IEPA KOINOTHTA AIIOY OPOYE $A \Theta \Omega$

ЕРГО：
 ＜ЕРГА ЕПЕЕЕРГAГIA ェTO AГION OPO乏»

 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~ Ф I \Lambda O O E O Y ~$

ANADOXOE MEAETHE

EYミTPATIOE KAPAГERPTIOY
ПАПАФН 82， 54453 ӨЕЕ乏ААОNIKH
email：skarageo＠gmail．com

ЕРГО：
 «EPГA EПE＝EPTA乏IA乏 KAI AIAOE $H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ \Sigma T O ~$ AIION OPOE»

MEAETH ПEPIBAMMONTIKSN EПIITTSEERN EPISN EITEEEPIAEIAE KAI AIAOEEHE AETIKSN AYMATRN I．M．ФI＾OOEOY

MH TEXNIKH ПEPI＾HயH

ANADOXOE MEAETHE
EYミTPATIOE KAPATESPIIOY
ПАПАФН 82， 54453 ӨЕГऽАAONIKH
email：skaraqeo＠gmail．com

IINAKA乏 ПEPIEXOMENRN

2．MH TEXNIKH IIEPIAHYH 3
2．1．ПЕРІІРАФН ЕРГОУ． ．． 3
 ． 3
 ． 3
 3
2．1．4 Перıүрачй 入еıтоирүіаद 4
2．2．AПOETALEIZ－EYNIETALMENEE 5
2．3．ПерIBAAAONTIKEL EIIITTRエEIL． 7
2．4．METPA KAI \triangle PAEEIE ILA THN IIPOETAEIA TOY IIEPIBAAAONTOE． 10
2．5．ОФЕАН 10
2．6．ENAAAAKTIKES AYEELE 10
2．7．Σ YNO HH TQN EYMIIEPAEMATRN THE EOA TOY IIAPAPTHMATOE 3．2．2 TH EXETIKH Σ KYA 11

2．MH TEXNIKH ПEPI＾H ΨH

2．1．Пєрıурачŋ́ в́рүоu

E．E．A．

ПAPAMETPOE		ПАРОУЕA ФАЕН	ФAEH EXEAIAEMOY （20etia）
	Kar．	140，00	190，00
Mह̇on пиعрウ̇бia парохウ் акаӨáptov	$\mathrm{m}^{3} / \mathrm{d}$	21，00	28，50
акаӨа́ртшv	$\mathrm{m}^{3} / \mathrm{d}$	31，50	42,75
	$\mathrm{m}^{3} / \mathrm{h}$	1，31	1，78
Пapox＇̇ aıxuṅs Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	4，72	6，41
Elöıкȯ Punavtıkó ¢ортio BOD_{5}	gr／кat／d	60，00	60，00
Eıठıко̇ Puпavтıко่ 甲ортіо TSS	gr／kat	70，00	70，00
Eıठıкó Punavtikó 甲ортio TN	gr／Kat／d	10，00	10，00
Eıठıко̇ Puпavtıkó 甲ортіо TP	gr／кat／d	2，00	2，00

	kg／d	8，40	11，40
Фортіо TSS охعб̈ıабиои่	kg／d	9，80	13，30
	kg／d	1，40	1，90
Фортіо TP охદঠıабиои่	kg／d	0，42	0，57

 ича́бдатос．

Tа катабквиаотіка́ отоıхвіа тои غ́pyou перıスaßßávouv：

 uпóyદıшv ठıктu่

2．1．4 Періүра甲й Авıтоирүіая

 ठ̈апєрато́тทта UVT 50\％／cm．

Kんठıкȯ¢̧ वпuعiou	ミuvtetayuėvec E［EA 87	
	X	X
Apx＇̆－Кеvтрıко́ ¢pعáтıо	524523，64	4452585，58
	524513，83	4452597，48

524507,84 каı $Y=4452590,50$.

