Eкпоцпе̇с̧ аєріои тои Өєриокппiou

9.2.3.1 Фа́on катаокеuम́s

 ако入ойӨ $\omega ¢$:

Eiơoç púnou	$\mathbf{C O}_{\mathbf{2}}$
$\mathbf{g} / \mathrm{HP}-\mathrm{hr}$	587,3

	CO_{2}	
	Kg／d	tn／y
$\begin{aligned} & \text { Екбкаче́ac 200kW } \\ & (286.5 \mathrm{HP}) \end{aligned}$	1346.1	40
100 kw （ 134.5 HP ）	632	19
Avaтрєпóuعvo 120kw （ 161 HP ）	756	23

 غ́pү $\omega \mathrm{v}$ ．

9．2．3．2 Фáom \हाтоupvias

	$50 \mathrm{kWh} / \eta \mu \varepsilon \dot{\varepsilon} \mathrm{pa}$
П入єктропараүшүض่	$0.855 \mathrm{~kg} / \mathrm{kWh}$
	$42.75 \mathrm{~kg} / \mathrm{d}=0.043 \mathrm{tn} / \mathrm{d}$ ウ́ $15.6 \mathrm{tn} / \mathrm{y}$

9．3．Епиптம́бвıц ота норчолоүıка́ каı топוо৯оүıка́ Характпрıотıка́

9．3．2 TопıоМоүıкє́ $\mu \varepsilon т а ß о \lambda \varepsilon ́ \varsigma ~$

характпрıотıка́

 μ ккра́ $\mu \varepsilon ү \varepsilon ̇ \theta \eta$.

 катабквиض̆ каı $\lambda \varepsilon ा т о u p ү i a ~ T \omega v ~ \varepsilon ́ p y \omega v . ~$

9．5．Епıптஸ்бعıऽ ото чибıко́ перıßádᄉоv

 $\mu п о р о и ́ v ~ v a ~ \varepsilon v т а х Ө$ оúv ap

Xл $\mathbf{\omega}$ ріба

Пavióa

 $\mu \varepsilon т а к ı v \grave{\sigma} \sigma \varepsilon \omega v$ T $\omega \mathrm{V}$ そん $\omega \omega \mathrm{v}$

9．5．2．1 Eiठıкd otoıxघía

Eiòn Bגáotnons

Eiön Onגaotıкผ่v

 вүката́oта⿱㇒冋я.

Eiön Aupißıa каı Eiön عрпетш்v

 т $\omega \mathrm{V}$ то́п $\omega \mathrm{v} \omega$ отокіа६, клп.

9.6.1.1 METOßONÉद OTIC XOÍOEIC vDS

ónюç проаvа甲є́рӨпкє（то по入ú $100 \mathrm{~m}^{2}$ ）．

9．6．1．2 Enıाтஸ்वहIS

 uүाहIvخ่s．
 тпи проотабіа тои перıßа́入лоитоऽ，

9．6．2．1 Eктіцпоп हпиптஸ்бваи

 пєрюохウ่．

9．6．3．1 Enıाтய்ஏعıs

 вүката́бта⿱ף．

9．6．3．3 EIסікगं हктiunon

9．7．3 Ożozıс モрүaơias

9．7．5 Поо́ттта そюウ்ৎ

To غ̇pүo Өa бu otnv I．M．Z ω ypáqou．

9．8．1 Enurrw்ozıら

9.8.2 Enàpкєıa

9.9.1 ПıӨavóтŋтта عvioxuoŋ̧

 каı 入оппйऽ סрабтпрıо́тптая,

9.10.1 Епıாтळ்ণョıৎ

 $100 \mathrm{mg} / \mathrm{m}^{3}$, пои каӨорі६६таı апо́ то ápӨро 2 параү. ठ тои П. Δ. 1180/81 (ФЕК 293/A/6-10-1981).

 T $\omega \mathrm{V} \mu \eta \mathrm{Xav} \eta \mu a \dot{T} \omega \mathrm{v}$ aut ω v.

9.10.2 Yпоגоүіоцós оuүкєутрळ்ซョผv

 autokivŋTt ω v.

 293／A／6－10－1981）．

 גеттоupyia tous，
 aпо́бтапп

 перıохє̧́ поu єпикратві то аотıко́ отоıхвіо．

$\mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\mathrm{N}}-10 \log _{10}\left(4 \cdot \pi \cdot \mathrm{r}^{2}\right)$
ónou：

 غ̇хоинє $\mu \varepsilon і \omega \not ั \eta$ auтои่ ката́ $6 \mathrm{~dB}(\mathrm{~A})$ ．

9．11．2 Enurrய்oェıৎ

9．12．1 Enurrí்oェıs

9．12．2 ПіӨavótŋта

$\Delta \varepsilon v$ unápxouv $\eta \lambda \varepsilon \kappa т \rho о \mu a ү v \eta т ı к a ́ ~ п \varepsilon ס ̄ i a . ~$

9．13．Епıптஸ́бعıৎ бта и́ठата

9．13．2．1 Eппाтш́бहル णто ठіктио

9．13．2．2 Eпıптஸ்のвıs סіаӨвоाио́тптая

9．13．2．3 Eктіипоп нетаßо入а́v

9．13．3 Enurtஸ்oॄıç ota unóyeıa úס̄ata

Фáon karagkeunis

Фáon λ हוтoupvias

 ठıappoív.

9.13.3.2 Aväגuon हктіuпonc हпиाтш்ozav

 $\lambda u \mu \dot{c} \pi \omega \mathrm{v}$ бع autá.

גо́үш атиХпиáтшv каı катабтрофа́v

Фàon kataokeuńs

Фágn Aeıtoupvias

1. ПPAZINH ENAEIEH avTIotoIxEi oह ӨETIKH EПITTT $\Omega \Sigma H$

EPГO ：«EPIA ETEEEPTAIIAI KAI $\triangle T A O E \Sigma H \Sigma ~ A \Sigma T I K S N ~ A Y M A T S Z N ~ \Sigma T O ~ A T T O N ~ O P O \Sigma » ~$

©AEH EPROY	ПEPIBAANONTIKO ETOIXEIO	EMIMTREEIE			BAPYTHTA				IIAPKEIA		ANAETPEUIMH		
		$\frac{\mathbf{x}}{2}$	W్凶入入	x			¢	铝	$\sum_{i=1}^{\sum}$		칭		\％
	Клıнатіка́ каı ßıюклıцатіка́ характпрıттıка		$\sqrt{ }$			$\sqrt{ }$				\checkmark	\checkmark		
	Морролоүıка́ каı топо入оүıка характпрıттıк̇		\checkmark				\checkmark			\checkmark			$\sqrt{ }$
	характпріотіка́			\checkmark									
	Фuđiкó перıßà入入оv		$\sqrt{ }$				\checkmark			$\sqrt{ }$			$\sqrt{ }$
				\checkmark									
		\checkmark			\checkmark					\checkmark			
	Texvikȩ́ unoōoués，		\checkmark					\checkmark		\checkmark			\checkmark
				\checkmark									
	Поıо́тŋта тои aย́pa	\checkmark				\checkmark				\checkmark		$\sqrt{ }$	
		$\sqrt{ }$					$\sqrt{ }$			$\sqrt{ }$		$\sqrt{ }$	
	Н入єкронаүvทтіка́ пеठіа			\checkmark									
	＇үбата			\checkmark									
		\checkmark				\checkmark				\checkmark		\checkmark	

[^2]EPTO ：«EPTA ETE＝EPTAIIAI KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K S N ~ A Y M A T S N ~ I T O ~ A I T O N ~ O P O \Sigma " ~$

ФAEH EPROY	ПEPIBAMAONTIKO ETOIXEIO	EMIMTREEİ			BAPYTHTA				DIAPKEIA		ANAETPEUIMH		
		を	W్ㅐㅄ	징	$\begin{aligned} & \text { I } \\ & \frac{5}{3} \\ & \frac{1}{3} \end{aligned}$	$\frac{\Sigma}{⿺ 𠃊}$			$\sum_{\sum_{i=1}^{I}}^{\sum_{\Sigma}^{0}}$	들 댄 읃	징		$\frac{3}{2}$
			\checkmark					\checkmark	\checkmark			\checkmark	
	Морфо入оүıка́ каı топо入оүıка̇ характпрıөтıка												
	характпріоткк்			$\sqrt{ }$									
	Фuбiкó перıßàMov	$\sqrt{ }$			\checkmark				\checkmark				
		$\sqrt{ }$			$\sqrt{ }$				\checkmark				
		\checkmark			\checkmark				\checkmark				
	TEXVıKદ̇¢ unoठouȩ́，			$\sqrt{ }$									
	AvӨр ${ }^{\text {a }}$（	$\sqrt{ }$			\checkmark				\checkmark				
	Поио̇ทта тои аह̇ра	\checkmark						\checkmark	\checkmark				\checkmark
		$\sqrt{ }$					\checkmark		\checkmark				\checkmark
	Н入єкронаүvทтікд̇ пеठia			\checkmark									
	＇үбата	\checkmark			\checkmark				\checkmark				
		\checkmark				\checkmark				$\sqrt{ }$		$\sqrt{ }$	

 ото П．$\Delta .1180 / 81$（ФЕК 293／А／81）каı عІठ̈ко்тєра то àpӨро 2 auтоù：

 тои пعрıßं̀入入оитоऽ．

Аıáp日p ω on Twv $\mu \varepsilon ̇ T \rho \omega v$
 фáon катабквuńs кал हукатáotaons tou épvou

 ако்入ouӨव：

 єкбка甲ш்v．

 перıßà入入оитоя，

 та проßлєпо́ $\mu \varepsilon v a$ отוৎ：
－YA A5／2375／78（ФЕK 689／B／78）
－YA 56206／1613／86（ФЕK 570B／86）
－YA 69001／1921／88（ФЕК 751／B／88）
－YA 765／91（ФEK 81／B／91）

 （EK 801ß／74），KYA 5673／400／1997，KYA 145116／2011 каӨஸ்̧ каı ото П．ム．1180／81．

 apxウ்s．

 праүнатопоıŋөві．

 тпऽ бко́vクऽ：

Фáon \हाтoupvias

клıиатıка́ каı 乃ıокДıнатıка́ характпрıотıка́

фáon катаоквu＇́s

 о入ок入n’р ω on tou غ́pyou．

Фáon גeltoupvias

нор甲олоүıка́ каı топוоћоүıка́ характпрıотıка́

Фáon катаоквии́s

Фáon deitoupvias

Фáon кaтаoкहuŕs

 Ta μ ह̇тра пароибiáそ̧оvтаı парака̇тш：

єКбка甲ท่ऽ	

Фóon deltoupvias

甲ибוкó перıßádגov

Фáon катаокеuís

$\beta \lambda a ́ ß \eta ~ \sigma \varepsilon ~ a u t r i v ~$

 anó TПV $\mu \varepsilon \lambda \varepsilon ̇ t \eta$.

 паviठ̈a Өа $\mu п о р о и ் б \varepsilon ~ v a ~ п а ү ı ठ \varepsilon и т \varepsilon i . ~$.

 oTnv KYA 71560/3053, ФEK 665/B/85.
 Фóon deitoupvias

фáon катаокеuŕs

 тои غ́pyou.

Фáon \emoupvias

Фáon катаокغuŕs

 перıßं̀入入ov धivaı:

Фáon גहाтoupvias

Фáon катаоквuŕs

Фóon גeitoupvías

Фáon катаокहuи́s

 браотпріо́тптаৎ

Фáon גहוтоupyias

отПи поіо́тŋта тои аย่ра

Фáon катабкеии́s

 TんV єкпоипळ்v бкóvŋऽ.

 $\mathrm{mg} / \mathrm{m}^{3}$, пои каӨоріґ६таı апо́ то ápӨро 2 парау. ठ тои П. Δ. 1180/81 (ФЕК 293/А/6-10-1981).

Атцобфаıрікก่ ри́паvō	 т ω v $\sigma \omega \rho \omega ่ v$ каı тои ठро́ μ ои про́лßaonc. عival $\alpha \mu \varepsilon \lambda \eta T \varepsilon ̇ \varepsilon \varsigma$,

Фáon λ हitoupvias

Фáon катабквиர́s

 проß入єпо́ $\boldsymbol{\varepsilon v a ~ a п o ́ ~ т \eta \vee ~ K Y A ~ 3 7 3 9 3 / 2 0 2 8 / 2 0 0 3 ~ (Ф Е К ~ 1 4 1 8 / B / 1 - 1 0 - 2 0 0 3) ~ « М غ ் т р а ~ к а ı ~ o ́ p o ı ~ ү ı а ~}$

 та проßлєпо́ $\llcorner\varepsilon$ va anó то ПД 1180/1981 (ФЕК 293/A/81).
 17252/1992 (ФЕК 395B/29-06-1992) ópia Өopúßou.

Өópußoç anó тףv kivŋon oxпиáтமV каІ та катабкєบаотіка́ ह́pүа	 avanapayшy

Фáom \eltoupvias

и́бата

Фáon катабкеuís

 ठıарроє́я,

Фáon גEItoupvias

 Фáon катаоквuńs

 Фáon \eitoupvias

10.15. АпотєАвбратıко́тๆта нє́трюv

Фа́оп катаоквиग́s

Фраотпрıо́тпта-парє́лßабп	
Өópußos anó тףv kivŋoŋ oxпиát $\omega \mathrm{v}$ каі та катабкєиаотікá ह́pүа	
Атцобфаıрікй púnavon	
Катабквиท่ opuyцàтшv 	
єкбка甲ท่я	

фáon λ हitoupvias

Араотпріо́тпта－ парธ́ $\mu a \sigma \eta$	
Xprion Yns	
ouvtṅpクons	 періохйя．
Eүкатव̇oтaon épyou	 ठєvठрофи́т\＆uō
AıøӨптікர் uпоßáӨuıə топіои	 катабкєиш்v aпó đкиро́бॄца．
Грациє́я $\mu \varepsilon т а 甲 о р а ́ \varsigma ~, ~$ П入єктрікণ่ऽ єvغ்pүعıa̧，	

Ефıкто́тпта це்тр $\omega \mathbf{v}$

 TOU．
 tov unعúӨuvo tク̧ Movís．

 TOU．

фáon катаокعuís

Араотпрıо́тпта－паре́цßабп	
Өópußoç anó tŋv кivŋon охпиát ω к каі та катабкєบабтікá ह́pya	 перıорıбиஸ்v Өopúßou．
Атнобфаıрıкй púnovon	
	 бтаӨной．
єкокачウ́я	
Фuđikó перıßà入入ov	

Фáon \eוtoupvias

Араотпрıóтпта－ паре́цßaō	
Xprion yns	
ouvtñpnons	 періохท่я．
Еүкатáoтабп ह̇pyou	 ठєvठброфи்тєưך
	 катабкєuผ்v anó đкuро́ठॄца．
Градиغ́я，цєта甲ора́я ПЛєктрікйऽ єvغ்pүعıa̧	

 145116／2011

（Пๆvŋं：aпо́чаवп 171914 ФEK 3072／B 3－11－13）

 anó трітоuц．

 12, пар. 2 тпऽ К.Y.А. Н.П. 50910/2727/03 (ФЕК 1909 В'/03) каı ß) ота єпıкіvठ̈va anóß入пта
 $287 \mathrm{~B}^{\prime} / 07$).