Kんరెıкós опиعiou	इuvtetayuėvec，EГ乏A 87	
	X	Y
＇EFoరoç anó EE＾	524502，74	4452587，40
ミпuعio סıáӨzaņ	524480，54	4452591，35

 аүшүoús aкаӨд́pт ω v

1. ПPA乏INH ENAEIEH avtiotoIyEi oع ӨETIKH EПIIT $\Omega \Sigma H$
2. avtiotoixei $\sigma \varepsilon$ ENLIAMESH KATA乏TAEH - EПIחTT $\Omega \Sigma H$
3. KOKKINH ENAEIEH avtıтоוхघi oع APNHTIKH EПIITT $\Omega \Sigma H$

ФAEH EPTOY	ПEPIBANAONTIKO ミTOIXEIO	EHIMTSEEİ			BAPYTHTA				DIAPKEIA		ANAETPEЧIMH		
		$\frac{\text { 2 }}{2}$	W	$\begin{aligned} & \text { H} \\ & 0 \end{aligned}$		$\frac{\text { S }}{\frac{5}{2}}$	¢		$\sum_{\substack{\text { n }}}^{\text {I }}$		－		之
	Кגıцатıка́ каı ßıокגıцатіка́ характпрıотıка		$\sqrt{ }$			\checkmark				\checkmark	\checkmark		
	Морфолоүıка́ каı топо入оүıка́ характпрıотıка่		$\sqrt{ }$				$\sqrt{ }$			\checkmark			\checkmark
	характпріотіка́			\checkmark									
	Фuđıко́ пعрıßà λ 入ov		$\sqrt{ }$				\checkmark			\checkmark			\checkmark
				$\sqrt{ }$									
		\checkmark			$\sqrt{ }$					$\sqrt{ }$			
			\checkmark					\checkmark		\checkmark			$\sqrt{ }$
				$\sqrt{ }$									
	Поıо́тПта тои аह́pa	$\sqrt{ }$				$\sqrt{ }$				$\sqrt{ }$		\checkmark	
	Өópußо̧ каı ठоvŋ̇бعı¢	\checkmark					$\sqrt{ }$			\checkmark		$\sqrt{ }$	
	Н入екроцаүуๆтıка̇ пєठіа			$\sqrt{ }$									
	＇Үסата			$\sqrt{ }$									
		$\sqrt{ }$				\checkmark				\checkmark		$\sqrt{ }$	

M．П．E．EPISN EПEEEPTAEIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ I . ~ M . ~ Ф I \Lambda O \Theta E O Y ~-~ M H ~ T E X N I K H ~ П E P I A H \Psi H ~-8-~$
EPRO ：«EPIA ETE＝EPTAIIAL KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K S N ~ A Y M A T S N ~ I T O ~ A I T O N ~ O P O \Sigma " ~$

ФAEH EPROY	ПEPIBAMAONTIKO ETOIXEIO	Emintoseis			BAPYTHTA				$\triangle I A P K E I A$		ANAETPEWIMH		
		$\frac{Z}{2}$	W్W్W	딩	$\begin{aligned} & \text { I } \\ & \frac{1}{3} \\ & \hline \end{aligned}$			$\stackrel{\overleftrightarrow{4}}{\stackrel{\leftrightarrow}{E}}$	$\begin{aligned} & \sum_{2}^{2} \\ & \frac{1}{2} \\ & \frac{0}{2} \end{aligned}$		징		を
			\checkmark					$\sqrt{ }$	\checkmark			$\sqrt{ }$	
	Морфо入оүıка́ каı тополоүıка่ характпрıттıк												
	Гعш入оүıка́，тєктоvıка́ каı єбачо入оүıк் Характпріоттка			\checkmark									
		\checkmark			\checkmark				\checkmark				
		\checkmark			\checkmark				\checkmark				
		\checkmark			\checkmark				\checkmark				
	TEXVIк่̇¢ unoōouė¢，			$\sqrt{ }$									
		\checkmark			\checkmark				\checkmark				
	Поוótnта тои aغ́pa	\checkmark						\checkmark	\checkmark				\checkmark
		$\sqrt{ }$					\checkmark		\checkmark				$\sqrt{ }$
	Н入єкронаүvๆтіка̇ пебia			\checkmark									
	Үбата	\checkmark			$\sqrt{ }$				\checkmark				
		\checkmark				$\sqrt{ }$				\checkmark		\checkmark	

 леітоupyia touc．

 ठıaoпорá TんV pún ω v عival ıкаvoпоıптікウ่．
 Өорúßou anó тПv $\lambda \varepsilon ा т о u p y i a ~ т \eta ~ П \lambda \varepsilon к т \rho о \mu \eta \chi a v o \lambda о ү ı к о u ่ ~ \varepsilon \xi о п \lambda ı \sigma \mu о u ่ . ~$

2．5．O甲ع́ $\lambda \eta$

 перıßà入入ov．

 ноváס̄a ठıü入ıonc．

 ठıáӨをбๆ．

TПS סXETIKウ்ৎ KYA

Мع TПV катабкєuท่ Tou غ́pyou：

 каӨоріZouv то пш்ऽ גєıтоupүદi п окквіа пєрюххŋ́ Natura．

	：	Kapayewpyiou A．Euotpário̧，Xпиıкós，MпXaviкós
		Tax．$\Delta / \mathrm{vo} \mathrm{\eta}$ ：Папа̇甲п 82，Өعбба入оviкп，Т．К．54453，
		Tๆ入．： 2310902321
		Email：skarageo＠gmail．com

¿甲раүіб̈а－Үпоүра甲и́

＠ERPHOHKE
อعобадоvikn． $14 / 04 / 20$ 29．
O AIEYQYNTHE THE
TEXNIKHE YMHPELIAE

Гعف́pүıos Matpanáそ̧ņ Подıtıкó̧ Mnxavikós $\mu \varepsilon$ A ${ }^{\prime} \beta$ ．

ЕРГО：
 AIION OPOE»

MEЛETH ПEPIBAИAONTIKSN EПIITTSEERN
EPISN EПEEEPГAEIA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~ Ф I \Lambda O O E O Y ~$