B. Фáon катаокеиग́s

 тоиa夫غ́т६，

 та ако́入оиӨа：

 ह入áxıのтo ठuvató

Yypá kal otepeá anóß入nta

 avтıцєтळ்

Фóon \eltoupvias

 проßлпиатт ωv.

 хஸ்pou тŋऽ عүката́бта⿱㇒пя.

 тпऽ عүката́отаопя

 ठ̄ı avtippúnavons.

Yypá Aпóß λ пто

 үıa Tıৎ, aváүкє̧ тоu غ̇pyou.

 5673/400/1997 (B^{\prime} 192) ón

 η KYA 145116/2011 (B' 354), о́n $\omega \varsigma$ عка̇бтотє וбхи்モા.

 aঠ̄عıоठ̄отпи

 єка́oтотє ІбXúouv.

ミтеред́ Aпóß入nta

 (ФЕK 24/A'/2012).

 NoноӨвоіас, ЕІठ̈ко́тєра:

 41624/2057/E103/10 (ФЕК 1625 B') òn ω c וסXúouv.

 (ФEK 81 A').

 1312 B') $^{\prime}$ ón $\omega \varsigma$ ıбxủยા.
 13588/725/28.3.06 (ФЕК 383 В'), 24944/1159/30.6.06 (ФЕК 791 В'), 8668/2.3.07 (ФЕK 287 B') ка। tov N. 4042/2012 (ФЕК 24 A') ón

 Ioxúouv.
 oTףV KYA 114218/1997 (ФEK 1016 B'/17-11-1997).

 $\Delta / v \sigma \varepsilon \omega v$ T ωv ouvapuóठi ωv Ynoupysi ωv.

 Yठát Еүкиклі ωv.

 Періßа́入入оитоя，

 о入ок入ńpшơ тоиц，

 Фáon oxeठiaouoú

 xpóvo．
 12，пар． 2 тпऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каı β ）бта єпıкіvбuva aпо́ß入пта
 $287 \mathrm{~B}^{\prime} / 07$ ）．

фáon катаоквuís－Opvavatikés anaitrioeıs

 врүабікц.

 тоua入દ̇т\&؟,

 та ако́入оиӨа：

 ع入áxıтто ठ̈vató

Yyod́ kal oteped́ anóß $\lambda_{n t a}$

 1312）о́п $\omega \varsigma$ عка́бтотع Ібхйย।

Oópußos - ס̄ovñozıs

 Kat' $\varepsilon \lambda a ́ x ı \sigma т о v ~ v a ~ т п р о и ́ v т а ı ~ т а ~ а к о ̀ \lambda о u Ө a: ~$

Фáon גeוtoupvias

 фaivó $\mu \varepsilon$ va п $\lambda \eta \mu \mu u \rho \omega \dot{v}$

Aépia AпóB入nta

 проßлпиатт ωv.

 тпऽ вүката́ттабпя

 avtippúnavonc．

Yypd AпÓß λ nto

 праүнатопоьвітаı $\mu \varepsilon$ ßáon та ако́入оиӨa：

 үוa Tıৎ aváүкะৎ тоu غ́pyou．

 тクऽ перıохウ่я

 аס̈єıоठотпи

 єка́oтотє ІбXủouv.

$\Delta .3 .2$ Ta גúuata θ a oठ̄クyoúvtaı үıa ano入úpavoๆ．

ミтعрعव́ Апо́ß入nта

4．4．1 Ta aотıкá aпорріниата поu парáyovtaı va ou入入غ́yovtaı каӨпцعрıvá каı va aпонакрúvovtaı

 （ФEK 24／A＇／2012）．

 NoноӨعбіас，Еıठікко்єра：

 41624/2057/E103/10 (ФЕК 1625 B') ón $\omega \varsigma$ ı IOxủouv.

 òn $\omega \varsigma$ וסxúع.
 (ФЕК $81 \mathrm{~A}^{\prime}$).

 $1312 \mathrm{~B}^{\prime}$) ón ω ¢ ıбхúعו.
 13588/725/28.3.06 (ФЕК 383 В'), 24944/1159/30.6.06 (ФЕК 791 B'), 8668/2.3.07 (ФЕК 287 B') каІ

 Ioxúouv.
 OTףV KYA 114218/1997 (ФЕК 1016 B'/17-11-1997).

 Eyкuk\iwv．

 єпદ६६рүaбน Періßа́入入оитоц

 о入ок入njpшon touc．

Maúon Aعıtoupyias

EPTO ：«EPTA ETEEEPTAZTAE KAI $\triangle T A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ I T O ~ A T T O N ~ O P O \Sigma » ~$

©AH EPTOY	IEPIBAANONTIKO ETOIXEIO	EMIMTתEEIL			BAPYTHTA				DIAPKEIA		ANAETPE ${ }^{\text {I }}$ IMH			ПAPATHPHEEIE
		$\frac{\text { Z }}{2}$		x	$\begin{aligned} & \text { I } \\ & \frac{1}{3} \\ & \frac{1}{7} \end{aligned}$	$\frac{\Sigma}{\frac{L}{\Sigma}}$		$\stackrel{\text { s }}{\stackrel{\text { E }}{\mid c}}$	$\begin{aligned} & \text { T } \\ & \sum_{n}^{2} \\ & \frac{0}{2} \end{aligned}$		칭		$\frac{\mathbf{y}}{2}$	
														цетафора́я абрраvळ்v． $\Delta ı a \beta p o x \dot{~} \sigma \omega \rho \dot{v}$ $\chi \omega \mu a ́ t \omega v$ каı $\mu \varepsilon т \dot{\omega} \Pi \omega v$ єкбкара́v
		\checkmark					\checkmark			\checkmark		\checkmark		θ орúßou anó та $\mu \eta \chi а v \dot{\mu} \mu а т а$ катабквиŋ́s． Tṅpnon opiwv vouörøiac anó tous， epyodáßous．
				$\sqrt{ }$										
	＇Үбата			\checkmark										
	¿оßара́ атихйната ウ் катаотроре́ц			\checkmark										
	Кגıдатіка́ каı ßıкклıдатіка́ характпрітткк்		\checkmark					\checkmark	$\sqrt{ }$			\checkmark		Пєрıорıбио́с т $\omega \mathrm{V}$ ávӨрака $\mu \varepsilon$ є甲ариоү门் биवтர்иатоя аитонатопоіпбпя ка। тактוкウ่ร סuvtijp $\varepsilon \xi \circ п \lambda ı \sigma \mu \circ \dot{~}$
$\begin{aligned} & \text { T } \\ & \text { Wh } \end{aligned}$	Морфодоүіка каı топоגоүікд́ характпрітткк		v					v	v					Мє та μ ц̇тра пои протвіvоитаı перюорі६ята। ठраотіка́ η оптікŋ่ óx＾лのп．

EPTO ：«EPTA ETEEEPTALIAI KAI $\triangle L A O E \Sigma H \Sigma ~ A \Sigma T I K S 2 N ~ A Y M A T S N ~ I T O ~ A I T O N ~ O P O \Sigma " ~$

ФAEH EPROY	חEPIBAANONTIKO ETOIXEIO	enintaseis			BAPYTHTA				AIAPKEIA		ANAETPEYIMH			TAPATHPHEEİ
		$\frac{1}{z}$	W్జ	충	$\begin{aligned} & \text { I } \\ & \frac{1}{3} \\ & \hline \end{aligned}$				\sum_{2}^{2}	들 M M O	중	W 플 플	$\frac{\mathfrak{x}}{2}$	
	єбароһоүіка́ характпрібтіка́			\checkmark										
	Фuбiкó перıßà入入ov	\checkmark			\checkmark				\checkmark					
		\checkmark			\checkmark				\checkmark					
	KоіvШขікооікоvоціко் перıß̈̀̀lıov	\checkmark			$\sqrt{ }$				\checkmark					
				\checkmark										
	ото періß̈̀入1оv	\checkmark			$\sqrt{ }$				$\sqrt{ }$					
	Поıо்тпта тоu aغ́pa	\checkmark							$\sqrt{ }$				$\sqrt{ }$	ठ ε दau $\varepsilon v \omega \dot{\omega} \mathrm{kaı}$
		\checkmark					$\sqrt{ }$		\checkmark				$\sqrt{ }$	плєктропараүшүо́ ¿çúyoc．
	Н入єкроиаүvทттікá пєठia			\checkmark										
	Үб̈та	\checkmark			\checkmark				\checkmark					
	катаотроре́я	\checkmark				$\sqrt{ }$				$\sqrt{ }$		\checkmark		

	：	
		Tax．$\Delta / \mathrm{voŋ} \mathrm{\eta}$ ：Пanáqp 82，Өعбба入оvikn，Т．К． 54453
		Tๆ入．： 2310902321

Email：skarageo＠gmail．com

ミ甲раүіठ̈а－Үпоүра甲и́

KAPAГE』PTIOY A．EY乏TPATIOE ДIПАКМ．ХНМIKOZ МНХАNIKOE A．П．Ө． MEAOE T．E．E．APIOMOE MHTPSOY 87022 ПАПАФН 켣 КनО A． Ф1． 1497670052310.992 .321

E＾ETXOHKE

0roouhovikn $14 / 4 / \ldots 2022$
）O IPOIIITAMENOミ
TMHMATOE $\triangle A \Sigma Q N$ \＆IEPKBAMONTOE

Мо́бхоя Tpuraそぃஸ́tns
$\triangle a 00 \lambda \varnothing \gamma \circ \rho \mu \varepsilon A^{\prime} \beta$

OERPHOHKE

Өعooalovikn．．．14．／4／20．28
o \triangle IEYOYNTHZ THE

「eẃpүıos Matpará̧̧ņ
Нодıtкós Mnxaviкós $\mu \varepsilon \mathrm{A}^{\prime} \beta$ ．

11．ПEPIBAMMONTIKH $\triangle I A X E I P I \Sigma H ~ K A I ~ П A P A K O \wedge O Y O H \Sigma H ~$

11．1．ПерıßаАМогтıкі́ бıахعірıоп

 Plan（EMP）Eival：

 avaӨع $\omega \dot{\eta} \neq \varepsilon \omega \mathrm{V}$

入apßávouv Xépa

11．2．ПгрıßаАМоитıкŋ́ парако入ои́Өŋбп

－＇Opia x x́pou EEA
－Opia ктррíav Movís

	Пара́иятроя	Mėөoठ̄os	ouMoyis	 	X ${ }^{\text {¢óvos mapauovis }}$	
					E¢̧aү⿳үᅱ㇒́	Avákưõ
Eicoळ̃os i	BOD-5	MCAVWV Method 405.1	One $500-\mathrm{mL}$ amber glss jar with TeflonTM-lined cap	Store at $4^{\circ} \mathrm{C}$	48 hours	5 days
	COD	MCAWV Method 410.4	One $500-\mathrm{mL}$ amber glss jar with Teflon ${ }^{\text {TM }}$-lined cap	$\mathrm{H}_{2} \mathrm{SO}_{4}$, store at $4{ }^{\circ} \mathrm{C}$	NA	28 days
	TSS	MCAMV Method 160.2	One $500-\mathrm{mL}$, polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	7 days
	O\&G	MCAWW Method 413.2	One 1-L amber glass jar with Teflon ${ }^{\mathrm{TM}}$. lined cap	HCl : store at $4^{\circ} \mathrm{C}$	28 days	40 days
	Chloride and sullate	MCAWW Method 300	One $250-\mathrm{mL}$. polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	28 days
	Micobiolog. parameters		$120-\mathrm{mL}$ sterilized borosilicate glass bottle	Store at $4^{\circ} \mathrm{C}$	1 hr	48 hours
	DO	MCAWW Method 360.1	One $250-\mathrm{mL}$ polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours
	pH	MCAWW Method 150.1	One $250-\mathrm{mL}$, polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours

 غंद๐๐ठо.

11．2．2．2 ミuхvótnta हléy

ПAPAMETPOE	EIEOAOE	$E E O L O \Sigma$	INYE	$\triangle E I T M A$	ПAPATHPHEEIE
Парохク่		＋			
$B O D_{5}$	\＃	\＃		M．H	
COD	\＃	\＃		M．H	
SS	\＃	\＃		M．H	
viтріка́	\＃	\＃		M．H	
TP	\＃	\＃		M．H	

\＃：Пєрьобıка́（п．х．1－2／$\mu \eta$ vıaiшс）
＊：ミпорабıка́

－$\Omega \varsigma$ аvшт $\varepsilon \rho \omega$ піvaкац

ПAPAMETPOE	EYTKENTP $\mathbf{N E H}^{\text {H }}$
BOD ${ }_{5}$（mg／tt）	<10
COD（mg／tt）	＜ 100
Alwpoủ	≤ 10
Oоло́mाтa	＜2

－Opia ктирíwv Movís

－＇ҮпарEn סıappoळ́v

11．2．4 Парако入ои்Өпоŋ Өори்ßои

 є甲єठ̄ріко́ П入єктропараүшүó そ६úүос．

－Opia x由́pou EE人
－＇Opia ктıpíwv Movís

－Auछŋпе̇̇voç Өópußos

11．2．5 Паракоגои்Өпоŋ ооүผ்v

 avtı入nாтés，

 घ६оп入ıбนо土่．

 عvótптеৎ：

KaӨapıбuós－EuvTnipnon

－Оо甲рПтіко́ऽ غ́лعүхоऽ，

－KaӨпцعріvá

－Opia xஸ́pou EEA
－＇Opia ктірíwv Movńs

11．3．1 Eıоаүшуர்

 апоठ்̄́ктך．

 перıох＇́ каı та vepà．

11．3．3 Evepyonoinon tou Exモठiou

－YпєрӨغ́puavoп

ү．Eпıßap $\mu \varepsilon$ ह́va aпо́ß入пта

－ －\quad appoń đع aүшүó

 аповлйтшv.