ANADOXOE MEAETHE

EYミIPATIOE KAPATERPIIOY
ПАПАФН 82， 54453 ОЕГऽA＾ONIKH
email：skarageo＠gmail．com

MINAKAE MEPIEXOMENRN

1．EILAГ $\Omega \Gamma H$ 9
1．1．Titaos eproy ．． 9
1．2．EIAOE KAI METEGOE EPIOY ． 9
1．3．ГЕЛГРАФIKH ӨELH KAI $\triangle I O I K H T I K H ~ Y I I A Г \Omega Г H ~ E P I O Y ~$ 9
1．3．1 ध́́on 10
 11
 11
 11
 11
 12
1．4．Katatash toy eproy 12
1．5．ФOPEAL EPIOY 13
1．6．ПEPIBAAAONTIKOE MEAETHTHE EPIOY 13
2．MH TEXNIKH ПEPIAHЧH 14
3．ミYNOПTIKH ПEPIГРАФН T®N EPI Ω N 15
3．1．BAEIKA ETOLXEIA TOY EPROY 15
 15
 15
 15
3．2．BALIKA ETOLXEIA KATAEKEYHE KAI AETTOYPCIA乏 16
3．2．1 Пєрıүра甲й גeıtoopyíac 16
3．3．AПATTOYMENEL ПOEOTHTE Π ПPSTQN YASN，NEPOY，ENEPIEIAL KAI AПOBAHTQN 17
 17
3．3．2 Побо́тŋгеร аловдйтоv 18
4．$\Sigma T O X O \Sigma$ KAI $\Sigma K O I I M O T H T A ~ Y A O H O I H \Sigma H \Sigma ~ T O Y ~ E P T O Y ~-~ E Y P Y T E P E ~ \Sigma ~ \Sigma Y \Sigma X E T I \Sigma E I \Sigma ~$ 20
4．1．ETOXOE KAI इKOПIIMOTHTA 20
 20
 Épyou 20
 20
4．2．IETOPIKH EEEAIEH TQN EPISN 21
4．3．OIKONOMIKA STOLXEIA TQN EPT Ω N 21
 21
 21
4．3．3 Тро́тоऽ хрииатодо́тпоџऽ 21
4．4．इYEXETLEH TOY EPTOY ME AAMA EPRA 22
5．इYMBATOTHTA TOY EPГOY ME OE $\Sigma M O O E T H M E N E \Sigma ~ X \Omega P I K E \Sigma ~ K A I ~ П O A E O \triangle O M I K E \Sigma ~$ AELMEYEEIE THE HEPIOXHL 23
5．1．OEटH TOY EPIOY 23
5．1．1 Орıа оккбиळь 23
5．1．2 Орıа тробтатвио́ $\mu \varepsilon v \omega v$ тєрıобळ́v 23
5．1．3 Дабтळ́́ вкта́бЕ！ऽ 23
 23
5．1．4．1 ОД̈ко́ ه̈ктьо 23
 23
5．1．4．3 Аіктиа твдvккія Yтобоийя Алорріццата 23
 23
5．1．4．5 Ү8реиот 24
5．1．5 Єéazıç apұatohovикой evঠ́ta甲épovtoç． 24
5．2．ILXYOYZEE XSPOTAEIKE KAI ПOAEOAOMIKE PY＠MILEIL THL IEPIOXH乏 TOY EPIOY 24
5．2．1 Провіе́чєє̧ 24
5．2．2 Өебцко́ каӨєбтळ́я． 24
 25
 25
6．ANAAYTIKH IIEPIГPAФH $\Sigma X E \Delta I A \Sigma M O Y ~ T O Y ~ E P Г O Y ~$ 26
6．1．ANAAYTIKH IEPIIPADH TEXNIK Ω－－FE Ω METPIK $\Omega N \Sigma T O L X E I \Omega N$ 26
 26
 26
 26
6．2．ANAAYTIKH IEPIIPAФH KYPIQN，BOH＠HTIK 2 N KAI YחOZTHPIKTIK Ω／ Y YNOA Ω N EIKATALTALESN KAI EPT Ω N 28
6．3．EIIMEPOYรEPTA 29
6．3．1 Kтtрıака́ épүа． 29
 30
 30
 30
6．3．4．1 Ерүа пратоßа́ θ мас елес̆ерүабіас 30
6．3．4．2 Bиоれоүкที етеढ̆еруасіа 31
 33
 34
 35
 35
6．4．ФALH KATALKEYHE T Ω N NE Ω N EPI Ω N 35
 35
 35
 36
6．4．4 Avaүкаіа vйıкג́ катабквvŋ̧̄ 37
6．4．5 Eкров́c vүро́v аторһйтоv 37