11．3．5 E

$\mathrm{Naı} \mathrm{Oxı}^{\prime}$

B．Xpŕon ßutio甲ópwv

 к．л．т．

Г．Мદ́ба єкта́ктоu aváyкクร

апоß入ウітшv

ГIA THN EГKPİH ПEPIBAAMONTIKתN OP』N

12．2．1 Kaтȧтa૬̧ク ह̇pyou

 2703／B75－10－12）．
 1931B／27－12－2004）．
 3－2007）．

KatátaEn кaтá ETAKOA 2008 ка। NACE Rev． 2

37.00 Еп६६६pүабia 入uцáтшv

Kんठ̈ıко̇¢̧ бпиعiou	£uvtetapuėvȩ E［2A 87	
	X	X
Apx＇̇－A． 5	513508，63	4461550，02
A． 4	513501，10	4461535，66
A． 3	513476，78	4461537，38
A． 2	513450，71	4461515，69
A． 1	513439，17	4461506，09
TĖ\oç－A． 0	513426，04	4461497，52

	ミuvtetayuėvec E［EA 87	
	X	X
Apx＇̇－B． 12	513470，00	4461372，01
B． 10	513441，70	4461365，06
B． 9	513434，66	4461365，79
B． 8	513430，82	4461359，67
B． 5	513414，45	4461358，75
B． 3	513401，56	4461362，03
B． 1	513397，88	4461370，23
Tह̇ло¢－B． 0	513385，31	4461372，33

	ミuvtetayuėvec EГГA 87	
	X	X
Apx＇̇－C． 3	513253，41	4461226，26
C． 2	513234，72	4461220，17
C． 1	513232，71	4461190，06
Tह̇入о¢－C． 0	513231，16	4461163，26

 513223,75 ка। $Y=4461158,25$ ．

	इuvtetayuėvec，ETEA 87	
	X	Y
＇Eqoסoc anó EE＾	513219，17	4461153，68
	513181，09	4461150，15

12．2．3 Періурачй＇Epyou

Anoxeteutiká ठіктй

 бu入入єктท่pıo aүшүó．

 параквінцуо ре́ца．

 ou入入єктп்pı аүшүó．

 аүшүó

Eviкatáotaon eneEzpyaơiac גu

ПAPAMETPOE		ПAPOYEA ФAEH	ФAEH EXEAIAEMOY
	кат．	250，00	330，00
	$\mathrm{m}^{3} / \mathrm{d}$	37，50	49，50
акаӨápтшv	$\mathrm{m}^{3} / \mathrm{d}$	56，25	74，25
	$\mathrm{m}^{3} / \mathrm{h}$	2，34	3，09
Пapox＇் aıхиர்¢ Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	8，42	11，12
Eıठ̈ıкó Punavtıkó 甲optio BOD_{5}	gr／kat／d	60，00	60，00
Eıбıко́ Punavtıк่̇ ¢ортіо TSS	$\mathrm{gr} / \mathrm{kat}$	70，00	70，00
Eıठıк⿺̇ Pumavtıkȯ ¢ортio TN	gr／kar／d	10，00	10，00
Eıర̈ıкó Puпavtıкó 甲ортіо TP	gr／kat／d	2，00	2，00
	kg／d	15，00	19，80
	kg／d	17，50	23，10
Фортіо TN охहסıабноu่	kg／d	2，50	3，30
Фортіо TP охहठıаণนоบ่	kg／d	0，75	0，99

Кшбıко்с Е．К．А．：19．08．05

Пєріпои 8－10 m³／غ่тоऽ

 غ́xモı $\omega \varsigma$ ßабוкоú̧ бкопоúऽ：

 145116/2011.

12.2.5.1 АЕ́р৷а апо́ß入пта

 Koivotitituv.

12.2.5.2 Yyod́ апо́ß入ита

＾ацßávovta̧ uпóч $\boldsymbol{\eta}$ ：

 KYA）

ПAPAMETPOE	
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{lt})$	≤ 10
$\operatorname{COD}(\mathrm{mg} / \mathrm{lt})$	≤ 100
	≤ 10
Oגıка̇ ко入оßактпрıовıठ̄＇	
Єо入о́тпта	<2
pH	5，5－8，5

 Пара́ртпй 1 Tп̧ KYA 5673／400／97．

－KYA 9272／471／07，ФЕК 286／B／2．03．07：«Tропопоinon Tou àp θ pou 8 Tņ un＇api $\Theta \mu$ ．

 81／1051／EOK ка।
Katá Tп 甲áon＾عıтоupyiac：

 ноváסac．

Епиாтஸ்бะшv

12.2.7.1 Katá тп ゅáon Kataoкعuíc:

 $287 \mathrm{~B}^{\prime} / 07$).

Oı ठıáठро

 хஸ்pouc．

 aס̄عıоठ̄отпน

 ако்入ouӨa：

 ह入áxıवто ठuvató

Yypá кaı otepgá anóß $\lambda_{n t a}$

 u甲ıота́

 апорріциа́тшv．

- Na тпроúvтaı oı ópoı kaı проüпо日żoદıц тП̧ Y.A. 56206/1613/86 (ФЕК 570/B'/9-9-86) ónшৎ,

 koivìs nouxias

- Aпаүорعủغтаı η vuxtepivì हpyacia.

12.2.7.3 Katá тп फáon \हוтоupviac:

 фaivóuعva плппицuрळ்v.

параквінعvшv пعрıохळ்v．

 проß入пца்тшv．

ミuүкعкрıи̇̇va va үivetal：

 Thऽ हүката́oтaons

Yyоá Aпо́ßスпта

Ta גúuara θa oठ̄nyoúvta yıa anoגúnavor.

 апофв

£теред́ Aпóßスпта

24/A72012).

 41624/2057/E103/10 (ФЕК 1625 B') ón ω ¢ וбxúouv.

 1312 B' $^{\prime}$) ón $\omega \varsigma$ ıбхи̇धા.
 13588/725/28.3.06 (ФЕК 383 В'), 24944/1159/30.6.06 (ФЕК 791 В'), 8668/2.3.07 (ФЕК 287 B') ка।

 Ioxúouv.
 KYA 114218/1997 (ФЕК 1016 B'/17-11-1997).

 Еүкик入i ω v．

 Пєріßа́入入оитоя

入uиát

 катабквบஸ்v．

13．חPOEOETA โTOIXEIA

2．Yүıııvo入оүікоі unо入оүıбноі

13．2．ПроßАŋ́ната єкпо́vŋопऽ

14．ФЛТОГРАФIKH TEKMHPI』ЕH

15. XAPTE - EXEDIA

15.1.Хáptпя пробаvатоגıбнои́

15.4.Гє由ฝоүіко́я Ха́ртпऽ

15.8.Хáртпৎ проүра́нцатоৎ паракоฝои́Өŋбпя

15.1 Хáртп¢ пробаvaтоגıоцои́

 парако入ои̇Өпопя

16. ПАРАРТНMA

16.1. YГIEIONOАOГIKOI YПОАОГIEMOI TH乏 E.E.А.

0

IEPA KOINOTHTA

AГIOY OPOY乏 $A \Theta \Omega$

ЕРГО：«EPГA EПEEEPTA乏IA乏 KAI $\triangle I A O E \Sigma H ~ A \Sigma T I K \Omega N ~$ ＾YMAT®N $\Sigma T O$ AГION OPO乏»

ANA $\triangle O X O \Sigma$	EYミTPATIOE A．КАРАГЕОРГIOY Пaாáч！82，T．K．54453，ӨEโミAへONIKH TๆА．：2310－902321 \＆6976801783 Email：skarageo＠gmail．com

ПAPAPTHMA A：
YIIEIONOAOTIKOI YIOOAOFIEMOT
EГKATAETAEHE EПEEEPГAEIAEAYMATRN I．M．
Z』ГРАФOY

חIEPIEXOMENA

1．EIEAГ Ω H 1
2．ПAPAMETPOI इXEAIA乏MOY EEA 1
2.1 Парохモ̇ц каı Фортіа＾uиáтшv 1
2.2 Пооттпта Екройя 1
2.3 Euvortтıк่ Пعрıура甲门் EEへ 2
3．$\Delta I A \Sigma T A \Sigma I O N O Г H \Sigma H ~ M O N A \Delta \Omega N$ 3
3.1 ＇Ерүа Прштоßа́Өцася Епє६ॄрүасіая 3
3．1．1 Гєvіка́ 3
 4
3.2 Віо入оүікก் Eпє६६pүабіа 5
 5
 6
3．2．3 Δ ıаотаболо́yпоп－Yподоүıбноі 10
3.3 เıú入ıə 11
3．3．1 Eiбаүшүท่ 11
 11
3.4 Апо入ú μ avon 12
3．4．1 Eıбаүшүท่ 12
 13
 15

1．EİACRIH

 Iєpác，Movńs Z ω үpáqou．

2．DARAMETPOI XXEALAEMOYEEA

2.1 Парохв́ц ка৷ Фортіа Ачиа́тшレ

ПAPAMETPO乏		ПAPOYEA ФA乏H	ФAミH ミXEAIAEMOY
	кат．	250，00	330，00
	$\mathrm{m}^{3} / \mathrm{d}$	37，50	49，50
	$\mathrm{m}^{3} / \mathrm{d}$	56，25	74，25
	$\mathrm{m}^{3} / \mathrm{h}$	2，34	3，09
Парохウ் arxuŕs Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	8，42	11，12
	gr／kat／d	60，00	60，00
Eıठıко̇ Punavtıкȯ ¢ортіо TSS	$\mathrm{gr} / \mathrm{kat}$	70，00	70，00
Eıб̈кк̇ Punavtıко́ ¢ортіо TN	gr／kat／d	10，00	10，00
Eıйıкó Puпavtikó 甲ортio TP	$\mathrm{gr} / \mathrm{KOT} / \mathrm{d}$	2，00	2，00
	kg／d	15，00	19，80
	kg／d	17，50	23，10
	kg／d	2，50	3，30
Фортіо TP охеঠıабиой	kg／d	0，75	0，99

2.2 Поо́ттта Eкрот́s

ПAPAMETPO乏		OPIA	
Оגıко́ BOD_{5}	$\mathrm{mg} / \mathrm{lt}$	\leq	10^{*}
Aıwpoủheva oteped (TS)	$\mathrm{mg} / \mathrm{lt}$	\leq	10^{*}
О入ıко á̧uto (TN)	$\mathrm{mg} / \mathrm{lt}$	\leq	45

2.3 इиvоптткர் Пєрıүрачі́ EEA

 оріदॄтаı отоv Піvaка 2 тПऽ KYA 145.116/2011.

3. AIAETAEIOAOLHEH MONAARN

3.1.1 Гعviкả

 oтعрहळ்v.

 єпє६єрүабіас,

 ßıо入оүıкウ่я єпє६६рүабіас.

 oxモ்̇ๆ:
$\mathrm{q}=\mathrm{Q}_{\mathrm{d}, \mathrm{m}} / \mathrm{A}$

ПAPAMETPOE	MONADA	TIMH
	$\mathrm{m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$	0,6
	$\mathrm{m}^{3} / \mathrm{hr}$	11,12
	m^{2}	18,53

 $45 \mathrm{~m}^{3}$.

Пivaкая 2.2. Yпо入оүıбиós xpóvou каӨiگnaņ

ПAPAMETPOE	MONA \triangle A	TIMH
	$\mathrm{m}^{3} / \mathrm{hr}$	3,09
	m^{3}	9,27
	m^{3}	35,5
	hr	10,92
	hr	3,04

ПAPAMETPOE	MONA \triangle A	TIMH
BOD_{5}	\％	25
COD	\％	25
Alwpoúneva otepeá SS	\％	60
O入ıко́ á̧んто	\％	10
Фஸ்ம甲ороऽ，	\％	9

 $\omega \varsigma \varepsilon \xi ֹ ֹ ;$

ПAPAMETPOE	MONALA	TIMH
BOD5	mg／l	300，00
	kg／d	14，85
COD	mg／l	540，00
	kg／d	26，73
Alwpoủ	mg／l	186，67
	kg／d	9，24
Oגıко́ à̧んто	mg／l	60，00
	kg／d	2，97
Фట்О¢ороऽ	mg／l	18，20
	kg／d	0，90

3．2 BıoAoүıкґ́ Eneఢ̧epyaaia

3．2．1 Eıбаүшуท่－пергүра甲ர่

 ı λ úoç.

 Bı૦

 $0.0049 \mathrm{~m}^{3} / \mathrm{m}^{2}$ عпı甲áveıaç.

 ழáon, nou кuцaivovtaı anó 90 ह்فऽ $95 \% \omega \varsigma$ проц то BOD.

 ßuӨıণиغ̇vol ото aváयıкто uүро́.
 $\mu \varepsilon$ катабтро甲ท่ тои $\mu \eta$ Хаvıб

		ДвuтвроßáӨцı $\mu \varepsilon$ таuтóxpovŋ vitponoinon	$\Delta \varepsilon \cup т \varepsilon \rho о \beta \dot{\text { á }} \boldsymbol{\mu}$ о $\boldsymbol{\mu \varepsilon}$ vitponoínon бє छєхшрітто́ oтáठıo
Yбраилıкウ் фо́ртїп $\left(\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}\right)$	0．08－0．16	0．03－0．08	0．04－0．1
Opyaviкй ¢о́pтıö			
$\mathrm{Kg} \mathrm{SBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0．003－0．01	0．002－0．007	0．0005－0．001
$\mathrm{Kg} \mathrm{TBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0．01－0．017	0．007－0．015	0．001－0．003
Мદ́yıaדŋ Opyaviкi่ фо́ртїท бто прш́то のта́ठ̄॰			
$\mathrm{Kg} \mathrm{SBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0．02－0．03	0．02－0．03	
$\mathrm{Kg} \mathrm{TBOD} 5 / \mathrm{m}^{2} . \mathrm{d}$	0．04－0．06	0．04－0．06	
Фópтїп ац $\mu \omega \mathrm{viaç}$（ Kg $\left.\mathrm{NH}^{3} / \mathrm{m}^{2} . \mathrm{d}\right)$		0．0007－0．0015	0．001－0．002
Yסраu入ıко́s Xpóvos， napa	0．7－1．5	1．5－4	1．2－2．9
BOD ${ }_{5} \mathrm{E}$ ¢́ठ̇Ou（mg／t）	15－30	7－15	7－15
A $\mu \mu \omega v i a \quad$ Eछ́סōou $(\mathrm{mg} / \mathrm{lt})$		<2	1－2

3．2．3．1 Enıßapúvozı̧ عıoóסou

	（mg／l）	（ Kg / d ）
BOD_{5}	300，00	14，85
COD	540，00	26，73
SS（aı ${ }^{\text {（a）}}$	186，67	9，24
ОДıко́ áZんто（оруаvıкó N ， $\mathrm{NO}_{3}-\mathrm{N}, \quad \mathrm{NH}_{4}-\mathrm{N}$ ）	60，00	2，97
	18，20	0，90
Өярнокрабіа	$12-20^{\circ} \mathrm{C}$	
pH	7，5	

BOD
COD
Alwpoúuદva otepeà（SS）

	$6 \mathrm{~g} /\left(\mathrm{m}^{2} \mathrm{xd}\right)$
Aпaıtoúnevク enı¢áveıa ßıoठíokwv	$14,85 \times 1000 / 6=2475 \mathrm{~m}^{2}$
	$2500 \mathrm{~m}^{2}$
	1
	1，10 kW

O入ıкn่ عпıழávยıa
$2500 \mathrm{~m}^{2}$

Аіа́ μ हтроऽ ठїкк ω
2 m

3．2．3．6 \quad Пapayшyri ıAúos

 $\mathrm{kg} \cdot \mathrm{SS} / \mathrm{kg} \cdot \mathrm{BOD}_{5}$ апонакриvóuعvo．
 апонакриуо́нєvo．

ミuvo入ıкท் параүшүท் ı入ủos，

$$
\begin{aligned}
& 14,85 \mathrm{~kg} / \mathrm{d} \\
& 20 \times 49,5 / 1000=0,55 \mathrm{~kg} / \mathrm{d} \\
& 0,55 *(14,85-0,55)=7,62 \mathrm{~kg} / \mathrm{d} \\
& 13,86+7,62=21,48 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

3.3 AIÚАıOп

3．3．1 Eıवаүшүर்

 （Andreadakis 2003，Metcalf \＆Eddy 2003，Titley 2014）．

 фо́ртібп тои чіАтрои Өа віval＜ $8 \mathrm{~m}^{3} / \mathrm{m}^{2}$－ hr ．

	1,39	
	4	m^{2}
	2,78	$\mathrm{m}^{3} /\left(\mathrm{m}^{2} \mathrm{xh}\right)$

 mg / l.

$B O D_{\text {ss }}=0,65 * 1,42 * 0,68 * S S$
ónou :

$B O D_{5, \text { eff }}=B O D_{5, i n}-B O D_{s s}$
òпои :

$B O D_{5, \text { eff }}=9,96 \mathrm{mg} / \mathrm{l}$

3.4 Amoגúцаvan

3.4.1 Eıбаүшуர்

 паранغ்троия:
\Rightarrow Поіо́тпта тои vepou่

- Aı \quad роú $\mu \varepsilon v a$ oтعрعd

\Rightarrow Bäuós anoגúuavons

 $\mu \varepsilon ү а \lambda и ́ т \varepsilon p \eta ~ a п о ́ ~ 70 \% . ~$
 $10^{7} \mathrm{FC} / 100 \mathrm{ml}$.

 Disposal Reuse, 1979, p. 287):

Eoxáp ω on
$\mathrm{Effscn}_{\mathrm{sc}}=10-20 \%$
E६á $\mu \mu \omega \sigma$
Eff $_{S F}=10-25 \%$
Вıолоүıки் ßaӨніб̈а
$E f_{\mathrm{BB}}=90-98 \%$

ПрокаөiZпоп
$\mathrm{Eff}_{\mathrm{pc}}=10 \%$
Вıо入оүікп் ßаӨиіठа
$E f f_{B B}=90 \%$
 проки́пття। апо́ то้ тúno:

```
Colifer \(_{\mathrm{EH}}=\) Colifin \(_{\mathrm{in}} *\left(1-\mathrm{Eff}_{\mathrm{PC}}\right) *\left(1-\mathrm{Eff}_{\mathrm{BB}}\right)\)
```



```
Colifeff \(=10^{7}(1-0.10) *(1-0.90)\)
Colifeff \(=9 \times 10^{5} / 100 \mathrm{ml}\)
```

 $\lambda a \mu ß a ́ v \varepsilon t a ı ~ i o ́ n ~ \mu \varepsilon ~ 106 / 100 ~ m l . ~$

 A^{\prime} тà̇ns:

$$
N / N_{o}=e^{-k . i . t}
$$

о́пои,
№ : o apxiкós apıӨrós, TC
N : о тعлıко́s, apıӨرós TC
k : oraӨ̨рá

$$
-k *_{i} *_{t}=\ln \left(10^{-5}\right)=-11,51
$$

$$
i^{*} t=11,51 \mathrm{mWsec} / \mathrm{cm}^{2}
$$

0

16.2.ПTYXIO MEЛETHTH

ПTYXIOME
 П｜138／2009／N．3316／2005

AP．MHTP $\Omega O Y$ ：
А．Ф．М．：
A．O．Y．：

EПתNYMO：
ONOMA：
ONOMA ПATPOE：
EIAIKOTHTA：
EAPA NOMOL：
ЕПАГТ．ЕАРА：
KATOIKIA：

19558
119767005
上T＇©ELEAAONIKH

KAPAГERPIIOY
EyETPATIOE
andpear
XHMIKOE MHX．
©EL／NIKHL
ПАПАФН 82 ӨЕЕ／NIKH ТК 54453
ПАПАФН 82 ӨЕЕ／NIKH ТК 54453

KATHIOPIEE MEAETRN

α ．KATHГOPIA YIT API \qquad 18 \qquad

TAEH \qquad A

TAZH \qquad A Eюc．．．．．．．．．．．．．22／02／2026．．．

0

16.3.EIAIKH OIKOАОГIKH АЕIOАОГНГH

EIDIKH OIKONOГIKH AミIONOГH乏H

 EPГ Ω N EПEЕЕРГA乏IA乏 KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \Lambda Y M A T \Omega N ~ I . ~ M . ~ Z \Omega Г Р A Ф O Y ~$

ANADOXOE
EYETPATIOE KAPATEQPIIOY
ПАПАФН 82， 54453 ӨEエエAへONIKH
email：skarageo＠gmail．com

IOYNIOE 2021

O
 EIEAISTH－ПEPIOXH ME＾ETH乏 3
1．YФIミTAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBAMONTO乏 4
1．1 KATAГPAФH KAI ANAへY乏H TQN इTOIXEIQN ФY乏IKOY ПEPIBAANONTO乏 इTHN ПEPIOXH MEAETH乏 4
 4
 5
1．2．2．1 А β เотьк $\dot{\alpha} \chi \alpha \rho \alpha к т п р เ \sigma т ь к \dot{\alpha} ~ \pi \varepsilon \rho เ ~ \beta \dot{\alpha} \lambda \lambda$ лоvтоя 6
 10
1．2 ANAФОРА ANA ΩN YФİTAMEN ΩN H／KAI ETKEKPIMEN ΩN EPI $\Omega N^{\prime} H ~ \triangle P A \Sigma T H P I O T H T \Omega N ~ \Sigma T H N ~$ ПЕРІОХН ME＾ETH乏 35
 35
1．4 ФЛТОГРАФІКН TEKMHPI』ЕН 36
 NATURA 2000 37
 37
 характпрьотвí η оькi α лерıохŋ́ Natura 2000 38
1．5．3 Kúptȩ тче́¢ avaфора́я 44
 44
1．5．5 Оико入оүиќя леттоирүі́єऽ 45
 49
2．$\triangle E O Y \Sigma A$ EKTIMHEH KAI A $\equiv I O \wedge O \Pi H \Sigma H ~ T \Omega N ~ E \Pi I \Pi T T \Omega \Sigma E \Omega N$ 49
3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma T \Omega N ~ \Pi I \Theta A N \Omega N ~ E \Pi I \Pi T \Omega \Sigma E \Omega N$ 51
4．ANTIZTAOMIITIKA METPA 55
 4014／2011 55
 55
 56
 57
5．ПРОГРАММА ПАРАКОЛОҮОНГН乏 58
6．$\Sigma Y N O \Psi H ~ \Sigma Y M \Pi E P A \Sigma M A T \Omega N$ 62
7．BIBNIOГРAФIKEL ПHTES 64
8．OMADA ME $\wedge E T H \Sigma$ ． 68
ПAPAPTHMA I 69

EIEATSГH - ПEPIOXH MENETH乏

 $\pi \lambda \eta \sigma i o v ~ t o u ~ \chi \dot{́ p o u ~ t o u ~ \varepsilon u p \omega \pi \alpha и ̈ к о и ́ ~ o u k o \lambda o ү ı к о u ́ ~ \delta ı k t u ́ o u ~ N a t u r a ~} 2000$.

 عпе६грүабіас)

 513223,75 каи $Y=4461158,25$.

Eukóva 1．Пєpıoxń Mèétņ，ópıa đepıoxńs Natura 2000 GR1270003（EZA）

1．YФI乏TAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBAMNONTO乏

 MEAETHE

 Kotvotıkoú Evסıaфغ́povtos) (S.C.I.: Special Community Interest) $\mu \varepsilon$ к $\omega \delta$ เкó apı $\theta \mu$ ó GR1270003.
H хepoóv
 кotvotıkó סiktuo Natura 2000.

「ع $\omega ү$ рафкки́ $\theta \varepsilon ́ \sigma \eta$: E: $23^{\circ} 87^{\prime} 69^{\prime \prime} \mathrm{N}: 40^{\circ} 08^{\prime} 44^{\prime \prime}$
Ектаоп: 33.567,80ha

 （Млацла入и́vaç 1998）．

Sm：$\Sigma \varepsilon_{p}$ ßонак
 Пatoviaç Pa：Zóvŋ Пäíkov，Al：Zôvך

Ac：Aт七ко－кик $\widehat{\wedge}$ ．

P：Zovn IIvōov，

L：Øóvios ̧̧̂vๆ，

 そ̧́vns

 aro ρ рońc tou A $\theta \omega$ (EL1043), $\mu \varepsilon$ Éktaõ 239,44 km².

 tou 24 úpou.

Eıkóv α 4. $0 \mu \beta \rho \circ \theta \varepsilon \rho \mu$ ккó δ ıáyp $\alpha \mu \mu \alpha$ M.. . Apvaias

 ठрáoŋ̧ $\tau \omega \mathrm{v} \chi \varepsilon \iota \mu \alpha ́ \rho \rho \omega v$.

 поu үivetal otnv π ррıoxń autท́.

X $\cap \Omega P I \triangle A$

乏тnv E

 $\pi \lambda \alpha \nmid \omega \dot{v} \mathrm{k} \mathrm{\alpha L} \tau \eta$ фúণŋ $\tau \omega \mathrm{v} \pi \varepsilon \tau \rho \omega \mu \alpha ́ t \omega \mathrm{v}$.

 lentiscetum．

 $\eta \mu i \theta \alpha \mu v o t$, ó $\pi \omega \varsigma$ ，$\alpha \sigma$ тoı $\beta \dot{\delta} \delta \alpha$（Sarcopoterium spinosum），v $\varepsilon v i \sigma \tau \alpha$（Genista acanthoclada），va $\alpha \alpha \sigma i \delta \varepsilon \varsigma$
 （Phlomis fruticosa），or $\alpha \rho \alpha \dot{y y t}$（Asparagus aphyllus），aлoүo日ú $\mu \alpha \rho o$（Anthyllis hermaniae）k $\lambda \pi$ ．
 （Pistacia lentiscus），оь ápкعuӨot（Juniperus sp．），т α рعíкıа（Erica spp．）к $\lambda \pi$ ．

 $\alpha \mu \varepsilon ́ \sigma \omega \varsigma ~ \cup \psi \eta \lambda o ́ \tau \varepsilon \rho \alpha$ đ兀ó tov $\alpha \cup \xi \eta \pi เ \kappa o ́ ~ \chi \omega ́ \rho o ~ \tau o u ~ O l e o-l e n t i s c e t u m . ~$

 фитокоtv $\omega v i \varepsilon \varsigma ~ \tau \omega v ~ \varepsilon \iota \delta \grave{j} \nu$ ths otкoүévetac，Ericaceae（Arbutus unedo，Erica manipuliflora）kat

 к λ лцатикє́,

 confertae (frainetto)-cerris $\mu \varepsilon \phi \cup \lambda \lambda \circ$ ßó $\lambda \alpha$ סáon $\delta \rho u \dot{\omega} v a \pi o ́ ~ Q u e r c u s ~ f r a i n e t t o, ~ Q u e r c u s ~ p u b e s c e n s, ~$

 Év$\omega \sigma$.

 to Carpinetum orientalis.

 $\mu \varepsilon \tau \varepsilon ́ \chi o u v ~ \tau \alpha ~ \xi u \lambda \omega \dot{\omega} \eta \eta$ عi $\delta \eta$ Ilex aquifolium, Fraxinus ornus, Sambucus nigra, Clematis vitalba, Rosa canina, Hedera helix, Sorbus aucuparia, Sorbus torminalis, Quercus conferta,Alnus glutinosa (ota

 вivaı ta $\chi \alpha \mu$ ореікıа (Erica manipuliflora) каı to поupvápı (Quercus coccifera).

Пivakac 1: Eiठn $\chi \lambda \omega$ рi $\delta \alpha \varsigma$
Eión B λ áotnons
Abies cephalonica / इúvnणेes
Aethionema orbiculatum / โndंvio
Allium chamaespathum / Пapóv
Anthemis sibthorpii / $\Sigma \pi \alpha \dot{\alpha} v o$
Arabis bryoides / Mapóv
Arctostaphylos uva-ursi / Пapóv
Asperula aristata ssp. nestia / Mapóv
Asperula aristata ssp. thessala / Парóv
Astragalus thracicus ssp. monochorum / Enávio
Atropa bella-donna / $\Sigma \pi \alpha ́ v i o$
Aubrieta erubescens / П α oóv
Beta nana / Enávio

Campanula lavrensis／Парóv
Centaurea pannosa／חapóv
Cephalanthera damasonium／Mapóv
Cephalanthera longifolia／Пapóv
Colchicum doerfleri／Mapóv
Convallaria majalis／Hapóv
Corydalis integra／$\Sigma \pi \alpha \dot{v}$ vo
Cyclamen persicum／Mapóv
Cystoseira spp／Пapóv
Dianthus petraeus ssp．orbelicus／П α póv
Digitalis leucophaea／Σ rávio
Erysimum drenowskii／Mapóv
Fritillaria euboeica／Mo λ ú इnávıo
Fritillaria graeca／חapóv
Helichrysum sibthorpii／Mo入ú इnảvio
Heracleum humile／Hapóv
Hypericum athoum／$\Sigma \pi \dot{\alpha} v i o$
Isatis tinctoria ssp．athoa／इrávio
Limodorum abortivum／П $\alpha \rho o ́ v$
Linum leucanthum इúvŋษัย̧
Linum olympicum ssp．athoum／Пo入ú इnávio
Neotinea maculata／Mapóv
Neottia nidus－avis／Hapóv
Ophioglossum vulgatum／Пapóv
Osmunda regalis／Mapóv
Oxytropis purpurea／£nd்vio
Platanthera bifolia／Mapóv
Platanthera chlorantha／Mapóv
Poa thessala इúvnv̀es
Polygonum icaricum／$\Sigma \pi \alpha \dot{v}$ to
Saxifraga juniperifolia ssp．sancta／Mapóv

Silene echinosperma／Парóv
Silene multicaulis ssp．genistifolia／Пapóv
Sorbus chamaemespilus／£rávio
Stachys leucoglossa／ח α рóv
Thymus thracicus／Пapóv
Valeriana alliarilfolia／$\Sigma \pi \alpha ́ v t o$
Viola athois／Modú $\Sigma \pi \alpha \dot{v i v o}$
\section*{Zerynthia polyxena}

 immanuelis－loewii，Centaurea peucedanifolia，Silene orphanidis，Viola delphinantha，Viola athois，
 $\pi \alpha \rho \dot{\rho} \rho \tau \eta \mu \alpha$ 3．3．13），घv山́ $\tau \alpha$ हíठ η Arctostaphylos uva－ursi，Atropa bella－donna，Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．orbelicus，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus пробтатвúovtaı α ло́ то П $\Pi 67 / 1981$ ．T α Heracleum

 т $\mu \dot{\mu} \mu \alpha$ тףऽ．

 $\mu \varepsilon$ то $\pi \varepsilon \dot{\varepsilon} \rho \alpha \sigma \mu \alpha$ тou χ рóvou $\varepsilon \mu ф \alpha v i \zeta \varepsilon เ ~ \alpha \xi เ$ เ́доүך $\beta \varepsilon \lambda \tau i \omega \sigma \eta$ ．