6．4．6 Intová̧ovta dえıká． 37
6．4．7 Еклоитв́c ае́рtんv ри́тб人v 37
6．4．8 Еклоиле́ऽ Өоро́ßоь каı доvท்бваv 38
 39
6．5．ФAEH AETTOYPILAE 39
 39
 39
6．5．3 Eкров́ц vүро́v апо $\beta \lambda \dot{\eta} \tau \omega v$ 40
 40
 40
 40
 41
6．6．ПAYЕH AEITOYPCIA乏－AПOKATALTALH 41
 41
6．6．2 Käaipzon но́vицюv катабкєvळ́v 41
 41
6．7．EKTAKTE EYNOHKE K KAI KINAYNOI TLA TO IIEPIBAAAON 42
 42
 42
 42
 42
6．8．EIIIAPALH TOY EPROY EE KOTTEL PEMATRN 43
7．ENAAAAKTIKEL AYEEIE 44
7．1．ПAPOYEIALH BLOEIMHE AYEHE 44
 44
 44
 45
7．1．3．1 ГЕика́ 45
 46
 52
 54
7．1．3．5 Пергтрефо́ивvот Рюодоүикоі вібкои 56
7．1．4 Фиокर́ олनтíuata． 59
 60
7．1．4．2 Evoтi！ 62
7．1．4．3 Evatí μ ata Eти甲aveaknís Poñs 63
7．1．4．4 Техиๆтоі Yүро乃ьо́тожот 64
 68
 70
 71
7．1．5．1 Геvıќ 71
 71
 72
7．2．AミIO＾OГHЕH KAI ATTIOAOГHEH THE TEAIKH工 EПIIAOГH工 73
 73
 73
 ．． 74
 78
 81
 81
8．YФILTAMENH KATALTALH IIEPIBAMAONTOE 82
8．1．ПEPIOXH MEAETH之 82
 82
8．1．2 इпиєтако́ е́рүо 83
8．1．3 Katךүорia \＆́pyov． 83
8．1．4 Проотатвио́неरП перוохウ 83
8．1．5 Үүрототикй тєрเохй 83
 83
8．2．KAIMATOAOIIKA KAI BIOKAIMATIKA XAPAKTHPILTIKA 83
8．3．МОРФОАОІІКА КАІ TOIIOАОГТКА ХАРАКТНРILTIKA 85
8．3．1 Катаурарй толіоь аиафора́с 85
8．3．2 Еиролаїю боццабп топіои 85
 86
 86
8．4．ГЕی＾OГIKA，TEKTONIKA KAI EАAФOAOГIKA XAPAKTHPILTIKA 87
8．4．1 Гбоіорикх́ ұорактирьттка́ 87
 89
8．4．3 Tектоукка́ характррьтика́． 90
8．5．ФYЕIKO IEPIBAAAON 91
8．5．1 Геvкג́ ттогді́ 91
 91
 94
 94
 100
 101
8．5．3．1 Xароктाן 102
 102
 102
 102
 103
8．6．ANGPQПOFENE IIEPIBAAAON 103
 103
 103
 103
 103
 104
 104
 104
 104
 104
 105
8．7．KOIN Ω NIKO KAI OIKONOMIKO IIEPIBAAAON 106
8．7．1 Апиоүрачию катиттапп 106
 106
8．7．2．1 Параүсуккоі тоивіс， 106
 106
 106
 106
8．8．TEXNIKE Y YIOAOMES 107
 107
 107
8．8．3 Аіктиа йорелатя． 107
8．9．ANӨРЯПOFENEIL חIIEEEIL ETO ПEPIBAAAON 107
 107
 107
8．10．АТМОЕФАIPIKO ПEPIBAAAON－ПOIOTHTA AEPA． 108
 108
 108
 108
8．11．AKOYETIKO IEPIBAAMON KAI $\triangle O N H E E I E$ 108
8．11．1 Птр́宀 Aори́ßov． 108
 108
 109
8．12．HAEKTPOMAINHTIKA IEAIA 109
 109
 109
8．13．Y YATA 109
8．13．1 Exédia סuayeipıons 109
8．13．1．1 Пароисіаоך лрорһеусеи 110
 110
 110
8．13．2 Eпичаveıaкд́ ט́סата 110
8．13．2．1 Пертүрачі！ขӧроүрафикой ס̈кти́ои 110
 110
 110
 110
8．13．3 Yпо́үаа ט́бата 111
 111
 111
 111
 111