－$\Delta \varepsilon v \delta \rho o \varepsilon เ \delta \dot{j}$ Matorrals $\mu \varepsilon$ Juniperus spp．（Arborescent matorral with Juniperus spp．）－ 5210
－$\Delta \varepsilon v \delta \rho o \varepsilon เ \delta ท ́ ~ M a t o r r a l s ~ \mu \varepsilon$ Laurus nobilis－ 5230
－इuनTáסeç סáфvク̧－ 5310

－Фpúyava aró Sarcopoterium spinosum－5420

－AiӨи́ves tп̧ Avato入ıkŕc Méoүعíou－ 8140
－$\Delta \alpha ́ \sigma \eta ~ o \xi u a ́ c ̧ ~ \alpha \pi o ́ ~ L u z u l o-F a g e t u m-9110 ~$

－A入入oußı $\alpha \kappa \alpha ́ \delta \alpha \dot{\alpha} \sigma \eta ~ \mu \varepsilon$ Alnus glutinosa ка兀 Fraxinus excelsior－91E0
－$\Delta \dot{\alpha} \sigma \eta \mu \varepsilon$ Castanea sativa－ 9260

－$\Delta \alpha ́ \sigma \eta ~ o \xi ı \alpha ́ c ~ \mu ~ \mu \varepsilon ~ Q u e r c u s ~ f r a i n e t t o ~-9280 ~$
 Xepoovท́бou（Securinegion tinctoriae）－92D0
－$\Delta a ́ \sigma \eta ~ \delta \rho u o ́ s ~ t o u ~ A t y \alpha i o u ~ \mu \varepsilon ~ Q u e r c u s ~ b r a c h y p h y l l o ~-~ 9310 ~$
－Δ d́ơ $\mu \varepsilon$ Quercus ilex каı Quercus rotundifolia－ 9340
－Δ áon $\mu \varepsilon$ Quercus macrolepis－ 9350

 $\theta \alpha \lambda \alpha ́ \sigma \sigma t \alpha \varsigma, \beta \lambda \alpha ́ \sigma t \eta o \eta \varsigma ~ \mu \varepsilon$ Posidonia．
 к $\alpha \tau \alpha ́ \lambda \eta \psi \eta$＇ィ тоиৎ（\％）عívat：

 ка入uпто́ $\mu \varepsilon$ vȩ artó хเóvt каเ па́үо（4，76\％）
 орихвí α, β เон $\eta \chi \alpha$ เкє́я вүкатабта́бєıৎ）（2，38\％）．

 фaivovtat otov 犭ג́ptn tou ПAPAPTHMATOE 1.

Abstract

OIKOTOПO乏 ПPOTEPAIOTHTA乏

excelsior，Kw ω IKóc 91 E 0.

 Padion，Alnion incanae，Salicion albae）．

 $\delta \varepsilon v \delta \rho \omega \varepsilon \iota \delta \dot{\omega} v \theta \dot{\alpha} \mu v \omega v$ aró Salix alba，S．fragilis kat Populus nigra katá μ ríkoç t τv лота $\mu \dot{\omega} v \tau \omega v$

 Cardamine spp，．Rumex sanguineus，Carex spp．，Cirsium oleraceum）k $\alpha \iota \mu \pi о р \varepsilon i \quad v \alpha \quad \varepsilon \mu ф \alpha v i \zeta o v t \alpha \iota$
 solida．

Оıко入оуике́s бuvӨńkes

 vepoú．

Alnus glutinosa，Equisetum telmateia，Rubus sanctus，Alnus glutinosa，Sparganium erectum，Urtica dioica，Geranium robertianum，Corylus avellana，Galium aparine，Salix alba，Sambucus nigra，Humulus lupulus，Rubus ulmifolius，Carex remota，Platanus orientalis，Rubus caesius，Salix elaeagnos，K．． ．

Katáotaơn Sıatńpnons－Aлعı λ és

CORINE $32.7 \Psi_{\text {عuбоиаккі．}}$ Кшбико́с 5350.

 $\delta \eta \mu$ เoupyoú $\mu \varepsilon v o t ~ \alpha \pi o ́ ~ т \eta v ~ \cup \pi о ß \alpha ́ \theta \mu เ \sigma \eta ~ т о и ~ O s t r y o-C a r p i n i o n ~ \sigma т \eta v ~ E \lambda \lambda \alpha ́ \delta \delta \alpha, ~ \tau \alpha ~ B \alpha \lambda к \alpha ́ v i \alpha ~ к \alpha t ~ т \eta v ~$
 Quercus coccifera，Juniperus oxucedrus，Quercus trojana，Carpinus orientalis，Ostrya carpinifolia， Pistacia terebinthus，Buxus sempervirens，Jasminus fruticans，Fraxinus ornus，Cercis siliquastrum （Coccifero－Carpinetum Honvat）．

Оเко入оүเкв́я биレษัŋ்кєऽ

 плоибเо́тєроऽ．
$X \lambda \omega \rho \iota \delta u k \dot{\eta}$ $\dot{\prime} v \vartheta \varepsilon \sigma \eta$
 eupatoria，Acer campestre，Carpinus orientalis，Chrysopogon gryllus，Silene italica，Juniperus oxycedrus，Ballota acetabulosa，Trifolium repens，Fraxinus ornus，Berberis cretica，Ostrya carpinifolia， к．$\dot{\alpha}$ ．

CORINE 41．1B Δ áơn o\＆iác $\mu \varepsilon$ Quercus frainetto．Kwסıkós 9280.

 frainetto．

$X \lambda \omega \rho t \delta u n \dot{\sigma} \sigma \cup \cup \vartheta \varepsilon \sigma \eta$

Eiठף фutúv поu हликратоúv عivaı ta：Quercus frainetto，Fagus sylvatica，Fagus moesiaca，Carpinus orientalis，Pteridium aquilinum，Coryllus avellana，Poa nemoralis，Quercus petraea，Quercus petraea ssp．，Sorbus torminalis，Fagus sylvatica ssp．sylvatica，k．d．́．

 бع $\alpha \sigma \beta \varepsilon \sigma \tau$ дı θ кка́ $\pi \varepsilon \tau \rho \omega \dot{\mu} \mu \tau \alpha$ ．

 $\mu \varepsilon \alpha \varepsilon i \phi \cup \lambda \lambda \alpha$ ок $\lambda \eta \rho o ́ \phi \cup \lambda \lambda \alpha, \alpha \lambda \lambda \alpha ́ \mu \pi о \rho \varepsilon i \quad v \alpha \pi \varepsilon \rho \iota \lambda \alpha \mu \beta \alpha ́ v \varepsilon t ~ к \alpha \iota ~ \delta t \alpha \pi \lambda \alpha ́ \sigma \varepsilon เ \varsigma ~ \mu \varepsilon ~ \chi \alpha \mu \eta \lambda \eta ́ ~ Ө \alpha \mu v \omega ́ \delta \eta \eta$

 бuvӨモ́touv．

$X \lambda \omega \rho t \delta ı k n \dot{\sigma}$ ०úv $\theta \varepsilon \sigma n$

Quercus ilex，Myrtus communis，Arbutus unedo，Erica arborea，Smilax aspera，Arbutus andrachne， Phillyrea latifolia，Quercus coccifera，Pistacia lentiscus，Acer sempervirens，Carex distachya，Laurus nobilis，Pistacia terebinthus，Galium fruticosum，Lithodora hispidula，Cistus salviifolius，Asparagus aphyllus ssp．orientalis，Erica manipuliflora，Hypericum empetrrifolium ssp．empetrifolium，Anthyllis hermanniae，Salvia pomifera ssp pomifera，Brachypodium retusum，Scaligeria napiformis，Carex flacca ssp．serrulata，Prasium majus，，Hedera helix，Rubia peregrina，Asplenium onopteris，Ruscus aculeatus， Hypericum hircinum ssp．albimontanum，Teucrium massiliense，，Chamaecytisus creticus．

ミпиavtik α ototxعía－Movaסıкótnta－ミraviótnta

Katáotaon Sıatńpnonc－A

 ßookńs．
 Pinus mugo kaı Pinus leucodermis．K ω రıkós 9540.

 к $\alpha \iota ~ \tau \rho \alpha \chi \varepsilon i ́ \alpha ৎ ~ \pi \varepsilon u ́ k \eta \varsigma, ~ \alpha ф \varepsilon \tau \varepsilon ́ \rho о u ~ \delta \varepsilon ~ \tau \alpha ~ \psi u \chi \rho o ́ ~ \beta ı \alpha ~ o \rho \varepsilon ı v \alpha ́ ~ \delta \alpha ́ a \eta ~ \rho o ́ \mu \pi о \lambda о u ~(P i n u s ~ h e l d r e i c h i i) . ~ E i v \alpha ı ~$

X $\lambda \omega \rho$ เסikń oúvӨzon

 Lentiscetum aegaeicum（Pistacia lentiscus，Olea europea ssp．oleaster）$\alpha \lambda \lambda \dot{\alpha}$ k α t tns Quercetea， Quercetalia ilicis（Arbutus unedo，Quercus ilex，Myrtus communis，Smilax aspera）．A $\lambda \lambda \alpha$ عi δ п rou бu μ हtéxouv हivaı ta：Phillyrea latifolia，Smilax aspera，Lonicera implexa，Hypericum empetrifolium， Pinus pinea，Scaligeria napiformis，Crepis fraasii，Rhamnus alaternus．

 flacca，Brachypodium retusum，Hypericum empetrifolium к．$\dot{\text { ．Mıкрéৎ } \sigma u \sigma \tau \alpha ́ \delta \varepsilon \varsigma ~ a r o ́ ~ \alpha ́ t o \mu ~} \alpha$ Х $\alpha \mu \eta \lambda$ оú

 siculum，Coridothymus capitatus．

 avayevvioúvtat，kupi ω ç Cistus monspeliensis，Cistus creticus，Anthyllis hermanniae，Genista eivaı

 latifolia，Aetheorhiza bulbosa，Stipa bromoides，Leontodon tuberosus，Trifolium campestre，Anthyllis hermaniae，Micromeria graeca，Luzula nodulosa，Cistus creticus，Alyssum lesbiacum，Crepis fraasii， Bupleurum trichopodum，Stipa bromioides，Allium sipyleum，Campanula hagielia，Stachys cretica subsp．smyrnaea，Lithodora hispidula，Genista fasselata，Rubia tenuifolia，Olea europaea ssp．oleaster， Rhamnus lycioides ssp．oleoides，Prasium majus，Asparagus acutifolius，Cistus salviifolius，Piptatherum miliaceum，Leontodon tuberosus，Helichrysum conglobatum
 aкó入ouӨa：Erica arborea，Juniperus phoenicea，Quercus ilex，Arbutus andrachne，Arbutus unedo， Quercus coccifera，Acer monspessulanum．
 europaea ssp．oleaster，Rhamnus lycioides ssp．oleoides，Arisarum vulgare，Aetheoriza bulbosa，

Katáotaon סıatńpnonc－Aлعı入É؟

ПANIAA

 Handrinos and Akriotis（1996），Birdlife Intenational（2004）kat Mroúouroupas（2009），η

 nisus nisus（Tбох入оүе́рако），Apus melba（Bouvooтахtápa ท́ £кепарvác），Aquila chrysaetos chrysaetos （Xpuøaとtós），Bubo bubo（Mпои́фо̧），Buteo buteo（「عракiva），Caprimulgus europaeus

 peregrinus（ $\Pi \varepsilon \tau \rho i t \eta \varsigma)$ ），Fringilla coelebs（ \sum nivoç），Garrulus glandarius atricapillus（Kioo α

 Tetrao urogallus（Aүpıókoupкоৎ）．

 Eıбıкótepa：

$\Phi=\Phi \theta^{\prime}$ нón $\omega \rho o$
$X=X \varepsilon \mu \dot{\cos } \boldsymbol{\operatorname { l o s }}$
$A=A v o t \xi n$
$K=K \alpha \lambda$ ок α ipt
2）Kатпŋүoрієя＂Kóккıvou Bı $\beta \lambda i o u$＂：
$K 1=K ı \delta \delta u v \varepsilon u ́ o u v ~ \alpha \dot{\mu} \mu \sigma \alpha$
K2＝Kıvסuveúouv
$T P=T \rho \omega \tau \dot{\alpha}$
$\Sigma=\Sigma \pi \alpha \alpha_{v i \alpha}$

A＝Arробסtópıбт α
3） $\mathrm{K} \alpha \theta \varepsilon \sigma \omega \dot{\omega} \varsigma \pi \rho о \sigma \pi \alpha \dot{\alpha} \alpha$ ：

BON．$=\Sigma$ Ú μ ß α ö Bóvvnc，ótou：

 IEPA乏 MONHE ZOГPAФOY
 каӨعбтడ́s δ ıatripクons

EIAH		（1）	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovouaoía	Eruotף									
＾аилроßои́ті	Gavia arctica			＋				II	II	3
¿коuфоßoutnxtápt	Podiceps cristatus		＋	＋						
Koкkıvoßoutnxtápt	Podiceps grisegena		＋			A		11	11	
Maupoßoutnxtápl	Podiceps nigricoiiis		＋			$A T$		11		
Aptéru¢¢	Caionectris diomedea	＋		＋	＋			11		2
Múxos	Puffinus yeikouan	＋	＋	＋	＋		＊	11		
Kopuopávos	Phalacrocorax carbo	＋								
Oалабооко́ракая	Phaiacrocrax aristoteiis	＋				$T P$	＊	11		
Kputtotaikviás	Ardeoia raiioides						＊	11		3
＾عuкотбukviás	Egretta garzetta	＋					＊	11		
¿taxtotoukviác，	Ardea cinerea	＋								
	Ciconia nigra	$+$		＋	＋		＊	II	11	3
Пе入арүó¢	Ciconia ciconia	＋					＊	11	11	2
Воиßо́кикvos	Cygnus oior		＋						II	
Bарßápa	Tadorna tadorna		＋			$T P$		11	11	
Прабוขокв́фа入П	Anas piatyrhynchos	$+$	＋						II	
इ $\alpha \rho \sigma \varepsilon$ ¢ $\lambda \alpha$	Anas querqueduia	$+$		＋		$A \Gamma$			II	3
	Pernis apivorus	$+$		＋	＋		＊	11	11	
Toítus	Miivus migrans	＋				K1	＊	II	II	3
Ammporápns	Neophron percnopterus	＋				TP	＊	11	II	3
Фíaztós	Circaetus gallicus	＋		$+$	$+$		＊	11	11	3
Калацо́кцкоऽ	Circus aeruginosus	$+$				TP	＊	II	11	
ミтепо́кцрко¢	Circus macrourus	$+$						11	11	
＾ı $\beta \alpha \delta$ о́кıрко¢	Curcus pygargus	＋		＋		K1	＊	11	11	
$\Delta u r \lambda o \sigma \alpha{ }^{\text {a }}$ ，	Accipiter gentiiis	$+$	$+$	＋	＋			11	11	
Tбıх入оүе́рако	Accipiter nisus	＋	$+$		＋			11	11	
Eaivt	Accipiter brevipes	＋			＋		－	II	11	2
「epakiva	Buteo buteo	＋	$+$	＋	＋			11	11	
Xıovoүеракıvа	Buteo lagopus		$+$					11	11	

 IEPAE MONH Z Z $Г$ РРАФOY

EIAH		（1）	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kovíl Ovopuaía	Eтиotף									
Kpauyaetós	Aquila pomarina	$+$				TP	＊	11	11	2
Xpuaxeró¢	Aquila chrysaetos	＋	$+$	＋	＋	TP	＊	11	11	3
ミ̇ıZ̧ątós	Hieraaetus fasciatus	＋	$+$	＋	＋	TP	＊	11	11	3
ミtaupaztó¢	Hieraaetus pennatus	＋				TP	＊	11	11	3
Kıpkıvéz，	Fa／co naumanni	＋		＋		TP	＊	11	I／II	1
Врахокเркіvをไ○	Fa／co tinnuncuius	$+$	＋	＋	$+$			II	11	3
Маирокıркіvȩo	Fa／co vespertinus			＋				II	II	
－еvтроүе́рако	Fa／co subbuteo	＋						11	11	
Mauporterpiths	Fa／co eieonorae	$+$				Ar	－	11	II	2
Хрибоүе́рако	Fa／co biarmicus		$+$			TP	＊	11	11	3
Пerpitns	Fa／co peregrinus	＋				Ar	＊	II	11	
Ayplókoupkos	Tetrao urogaiius	＋	＋	＋	＋	Σ		II		
Петропе́рбıка	Aiectoris graeca	＋	＋	＋	＋					2
Optúkı	Cotumix coturnix	＋		＋	＋	Ar			II	3
Nepóкота	Gaiiinuia chioropus	＋	＋	$+$	＋					
Ф $\alpha \lambda \alpha \rho i \delta \alpha$	Fuilica atra		＋						11	
Потацопфирохt＇s	Charadrius dubius	＋						11	11	
Oaraocoo¢uptxris	Charadrius aiexandrinus	＋	＋					11	II	3
	Vanellus vane／us		＋						II	2
Mпеко́to α	Scoiopax rusticoia		＋						11	3
Потацо́триүүа¢	Actitis hypoieucos	＋	＋					11	11	3
Etepкора́рıо̧	Stercorarius parasiticus			$+$						
	Larus meianocephaius		＋			TP	＊	11	11	
Navóphapos	Larus minutus	$+$						11		3
Каотаvoки́фа入о¢	Larus ridibundus	＋	＋							
\wedge＾лтто́раифоя，	Larus genei		＋			K2	＊	11	11	3
Aıyaıóy入入oos	Larus audouinii			＋		K2	＊	11	1／11	1
Aоппо́үлароя，	Larus cacchinans	$+$	＋	＋	＋					
「ع入оү入ápovo	Gelochelidon ni／otica	＋				K1	＊	II	II	3
	Sterna sandvicensis		＋			A	＊	II	II	2
Потацоү入д́роvo	Sterna hirundo			＋			＊	11	II	
Aурıотєрíotepo	Co／umba iivia	＋	＋	＋	＋					
Фаббопвріттєро	Co／umba oenas	＋	＋	＋	＋	Σ				

EILH		（1）	X	A	K	K．BIB＾．		79／409	BEP．	BON．
Kotví Ovopacia										
Фáooa	Co／umba pa／umbus	$+$	＋	＋	＋					
$\Delta \varepsilon$ кохтои́ α	Streptopelia decaocto	$+$	＋	＋	＋					
Tpuyóve	Streptopelia turtur	＋		$+$	＋					3
Koúkos	Cucu／us canorus	＋		$+$	＋					
Tutú	Tyto alba	＋	＋	$+$	$+$			II		3
「кıล́vワ¢	Otus scops	＋			＋			11		2
Mroúфо¢	Bubo bubo	＋	＋	$+$	＋		＊	II		3
Koukoußáyla	Athene noctua	＋	＋	$+$	$+$			II		3
Xouzoupiotŕs	Strix aluco	$+$	＋	＋	＋			11		
Navóproифо̧	Asio otus	＋	＋	＋	＋			II		
「tઠoßú̧̧	Caprimulgus europaeus			＋	＋		＊	II		2
ミтахтáp α	Apus a pus			$+$	＋					
Eкعrapvá¢̧	Apus melba	$+$		$+$	＋			11		
A入кuóva	Alcedo atthis	＋	＋				＊	11		3
Me入ıбоофর́yos，	Merops a piaster			＋	＋			II	11	3
Xалкокоироúva	Coracias garrulus			＋	＋	TP	＊	11	11	2
Toa入areteılvós	Upupa epops			$+$	＋			II		3
ミтраßо入аípך¢	Jynx torquilla			＋				11		3
	Dendrocopos syriacus	＋					＊	II		
「 $\alpha \lambda$ ıávt $\rho \alpha$	Melanocoryha calandra			＋			＊	II		3
Karoou入tépns	Galerida cristata	＋	＋	＋	＋					3
$\Delta \varepsilon v \tau$ ¢оот $\alpha \rho n \dot{\theta} \rho \rho \alpha$	Lululla arborea	＋	$+$				＊			2
	A／auda arvensis		＋	$+$						3
OxӨохع入i（\％）＾	Riparia riparia	＋		＋				II		3
Bpaxoxe入íSovo	Ptyonoprogne rupestris	$+$			＋			II		
Xe入ıOóvt	Hirundo rustics	$+$		＋	＋			11		3
Δ Evtpoxe入i（ovo	Hirundo daurica	＋		$+$	$+$			II		
Erutoxe入iSovo	Deilichon urbica	$+$		＋	＋			II		3
－Evtpoke入র̇ $\delta \alpha$	Anthus triviaiis			$+$	$+$			11		
Kıtpıvoroucoupá $\delta \alpha$	Motaciiia fiava	＋		$+$	$+$			11		
	Motaciiia cinerea	＋		$+$	$+$			II		
＾єuкобоибоира́ $\delta \alpha$	Motacilia alba	$+$	＋	$+$				11		
Nepoко́тоифа¢	Cinc／us cinc／us	$+$	$+$	$+$	$+$			11		

 IEPA乏 MONH Z ZOTPAФOY

EIAH		（1）	X	A	K	K． $\mathrm{BIB}^{\text {A }}$ ．	79／409	BEP．	BON．
Kotví Ovounoía	Ertotпl								
Tpurodpóxtrs	Troglodytes troglodytes	＋	＋				II		
	Prunella modularis		＋				II		
Xıovoษá λ tn¢	Prunelia collaris	＋	＋	＋	＋		11		
Kouфanరóvt	Cercotrichas galactotes	＋		$+$	＋		11	11	3
Kоккıvо入аiцля	Erithacus rubecula	＋	＋	$+$			II	11	
AnSóvi	Luscinia megarhynchos	＋		＋	$+$		II	11	
Kapßouviápns	Phoenicurus ochruros	＋	＋		$+$		II	II	
Kokktvoúp\s	Phoenicurus phoenicurus	＋		$+$	$+$		11	11	2
K＜otavo入aiuņ	Saxicola rubetra	$+$		$+$			11	11	
Maupodaiuns	Saxicola torquata	＋					II	II	
ミтахтопетро́k入П̧	Oenanthe oenanthe	＋		＋			11	II	3
Aотрокшं $\lambda \alpha$	Oenanthe hispanica	＋		＋			11	11	2
Петроко́тоифа¢	Monticola saxatilis	＋		$+$	＋		II	11	
Га入入̧̧ко́тбифа¢	Monticola solitarius	＋	$+$	＋	＋		11	11	3
Kótouфas	Turd us merula	＋	$+$	＋	$+$			11	
Toix $\lambda \alpha$	Turd us philomelos	＋	＋	＋	＋			II	
Toaproápa	Turd us viscivorus	＋	＋					11	
Weutanరóvi	Cettia cetti	$+$					11	II	
	Locuste／a luscinioides	$+$		＋			II	II	
Tбохлопотаці $\delta \alpha$	Acrocephalus	$+$		＋			11	II	
	Hippolais pallida	＋		＋	$+$		11	11	3
ALootpıtoi α^{α}	Hippolais olivetorum	$+$		＋	$+$	＊	II	11	2
Kıтріvootpıtoi α^{α}	Hippolais icterina	$+$					11	II	
Kокктvotoupoßá ко̧	Sy／via cantillans			＋			11	11	
Maupotoبpoßáко¢	Sy／via melanocephala		$+$				11	II	
Аеvтротоирора́ко¢	Sy／via hortensis	＋		＋	$+$		11	11	3
＾алотоөроßа́коя	Sy／via curruca	$+$		＋	$+$		11	11	
	Sy／via communis	＋		＋	＋		11	11	
Кппотборовако¢	Sy／via borin	＋					11	II	
Maupoosoúфп¢	Sy／via atricapiiia	＋	＋				11	11	
Воuvoфи入入оско́то̧，	Phyloscopus boneiii	＋		＋	＋		11	II	2
Аеутрофи入лобко́тоৎ	Phyloscopus coiiybita	＋	＋	＋			11	11	
Өанvофи入入оско́тоৎ	Phyloscopus trochilus	＋					11	11	

IEPA乏 MONH Z ZOГPAФOY

EIAH		（1）	X	A	K	K．BIB＾．		79／409	BEP．	BON．
Kotví Ovouacía	Ertotnuovıkí Ovouaoí									
Xpuбоßабі入íбоя	Regu／us reguius	$+$		$+$				II	II	
Baoriónos	Regu／us ignicapiiius	＋	＋					II	11	
Muyoxáфṫs	Muscicapa striata	＋		＋	$+$			11	11	3
Navouuүoxáфṫ¢	Ficeduia parva	＋					＊	11	11	
Mavpouvyoxáфṫs	Ficeduia hypoieuca	＋						II	11	
Alvi θ ajos	Aegithaios caudatus	＋	＋	$+$	＋			11		
	Parus pa／ustris	$+$	＋	$+$	$+$			II		
	Parus iugubris	$+$	＋	$+$	＋			11		
＾офопапабітб	Parus cristatus	＋	$+$	＋	＋			II		
E入atoranaסito	Parus ater	＋	＋	$+$	＋			11		
	Parus caeruieus	＋	$+$	＋	$+$			II		
Ka入óyepos	Parus major	＋	＋	$+$	$+$			II		
Kauroozevtpopátn¢	Certhia brachydactyia	$+$	＋	＋	$+$			II		
\evtpotoonavákos	Sitta europaea	$+$	＋	$+$	$+$			II		
Врахотоопаvákos	Sitta neumayer	$+$	＋	$+$	＋			11		
2ßapviotp	Tichodroma muraria		＋			Σ		II		
¿uкофа́үos	Orioius orioius	$+$		$+$	＋			II		
Aहtopáxos	Lanius coiliurio	＋		$+$	$+$		＊	11		3
Гаıбоирокефала́द，	Lanius minor	＋		$+$	＋	AT	＊	11		2
	Lanius senator	$+$		＋	＋			11		2
	Lanius nubicus	$+$				Σ		II		2
Kíco α	Garruius giandarius	$+$	＋	$+$	$+$					
	Pica pica	$+$	$+$	$+$	$+$					
Káppla	Corvus moneduia	$+$	＋	＋	$+$					
Koupoúva	Corvus corone	$+$	＋	$+$	$+$					
Kópaka¢	Corvus corax	＋	＋	$+$	$+$					
Yapóvt	Sturnus vulgaris	$+$	＋	＋	$+$					3
Enoupyitns	Passer domesticus	$+$	＋	$+$	$+$					3
Xwpaфоortouppitns	Passer hispaniolensis	$+$		＋	＋					
Петроотоирүitns	Petronia petronia	＋	$+$	＋	＋			II		
	Fringilla montifringilla		$+$							
zrivos	Fringilla coe／ebs	$+$	＋	＋	$+$			11		
ミкарө́ккı	Serinus serinus		＋					II		

EIAH		（1）	X	A	K	K．BIBA．		79／409	BEP．	BON．
Koıví Ovou＾aía	Erıoппนovıkń Ovouaoía									
	Carduelis chioris	＋	＋	＋	$+$			11		
	Cardueilis cardueiis	＋	＋	＋	$+$			11		
＾óuyapo	Cardueiis spinus		＋					11		
Фаvغ่то	Cardueiis cannabina	＋	＋					11		2
Xovtpouútns	Coccothraustes	＋	$+$	＋	＋			11		
	Emberiza cirius	＋	＋					11		
Bouvotoixhovo	Emberiza cia	＋		$+$	$+$			11		3
B $\lambda \dot{\alpha} \chi$ оs	Emberiza hortuiana	＋		$+$	$+$		＊	11		2
Exoupóß ${ }^{\text {a }}$ 人xos	Emberiza caesia	＋		$+$	$+$		＊	II		
	Emberiza meianocephaia	＋		＋	$+$			11		2
Tбıфт ${ }^{\text {che }}$	Miliaria calandra	＋		$+$						2
Eúvo入o：	173					29	40	134	81	68

Өa入aбooкópakac（Phalacrocorax aristotelis）
K $\alpha \vartheta \varepsilon \sigma \tau \omega ่ \varsigma ~ \pi \alpha \rho о и \sigma i \alpha c ̧ ~-~ \pi \lambda \eta \vartheta ท \sigma \mu o ́ \varsigma ~$

Oıкодоуіа

£ \quad 亿そ $\alpha \varepsilon$ tó（ （Hieraaetus fasciatus）

K $\alpha \vartheta \varepsilon \sigma \tau \ddot{\varsigma ~ \pi \alpha \rho о \cup \sigma i \alpha \varsigma ~-~ \pi \lambda \eta \vartheta ิ ข \sigma \mu o ́ \varsigma ~}$

Oıколоүіа

Areı入éc

 каı $\eta \eta \lambda \varepsilon к т \rho о \pi \lambda \eta \xi i \alpha$ ．

Фıбаєtóc（Circaetus gallicus）
K $\alpha \vartheta \varepsilon \sigma \tau \omega ் \varsigma ~ \pi \alpha \rho о \cup \sigma i \alpha \varsigma ~-~ \pi \lambda \eta \vartheta ั \cup \sigma \mu o ́ \varsigma ~, ~$

Оккодоүіа

 бабока́ $\lambda u \not \eta$ ．

Xpu⿱㇒日धtóc（Aquila chrysaetos）

K $\alpha \vartheta \varepsilon \sigma \tau \omega ́ \varsigma ~ \pi \alpha \rho о \cup \sigma i \alpha \varsigma ~-~ \pi \lambda \eta \vartheta \vartheta v \sigma \mu o ́ \varsigma ~$

 $\sigma \tau \alpha$ ठutiká tou Avtiá $\theta \omega \mathrm{w} \alpha$ ．

〈عuүर́pı α（Tucker \＆Heath 1994，BirdLife International 2004）．

Оıкодоуік

Алєииと́ऽ

 $\pi \rho о \sigma \tau \alpha \tau \varepsilon \cup ́ \sigma o u v ~ t \alpha ~ Ө \eta \rho \alpha ́ \mu \alpha t \alpha ́ ~ t o u c . ~$.