8．14．KINAYNOI TTA THN AN＠PQIIINH YTEIA，THN חOATTLTIKH KAHPONOMIA H／KAI TO HEPIBAAAON，KYPIOE AOR Ω ATYXHMATQN KAI KATAETPOФ Ω N． 112
8．15．TALELE EEEAIEHZ TOY IIEPIBAAAONTOZ XOPIL TO EPIO 112
 112
 112
9．EKTIMH工H KAI AЕIOAOГHГH IIEPIBAAAONTIKQN EIIIIT $\Omega \Sigma E \Omega$ 114
9．1．MEeOAOAOTTKE A AIIATTHEEL 114
9．2．EIIIIT $\Omega E E I \Sigma$ EXETIKA ME TA KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPILTIKA 115
 115
 Аериохоритию́трткц． 115
9．2．3 Ектоилх́s агріор тол Өериокртіор． 115
9．2．3．1 Фа́оा катабквиŋ！ 115
9．2．3．2 Фáon スeıtoupriac 116
9．3．EIIITREEEIE さTA MOPФOAOFIKA KAI TOHOAOГIKA XAPAKTHPLETIKA 116
 116
 116
 116
 117
 117
9．4．EIIIT®EEIL SXETIKE L ME TE Ω AOIIKA，TEKTONIKA KAI EAAФOAOIIKA XAPAKTHPIETIKA． 117
9．4．1 Маироокотижя тародррйшац． 117
 117
 117
 117
 117
 117
 118
 118
9．5．ETUITREEIE ETO ©YEIKO IIEPIBAAMON 118
 118
9．5．2 Пробтатвио́иєvес перюхळ́s 118
 118
 119
 119
 120
 120
 120
 120
 120
 120
9．6．EIIITTRLEIL ETO ANEPQПOFENEL IEPIBAAAON 120
 120
 120
9．6．1．2 Eлuтひ́бelร 120
 121
9．6．2．1 Ектіцךоा втит 121
 121
 121
9．6．3．1 Enuтtionts 121
 121
9．6．3．3 Е七ӧиणீ धкгіцךणा 122
9．7．EIIITTREEIL STO KOIN $\Omega N I K O-O I K O N O M I K O ~ I I E P I B A N A O N . ~$ 122
 122
 122
9．7．3 Ө仑́овıs spүатias 122
 122
9．7．5 Поь́тиа Цюдя 122
 122
9．8．EIIITT Ω EIL STIL TEXNIKE YПOAOME Σ 122
9．8．1 Eлитыぁбв！ 122
9．8．2 Елд́рквіа 122
9．9．Σ YZXETILH ME TTE ANEPSПOFENEIL IIESEIL ETO TEPIBAAAON 123
 123
 123
9．10．EnIITRבEIL $2 T H N$ חOIOTHTA TOY AEPA 123
9．10．1 Eлитшіணаद̆ 123
 124
 124
 124
 124
9．11．2 Enumぁぁers 125
9．12．EIUITRミEIE EXETIKEE ME HAEKTPOMAГNHTIKA IIEAIA 125
9．12．1 Eлитtண̈ळョに 125
9．12．2 Пi日avótro 125
9．13．EПயाTREEEE ETA Y YATA 126
 126
 126
 126
 126
 126
 126
 126
 126
 127
 127
 127
 127
9．14．EПITTQSEIL ПOY AПOPPEOYN AПO KINAYNOYL ПIA THN AN＠PQПINH YTEIA，THN ПOATTIETIKH KAHPONOMIA H
$/$ KAI TO IEPIBAAAON，KYPI Ω AOI Ω ATYXHMAT Ω N KAI KATAETPOФ Ω N 127
9．15．इYNOYH EПIITTREESN LE IINAKE 128
10．ANTIMET Ω IILH IEPIBAAAONTIK Ω EIIIT $\Omega \Sigma E \Omega N$ 131
10．1．ME＠OAOAOПTKES AПITTHEEE KAI ПPOS＠ETA METPA 131
10．2．METPA AПOKATAETAEHE KAI ANTIMETQПILHL EIUITRIEERN ΣE KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPIETIKA 133
 XAPAKTHPIETIKA 133
 XAPAKTHPILTIKA 134
10．5．METPA AПOKATALTALHE KAI ANTIMETQПILHE EПIITREEQN $\Sigma T O$ ФYЕIKO ПEPIBAAAON 134