 то ε íठос．

ПЕtpitns（Falco peregrinus）

 $\mu \varepsilon \tau \alpha \xi u ́ 100$ каı 250 ̧zuүápıa（Tucker \＆Heath 1994）．

Oıкодоуіа

 $\alpha \varepsilon ́ p \alpha$ ．

Areılés

Bouvootaxtápa（Apus melba）

Оєкодогік

Апвاไе́ऽ

On $1 \alpha 0$ тik α

 （Erinaceus concolor），η vavouuүa入i $\delta \alpha$（Sorex minutus），η к $\eta \pi$ оиuү $\alpha \lambda i \delta \alpha$（Crosidua suaveolens），$\eta$
 citelus），о μ крротифлопóvtıkаৎ̧（Spalax leucodon），о траvorovtıкós（Spalax mikrophthalmus），о
 бабопоvtıkó̧（Sylvaemys sylvaticus），o apoupaioç（Microtus arvalis），o β рахопоvtıkó̧（Apodemys ystacinus）．

 （Murr．）Barr，ouv．Endothia parasitica（Murr．）Anderson кaı é $\chi \varepsilon \iota ~ \varepsilon ү к \alpha \tau \alpha \sigma t a \theta \varepsilon i ́ ~ к \alpha ı ~ \varepsilon \pi \varepsilon к т \alpha \theta \varepsilon i ~ o \tau \eta v ~$

 vekpŕ opyavikń ú $\eta \eta$ к $\lambda \pi$ ）．

 arudinaceum，Apiospora montagnei，Porpolomyces farinosus，Microthyrium ilicinum каı по $\quad \lambda{ }^{2} \omega$

 Amanita virosa，Paxillus panuoides（ $\Pi \alpha \dot{\varepsilon} \xi \lambda \lambda$ o̧ o $\pi \eta v i o ́ \mu \circ \phi \circ \varsigma$ ），Suillus collinitus，Mycena atrocyanea

 катаүpaфzi ot orávtot $\alpha \sigma \kappa$ оиúкпtȩ Mollisia cinerea，Ciboria americana，Lanzia echincephala， Rustroemia firma，R．sydowiana，Sarcoscypha coccinea（ $£ \alpha \rho к о \sigma к и ́ \phi \eta ~ \eta ~ к o ́ к к ı v \eta) ~ к . \alpha . ~ M e t \alpha ६ u ́ ~ t \omega v ~$

 Caloscypha fulgens（Ka入ookúф η ү үua入ıotepŋ́），Pithya vulgaris（ Π iӨúa η кotvń），Cortinarius

 фрдоu入óнорфо）к．α ．（NTáфп乌̧ к．$\alpha .1997$ ）．

 $\mu \varepsilon$ tov катаквриатьб

ITHN ПEPIOXH MEAETHE

1．3 AААEू ГXETIKE乏 ПАНРОФОРІЕू ПОО АФОРОҮN ГTHN ПEPIOXH MEЛETH乏

1.4 ФЛТОГРАФІКН ТЕКМНРIএЕН

1.5 KATAIPAФH TH乏 KATA乏TA乏H乏 TOY ФYЕIKOY ПEPIBAAMONTO乏 ITHN ПEPIOXH TOY
 AIKTYOY NATURA 2000

1．5．1 Etóxol δ ıatńpnons tns olkias π пeploxńs Natura 2000

Aró to d́p $\theta \rho$ ро 8 тоu N．3937／2001

ع．切 ouvo λ ıkń đuvoxń tou δ uktúou «Natura 2000»．

 ठıatńpŋotis tou．

 тıs 20 โerte μ ßpiou 2012.

TÚTO¢ OLKOtútou	Kんరıkó¢	K\＆入uџๆ（\％）тワৎ теріохウ́я Natura	Avturpoowitqutuкótŋт α	Erıф́́veıa 	Karaoraon ＊4	
－$\Delta \varepsilon v \delta \rho o \varepsilon เ \delta \check{n}$ Matorrals $\mu \varepsilon$ Juniperus spp．	5210	1	D			
－$\Delta \varepsilon v \delta \rho o \varepsilon t \delta \tilde{́}$ Matorrals $\mu \varepsilon$ Laurus nobilis	5230	1	C	A	C	B
－इưTádeç $\delta \alpha \dot{\alpha} \phi \mathrm{v} \eta \mathrm{S}$	5310	1	C	A	C	B
Euphorbia kovtá $\sigma \varepsilon$ $\alpha \pi o ́ к \rho \eta \mu v \varepsilon \varsigma ~ \beta \rho \alpha \chi \omega ́ \delta \varepsilon เ \varsigma$ акте́ऽ	5320	2	A	A	B	A
－Dpúyava Sarcopoterium spinosum	5420	4	A	C	B	B
－Aбßeбтои́xol а入лıкоí $\lambda \varepsilon ц \omega \dot{v \varepsilon \varsigma}$	6170	3	C	B	B	B
－At日ん́vectinc Avato入ıкйৎ Meбoүعiou	8140	3	B	B	B	B
－$\Delta \alpha ́ a n ~ o ६ u a ́ c ̧ ~ a r o ́ ~$ Luzulo－Fagetum	9110	1	D			
－A入入oußıaká סáon $\mu \varepsilon$ Alnus glutinosa кגı Fraxinus excelsior	91 E0	1				
－Δ áon $\mu \varepsilon$ Castanea sativa	9260	39		A	A	A
$\mu \varepsilon$ Abies borisii－regis	9270	1		C	B	C
－$\Delta \dot{\alpha} \sigma \eta \eta$ oçıá $\mu \boldsymbol{\mu}$ Quercus	9280	5		B	A	A

*3. ミxetukị eruфávela. Avaropia tnऽ rapouoíac (ρ) tou tú

α / α		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii			V	
4	Asperula aristata ssp. thessala		X		
5	Astragalus thracicus ssp. monochorum		X		
6	Atropa belladona	r		R	
7	Aubrieta erubescens			X	
8	Beta nana		X		
9	Campanula lavrensis		X		A
10	Centaurea pannosa	A			A
11	Centaurea peucedanifolia				

Erényñoeic Mivaka 3

α / α		1	2	3	4
12	Cephalanthera longifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		A \triangle
15	Fritillaria euboeica		X	R	
16	Fritillaria graeca		X		A \triangle
17	Helichrysum sibthorpii			V	
18	Hypericum athoum		X		
19	Isatis tinctoria ssp. athoa		X		A \triangle
20	Limodorum abortivum	B			A
21	Linum leucanthum		X		
22	Linum olympicum ssp. athoum		X		
23	Neotinea maculata	B			
24	Neottia nidus-avis	B			
25	Polygonum icaricum		X		A
26	Silene echinosperma		X		
27	Silene multicaulis ssp. genistifolia		X		
28	Silene orphanidis	A		V	
29	Viola athois		X		A \triangle

2．Ev δ пйкó．Nal；X．

α / α		E入入Пレıкй ovouacia	
1	Phalacrocorax aristotelis	Өклаббоко́ракая	 $\pi \lambda \eta \theta \cup \sigma \mu \circ$ ．
2	I－lieraaetus fasciatus	ミrı̧ątó¢	H $\pi \varepsilon \rho$ เox каı фıло乡вvعí＞1\％tou عӨvıкоú $\pi \lambda \eta \theta \cup \sigma \mu \circ$ и́．
3	Puffinus yelkouan	Múxos	Kpıtŕpıo Bird Life ：B1ii，C3

α / α	Ertorпpovıки́ ovo $\mu \alpha \sigma$ i α		Eí̧n opioeźtŋoņ
1	Circoetus gallicus	Фıठaztó¢	
2	Aquila chrysaetos	Xpuoartós	

α / α			
3	Falco peregrinus	Петрitns	
4	Apus melba	Bouvootaxtápa	

 aú̧̧vovtal-

 twv фuđıкผ́v otкóturtwv otou onoiouç avŋ́кet

1.5.3 Kúpıé тแés $\alpha v \alpha \phi \circ \rho \alpha ́ s$

 $\pi \rho o ́ к \varepsilon เ t \alpha \iota ~ v \alpha ~ \pi \rho о к u ́ \psi o u v ~ \mu o ́ v o ~ \alpha \pi o ́ ~ \sigma \chi \varepsilon т ı к ウ ́ ~ \mu \varepsilon \lambda \varepsilon ́ t \eta ~ t o u ~ Y П Е К А . ~$

Mére ${ }_{\text {cos }}$	K ω \%uós	Характпрібио́я
$\chi \alpha \mu \eta \lambda \eta \dot{\prime}$	B01.02	
$\chi \propto \mu \eta \lambda \dot{\prime}$	E01.03	
$\chi \propto \mu \eta \lambda$ ń	A01	
$\mu \varepsilon ́ \tau \rho ı \alpha$	109	

 2000 - STANDARD DATA FORM

$160 \Delta \alpha \sigma$ кки́ бıахદipıon

948 Пиркаүıó aró фuđıко́ גítıа

 та ठáoŋ к α отаviác．

Пuркауıе́ऽ

 μ и́коৎ тп̧ Xepoovர்бou．

1．5．5 Oико入оүике́я $\lambda \varepsilon$ เтоupvies

 Epyou．

 $\lambda i \mu v e \varsigma$
$>$ Elaphe quatuorlineata IUCN－NT，Kóккıvo Bıß入io E入入áס
 Δ tátaүна 67／1981）－OXI

 67／1981）－OXI

 －OXI

＞Mauremys rivulata IUCN－LC，Kókкivo Bıß入io E入入á $\delta \alpha \varsigma ̧$－LC，Annexes II of the EU Natural Habitats Directive－OXI
 ичо́иетра

 67／1981）－NAI
 каı ठабıка́ ßобкото́тıа．

 Δ tát α ү $\mu \alpha$ 67／1981），－NAI

 каı $\mu \varepsilon ү \alpha \dot{\lambda} \lambda \alpha$ ס $\alpha \sigma$ кর́ $\sigma \cup \sigma \pi n ́ \mu \alpha \tau \alpha$

 EKO n nү＇ 92 2／43／EOK，OXI
＞Platanus orientolis PD67／81 חoגú kotvó đe rotá $\mu \mathrm{OXI}$
 arapiӨ

＞Trapa natans Annex II of Council Directive 92／43／EEC OXI
＞Pancratium maritimum Annex II of Council Directive 92／43／EEC OXI
＞Fraxinus angustifolia Annex II of Council Directive 92／43／EEC OXI
＞Groenlandia densa Annex II of Council Directive 92／43／EEC OXI
＞Lutra Lutro IUCN：NTKókкıvo Bı $\beta \lambda$ io E $1 \lambda \alpha \dot{\alpha} \delta \alpha c$ EN－OXI
 трофท́
＞Monachus monachus Eíßn rou avaфépovtat oto áp日po 4 tņ oठnүíaç 2009／147／EK каи

 Пара́ртпи α V．Проотабі́а CITES－OXI

＞Aquila pomorina 2009／147／EC：Пapáptn $\mu \alpha$ I，£ú $\mu \beta a o n ~ t n c ̧ ~ B e ́ p v \eta c ̧ ~ I I, ~ \Sigma u ́ \mu ß \alpha o n ~ t n c ̧ ~ B o ́ v v n c ̧ ~ I I, ~$
 к $\omega v o \neq o ́ \rho \omega v$ OXI

 uүрото́лоис $\mu \varepsilon$ а $\mu \mu$ о́лофоuс．OXI
＞Buteo rufinus 2009／147／EC：Пapáptnu人 I，£úußaon tns Bépvņ II，£úußaon tns Bóvvnc II，

＞Calandrella brachydactyla 2009／147／EC：Пapáptnua I，£ú $\mu \beta a \sigma \eta$ Bépvnc II，KBE－E入入á $\delta a c:$ ：NE，

 про́бßаоп $\sigma \varepsilon \varepsilon \lambda \dot{\varepsilon} \delta \eta$ uүpotóтоuc．OXI

＞Circus aeruginosus 2009／147／EC：Парáptn $\mu \alpha$ I，£ú $\mu \beta \alpha \sigma \eta$ tnç Bépvnc II，£ú $\mu \beta \alpha o \eta ~ t \eta ̧ ~ B o ́ v v \eta c ̧ ~ I I, ~$ CITESII／A，KBE－Eג入ᄉ́d $\delta \varsigma$ ：VU，IUCN：OXI

 E入入á $\delta a c$ ．
 KBE－E $\lambda \lambda \alpha \dot{\delta} \delta \alpha \varsigma \Lambda / v$, IUCN：OXI

 हкта́бモเร．

＞Haliaeetus albicilla 2009／147／EC：Пард́ptn $\mu \alpha$ I，£ú μ ß $\alpha \sigma \eta$ Bépvnc II，Bonn Convention I／II，CITESI，

 OXI

Eסaфóßıo عíסo̧，π ，

ミпиعíwon via Tnv лepioxí：

 aктเvoßо入iec．

2．$\triangle E O Y \Sigma A$ EKTIMH乏H KAI AこIO＾OTH乏H T ΩN EПIПT $\Omega \Sigma E \Omega N$

 елеईерүа⿱㇒́ac).

3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma T \Omega N ~ \Pi I \Theta A N \Omega N ~ E \Pi I \Pi T \Omega \Sigma E \Omega N$

 halepensis，P．nigra к $\alpha \iota$ Abies pseudocilicica），$\mu \alpha \not \subset i \mu \varepsilon \mu \kappa \pi \alpha \dot{d} \delta \alpha \dot{\alpha} \sigma \eta$ ．H корифń tou ßouvoú eivaı $\mu \varepsilon$

 Quercus coccifera．

 Пعрıßג́入入ovto̧（1992），$\pi \varepsilon \rho \iota \lambda \alpha \mu \beta \alpha \dot{v} o v t \alpha \iota ~ 5 \tau \alpha \xi\llcorner$（Corydalis integra，Osmunda regalis，Oxytropis

 Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．Orbelicus，Neottia nidus－ avis，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus） $\pi \rho \circ \sigma \tau \alpha \tau \varepsilon u ́ o v t \alpha \iota ~ \alpha \pi o ́ ~ t o ~ \varepsilon \lambda \lambda \eta v i k o ́ ~ \pi \rho о \varepsilon \delta \rho ı к o ́ ~ \delta t a ́ t a ү \mu \alpha ~(67 / 1981), ~ 3 ~ \varepsilon i \delta \eta ~(H e r a c l e u m ~ h u m i l e, ~$
 $\beta a \lambda_{k \alpha v i k \alpha ́ ~ e v \delta \eta \mu u \kappa \alpha ́ ~(A l l i u m ~ c h a m a e s p a t h u m, ~ A r a b i s ~ b r y o i d e s, ~ A s p e r u l a ~ a r i s t a t a ~ s s p . ~ N e s t i a, ~}^{\text {s }}$ Colchicum doerfleri，Erysimum drenowskii，Stachys leucoglossa）kaı 1 taॄı̨vouккóc（Thymus thracicus）．

 tou入áxเซтov 420 eí η ．

 бто vótio ák

 $\pi a ́ v \omega$ aró 100 ह́tๆ．

 пupkaүıáç عivaı η Fritillaria euboeica (Phitos et al. 1995).