10．6．METPA AПOKATAETALHE KAI ANTIMETQПILHL EПIITR乏E Ω N $\Sigma T O$ AN＠P＠ПOIENE ПEPIBAAAON 135
10．7．METPA AПOKATAZTAZHL KAI ANTIMETRIIIZHट EПIITTREESN $\Sigma T O ~ K O I N \Omega N I K O O I K O N O M I K O ~ I E P I B A A A O N . ~$. 136
 136
 IIEPIBAAAON 137
10．10．METPA AПOKATALTALHE KAI ANTTMET $\cap I L H \Sigma$ EПIIT $\Omega E \Omega$ ．Ω IHN ПOIOTHTA TOY AEPA 137
10．11．METPA AПOKATAETALHE KAI ANTIMET Ω IILH亡 EПIITTQEE Ω N AПO＠OPYBO H $\triangle O N H \Sigma E I \Sigma$, 138
10．12．METPA AПOKATALTALHL KAI ANTIMETQIILHL EПIIITREE Ω N EXETIK Ω N ME HAEKTPOMAINHTIKA IEAIA 13 139
10．13．METPA AПOKATALTALHL KAI ANTIMETQIIILHL EIIIIT Ω EE Ω N Σ TA Y YATA 139
10．14．METPA AПOKATALTALHE KAI ANTIMETQПILHL ПEPIBAAAONTIKQN EIIITTQLE ΩN ПOY AПOPPEOYN AПO THN
 140
10．15．AПOTEAESMATIKOTHTA METP Ω N 140
11．IIEPIBAAAONTIKH AIAXEIPIEH KAI IIAPAKOAOYӨH工H 168
11．1．ПEPIBAAAONTIKH AIAXEIPILH 168
11．2．ПЕРІВАААОNTIKH ПАРАКО $О О Ү Н Е Н ~$ 168
 168
 ． 168
 168
 168
 168
 169
 169
 169
 170
 170
 170
 170
 170
 171
 171
11．2．4 Паракоіоі́ӨПना Өоро́ßои． 171
 171
 171
 171
 171
11．2．5 Парокоіоо்Өทю ооио́v 171
 172
 172
 172
 172
11．3．EXEAIO ANTIMETQIILLL EKTAKTQN IEPIETATIK Ω N 172
11．3．1 Eוбхжळу＇ 172
11．3．2 Avtuкeíuevo too Σ रsסiov 172
11．3．3 Evepyoтоínoך tov इxediov． 173
 174
 175
12．K IEPIBAAAONTIK』N OPתN 182
12．1．OEMA－ONOMAEIA EPIOY H \triangle PAETHPIOTHTA乏 182
12．2．EП®NYMIA ФOPEA H \triangle PAZTHPIOTHTAS 182
12．2．1 Kай́tă̆ク épうov 182
 182
 182
12．2．2．2 इuvtetuү 183
 183
12．2．3 Пергррай Ерүои． 183
 териஷ̨́iovtos． 185
 185
 185
 185
 186
 186
 186
 187
12．2．7．3 Katú тो фáoा Aettoupriaç 190
 194
 194
13．IIPOEQETA ETOIXEIA． 195
13．1．EEEIAIKEYMENEE MEAETE： 195
13．2．ПРОВАНМАТА EKПONHЕHL 195
14．ФЛТОГРАФIKH TEKMHPI $\Omega \Sigma H$ 196
15．XAPTEE－EXEAIA 197
15．1．XaPTHI ITPOEANATOAIEMOY 197
15．2．XAPTH工 ПEPIOXHL MEAETHE 197
15．3．XAPTHE ENAAAAKTIK Ω N AYEE Ω N 197
15．4．ГE Ω AOFIKOE XAPTHL． 197
15．5．XAPTHL XPHEESN KAI KAAYYHZ ГHZ 197
15．6． EXEAIA TOY EPIOY H THE \triangle PAETHPIOTHTA乏 197
15．7．XAPTEE EIIITTREE ΩN ． 197
15．8．XAPTHЕ ПPOГРАММАТОЕ ПAPAKOАОҮӨНЕHЕ， 197
16．ПАРАРТНМА 206
16．1．YTIEIONO O OIIKOI YIIOムOГILMOI THLE．E．Λ 207
16．2．ПTYXIO ME $\wedge E T H T H$ 208
16．3．EIAIKH OIKO＾OГIKH A $\Xi I O \wedge O Г H \Sigma H$. 209