 тŋऽ $\pi \alpha v i ́ \delta \alpha \varsigma$:

 $\tau \omega v$:
 סáon)

5. $\pi \varepsilon \rho เ о \chi \omega ́ v ~ \mu \varepsilon ~ п о \lambda \lambda \alpha ́ ~ \omega ́ \rho ц \mu \alpha ~ / ~ ү \varepsilon ́ p ı к \alpha ~ \delta \varepsilon ́ v \delta \rho \alpha ~$

- A про́бкроuøns

 غ́ppwv.

4．ANTI乏TAOMIITIKA METPA

N．4014／2011

Enimtwon	Mżto α
そぶvns हpyacias	 о $\delta \iota к \grave{́} \pi \rho o ́ \sigma \beta \alpha o ̈ ~ к а \iota ~ ү ı \alpha ~ t \eta v ~ к \alpha ́ \lambda u \psi \eta ~ \alpha ́ \lambda \lambda \omega v ~$

Enirtwon	Métp α
ф $\omega \lambda \varepsilon$ опоínons	 （то ह́pyo عivaı ло入ú μ ıкрó）
Пробшріvท́ óx入noף．	

4．3 A Aıо入óvnon μ и́т $\rho \omega v$ avtiotá $\theta \mu i \sigma n s$

 $\mu \pi о р \varepsilon i v \alpha \varepsilon \xi \alpha \lambda \varepsilon ı \phi \tau \varepsilon i)$ ．

 $\pi \lambda \dot{\rho} \rho \omega \varsigma$ ．

 проотатєио́ μ हทクऽ перเохŋ́s．
 тпv $\alpha \rho \mu o ́ \delta ı \alpha \alpha \rho \chi$ ！́．

- $\Delta \varepsilon v$ Ө α пр

- Na unv δ nutoupyoúvial « $\lambda \mu$ voú $\lambda \varepsilon \varsigma » ~$

5. ПРОГРАММА ПАРАКОЛОҮОНЕНЕ

 каӨoptotoúv.

 K $\alpha \mathrm{t}$ tŋレ KYA 5673／400／1997（ФЕK 192／B－14．3．1997）

 пплтикйऽ $\delta \varepsilon \xi \alpha \mu \varepsilon v \eta ́ \varsigma$.
－Пробтабía tПৎ $\delta \eta \mu о ́ \sigma ı \alpha \varsigma$ иүعías．

Перı $\beta \alpha \lambda \lambda о$ тьки́ тарако入ои́Өпап

 ＂arepiópiotך ג́ $\rho \delta \varepsilon u \neq \eta$＂．

Eloep犭óuєvo opvavikó بoprio

－＇Eスहүхоऽ от $\theta \mu \eta \varsigma ~ \alpha v \tau \lambda เ о \sigma т \alpha \sigma i \omega v$

 $\lambda u \mu \alpha ́ \tau \omega v$.

 oдoк入ńp ω oń touc．

ПAPAMETPOE	EIzOAOE	EEOAOE	INYE	\triangle EIrMA	ПАРАТНРН乏Eİ
BOD_{5}	\＃	\＃		M．H	
COD	\＃	\＃		M．H	
SS	\＃	\＃		M．H	
А $\mu \mu \omega v \iota \alpha \kappa \dot{\alpha}, v t \tau \rho \omega \dot{\delta} \eta$ ， vıtpıкג́	\＃	\＃		M．H	
TP	\＃	\＃		M．H	

$+\quad: \Sigma \cup \sigma \tau \eta \mu \alpha \tau \kappa \dot{\alpha}(\kappa \alpha \theta \eta \mu \varepsilon \rho เ v \alpha \dot{\alpha} \dot{n} \sigma u v \varepsilon \chi(\omega \varsigma)$
\＃：Пєрьоб七к $\dot{\alpha}$（ $\pi . \chi .1-2 / \mu \eta \nu \iota \alpha i \omega ؟)$
＊：$\Sigma \pi$ о $\rho \alpha \delta$ เк α

6．$\Sigma Y N O \Psi H ~ \Sigma Y M \Pi E P A \Sigma M A T \Omega N$

 $\lambda u \mu \alpha \dot{\tau} \omega v$ ：

 $\pi \varepsilon \rho ı \alpha \dot{\lambda \lambda o v . ~}$

Me тпv катабкєuท́ тou épyou:

H $\lambda \eta \dot{\psi} \eta \pi \rho \circ ́ \sigma \theta \varepsilon \tau \omega v \mu \varepsilon ́ \tau \rho \omega v \delta \varepsilon v$ крivetau $\alpha \pi \alpha \rho \alpha i t \eta \tau \eta$.

7．BIBАIOГРАФIKE乏 ПHГE乏

 Poठórıns．A日ŋ́va．

－EгYE Atoypaф́́ 1991.

－Dimou D，Gikas GD，Tsihrintzis VA：＂Water quantity and quality monitoring of Lissos river，North Greece＂，Proceedings of the Third International Conference on Environmental Management， Engineering，Planning and Economics（CEMEPE 2011）\＆SECOTOX Conference，2011，Skiathos， Greece，p．151－157
 Etaıpiac，© $\varepsilon \sigma /$ víkn Arpîıış 2004
－Гtavvóлtou入oc，PYПANEH T ΩN Y $\triangle A T I N \Omega N ~ \Sigma \Omega M A T \Omega N ~ A П O ~ T H N ~ K Y K \wedge O Ф O P I A ~ T \Omega N ~ O X H M A T \Omega N ~$

－＂The AOPII Cost Effectiveness Study Part III：The transport base case Annex B4 Greece，The European Commission，Standard \＆Poor＇s DRI and KULeuven＂

－Taylor，E．C．，Green，R．E．，\＆Perrins，J．（2007）Stone－curlews Burhinus oedicnemus and recreational disturbance：developing a management tool for access．Ibis， 149 （1），37－44．
－Tucker，G．M．\＆Heath M．F．，（1994）Birds in Europe：Their conservation status．Cambridge，UK．： BirdLife International（BirdLife Conservation Series No 3）
－Barros，C．\＆De Juana，．E．（1997）Breeding success of the Stone Curlew Burhinus oedicnemus at La Serena（Badaioz，Spain）．Ardeola 44 （2），199－206．
－Bealey，C．E．，Green，R．E．，Robson，R．，Taylor，C．R．，Winspear，R．（1999）Factors affecting the numbers and breeding success of Stone Curlews Burhinus oedicnemus at Porton Down，Wiltshire． Bird Study 46 （2），145－156．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．
－Giannangeli，L．，De Sanctis，A．，Manginelli，R．，Medina，F．M．（2005）Seasonal variation of the diet of the stone curlew Burhinus oedicnemus distinctus at the Island of La Palma，Canary Islands． Ardea 92 （2），175－184．
－Green，R．E．，Tyler，G．A．，Bowden，C．G．R．（2000）Habitat selection，ranging behaviour and diet of the stone curlew（Burhinus oedicnemus）in southern England Journal of Zoology 250 （2），161－183．
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Thompson，S．，Hazel，A．，Bailey，N．，Bayliss，J．，Lee J．T．（2004）Identifying potential breeding sites for the stone curlew（Burhinus oedicnemus）in the UK．Journal for Nature Conservation 12， 229 － 235.
－Catry T．，Ramos JA．，Catry I．，Allen－Revez M．，Grade N．， 2004 Are salinas a suitable alternative breeding habitat for Little Terns Sterna albifrons？IBIS 146 （2）：247－257 APR 2004
－Fasola M．，（1993）Distribution，population and Habitat Requirements of the Vommon Tern and the Little Tern breeding in the Mediterranean in Aguilar，J．S．，Monbailliu，X．Paterson，A．M．Status and Conservation of Seabirds，Proceedings of the 2nd MEDMARAVIS，SEO，Madrid
－Goutner V．，Charalambidou T．，\＆Albanis A．（1997）Organochlorina Insecticide Residues in Eggs of the Little Term（Sterna albifrons）in the Axios Delta，Greece．Bull．Environmental Contamination and Toxicology 58－61－66
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Joris E．，\＆Stienen E．，（2009）Impact of wind Turbines on Terns in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．
－Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute （VLIZ）．Oostende，Belgium．Viii＋68 p．
－Medeiros R．；Ramos J．，Paiva V．，Almeida A．，Pedro P．，Antunes S．（2007）Signage reduces the impact of human disturbance on
－Little tern nesting success in Portugal，Biological Conservation 135 （2007）99－100

－Ruben F．，Krijgsveld K．，Camiel Heunks，Martin Poot \＆Sjoerd Dirksen．（2009）Nocturnal and Diurnal Flight Intensity and Altitude of Seabirds and Migrants in and around an Offshore WindFarm in the Dutch North Sea in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．
－Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute（VLIZ）．Oostende，Belgium．Viii＋68 p．

三 $\alpha v \Theta \eta$ 2006．$\sigma \varepsilon \lambda . ~ 64$
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－BirdLife International（2008）Species factsheets．Downloaded from http：／／www．birdlife．org Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Mullarney K．，Svensson L．，Zetterstrom D．，\＆Grant P．，（1999）Ta Пlou入ıá tףc E $\lambda \lambda \dot{\alpha} \delta \alpha \varsigma$ ，tทৎ Kúr ρ ou каı тŋ̧ Eupúmŋ̧．

－Xavסрıvó̧ Г．，（1992）Mou入ıд́ oto Kapavסєıvó̧ M．，＾eүákı̧ A．To Kóккıvo Bıß入io twv
 OpvıӨо入оүเкй Eтаıрвía．
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．

- De La Montana, E., Rey-Benayas, J.M., Carrascal, L.M. (2006) Response of bird communities to silvicultural thinning of Mediterranean maquis. Journal of Applied Ecology 43, 651-659.
- Guerrieri, G., Pietrelli, L., Biondi, M. (1996) Status and reproductive habitat selection of three species of Shrikes, Lanius collurio, L. senator and L. minor in a Mediterranean area. (Proc. of the First Intern. Shrike Symposium) Found. Vert. Zool. 6, 167-171.
- Handrinos, G., \& Akriotis, T., (1997) The birds of Greece. C. Helm, A \& C Black, London.
- Isenmann, P., Debout, G. (2000) Vineyards harbour a relict population of Lesser Grey Shrike (Lanius minor) in Mediterranean France. Journal fur Ornithologie 141 (4), 435-440.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) Philopatry, dispersal patterns and nest-site reuse in Lesser Grey Shrikes (Lanius minor). Biodivers. Conserv. 16, 987-995.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) The importance of breeding density and breeding synchrony for paternity assurance strategies in the lesser grey shrike. Folia Zoologica 57 (3), 240250.
- Kristin, A., Hoi, H., Valera, F., Hoi, H. (2000) Breeding biology and breeding success of the Lesser Grey Shrike (Lanius minor) in a stable and dense population. Ibis 142 (2), 305-311.
- Lepley, M., Ranc, S., Isenmann, P., Bara, T., Ponel, P., Guillemain, M. (2004) Diet and gregarious breeding in lesser Grey Shrike (Lanius minor) in Mediterranean France. Revue d'Ecologie (La Terre et la Vie) 59 (4), 591-602. Pons P., Lambert B., Rigolot E., Prodon, R. (2003) The effects of grassland management using fire on habitat occupancy and conservation of birds at a mosaic landscape. Biodiversity and Conservation 12, 1843-1860.
- Ristow, D., Wink C., Wink M. (1986) Assessment of Mediterranean Autumn Migration by Prey Analysis of Eleonora's Falcon. Proc. 1st Conf. on Birds wintering in the Mediterranean Region, Aulla Feb. 1984. Supplemento alle Ricerche di Biologia della Selvaggina 10(1), 285-295.
- Tucker, G. M. \& Heath M. F., (1994) Birds in Europe: Their conservation status. Cambridge, UK.: BirdLife International (BirdLife Conservation Series No 3)
- Valera, F., Kristin, A., Hoi, H. (2001) Why does the lesser grey shrike (Lanius minor) seldom store food? Determinants of impaling in an uncommon storing species. Behaviour 138 (11-12), 14211436.
- Wirtitsch, M., Hoi, H., Valera, F., Kristin, A. (2001) Habitat composition and use in the lesser grey shrike (Lanius minor). Folia Zoologica 50 (2), 137-150

 Bıotwvi $\delta \alpha \varsigma$, l $\sigma \mu \alpha \rho i \delta \alpha \varsigma)$), Boskidis et al., 2010 (J., Envir., Scien., Health, 45,11, 1421-1440, Changes of water quality and SWAT modelling of Vosvozis river basin),
 Өра́кпऽ),
- Economou et al., 2007 (Medit., Mar., Scien., 8,1,91-166, The freshwater ichthyofauna of Greece),

- Papastergiadou, Babalonas, 1993 (Willd., 23,137-142, Aquatic flora of N.Greece)Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),
- Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),

 ОППЕО 97
 Екסóбசเऽ OППЕӨ 97.
 A日ウ́va．
－Zagas，T．D．，P．P．Ganatsas，T．K．Tsitsoni and Marianthi Tsakaldimi．2004．Thinning effect on stand structure of holm oak stand in northern Greece．In：
－Arianoutsou，M．and V．P．Papanastasis（eds），Proceedings of the 10 th MEDECOS Conference，April 25－May 1，2004．Rhodes，Greece．Millpress，Rotterdam．

 117.
－Grisebach，A．1841．Reise durch Rumelien und Brussa in jahre 1839，1．2 Gottingen．
－Mattfeld，J．1927．Aus wald und macchie in Griechenland．Dendrol．Ges．38：106－151．
 Apvaiac．Өعббба入ovíkn．

8．OMADA ME＾ETH乏

Tn 入．／Fax： 2310902321 ／ 2310330630
$\Sigma \phi \rho \alpha ү i \delta \alpha-Y \pi о ү \rho \alpha \phi{ }^{\prime}$

Oroodiovikn $14 / 4 / 20.22$ ГIA TON EへETXO O EПIB $\triangle E \Pi \Omega M T A$ ME $\mathcal{M} T H$

Móoxos Tounaぞ心́tns \triangle aбo入о́үоऽ $\mu \varepsilon A^{\prime} \beta$ ．

EへETXOHKE
08бoaरovikn ．．．．．14．．／4．／20．22
O ПPOİTAMENO乏
TMHMATOE $\triangle A E Q N \& ~ П E P G A M A O N T O \Sigma$
 $\triangle a 00 \lambda$ र́YOC $\mu \varepsilon$ Á β

OEתPHOHKE

Oعooodovikn．．．14／4／2022．
O $\triangle I E Y O Y N T H \Sigma$ TH乏
TEXNIKHE YHHPELIA

「عढ́pүıos Matpaná̧̧ņ Подıtкós Mnxaviós μ ع A＇β ．

ПАРАРТНMAI

[^0]: M．П．E．EPISN EПE＝EPTAEIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ I . ~ M . ~ Z \Omega Г P A Ф O Y ~-~ M H ~ T E X N I K H ~ П E P I A H \Psi H ~-11-~$

[^1]:

[^2]: -131

 M．П．E．EPTSN EПEEEPTAEIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K S I N ~ A Y M A T S N ~ I . ~ M . ~ Z \Omega R P A Ф O Y ~$