1．EIइAГЛГН

 EПЕЕЕРГAIA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~ Ф I \Lambda O Ө E O Y » ~ T O u ~ \varepsilon ́ p y o u ~ « E P Г A ~$

 Kal tov N1650／1986．

1．1．Tít＾os $\dot{\rho} \rho \gamma o u$

To unó $\mu \varepsilon \lambda \varepsilon ̇ т \eta ~ u n o \varepsilon ́ p y o ~ \varepsilon ̇ x \varepsilon ı ~ \omega \varsigma ~ т i t 入 o ~ « E P T A ~ E П E=E P T A \Sigma I A \Sigma ~ K A I ~ \triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \wedge Y M A T \Omega N ~$ IEPA乏 MONH乏 ФI＾OOEOY»．

1．2．Eídos каı $\mu \varepsilon ́ \gamma \varepsilon Ө o \varsigma ~ \varepsilon ́ \rho ү o u ~$

ЕІбІко́тєра，перілацßảvouv：

1.3.1 Oह்on

Eıкȯva 1.1: Xápтŋ̧ пробаvatoגıбนоú

1.3.2 Аıокпптки் unaүюүй

 E.E.^. عival:

	ミuvtetayuėvec E[EA 87	
	X	X
	524523,64	4452585,58
	524513,83	4452597,48

 524507,84 каі $Y=4452590,50$.

	ミuvtetayuėvec E［टA 87	
	X	Y
＇Ȩoס̄oc anó EE\	524502，74	4452587，40
£пиعio סıáӨzans	524480，54	4452591，35

1．4．Катáтає̆ク тои غ́pyou

 катата́ббоита। $\sigma \varepsilon:$
－ 12 Oนáठ̄६¢ каı
－ 2 Катпүорієऽ：
－ 1^{n} катпүоріа（A）$\mu \varepsilon$ ठи̉о uпокатпүорієц（A1 каı A2）каı
－$\quad 2^{7}$ катпуорі́a（B）

 арио́ठı६ৎ архغ́ц．

EIAOE EPTOY＇H \triangle PAETHPIOTHTAE	$\begin{aligned} & \text { YMOKATHIOPIA } \\ & \text { A1 } \end{aligned}$	$\begin{array}{\|c\|c\|c\|} \hline \text { YחOKATHIOPIA } \\ \text { A2 } \end{array}$	KATHIOPIA	TAPATHPHEEİ
a／a： 19 Еүкатабта́бधィद єп६छॄруаоіая абтікळ̈v 入upátшv （ \quad ȯ $\lambda \varepsilon \omega v$ kaı оікєбш்้）$\mu \varepsilon$ ठıáӨとすワ uypöv $\sigma \varepsilon$ єпірауєıако́ 	$\Pi \geq 100.000$ ı．к．	$\Pi<100.000$ เ．к．		П：Movóōฮऽ Iqoōúva a）乏u川napaoúpovtal $\mu \varepsilon \pi \eta v$ лuиáт ωv（EEA）： －ОІ кеvtpiкoi anoxeteutikoi аүшүоі عкто́c ох\＆סiou －ol aywyoi סıáӨzanc к．Х．п．，бuипарабúpovtaı anó TIC avtiotorxes ठрабтпріо்тŋтея， ү）Гіа то єоштеріко́ ठіктио

 $1^{\text {¹ }}$ Kатпуорі́а каı Үтокатпүорі́а A2．

KatátaEn катá 乏TAKO 2008 каı NACE Rev． 2

1． 37.00 Еп६६६рүабіа $\lambda u \mu a ́ т \omega v$

1．5．Форѓaৎ ع́pyou

$\Delta / v \neq \eta \quad: \quad$ Папáqn 82，Өєбба入оviкп，T．K． 54453

e－mail ：skarageo＠gmail．com

2. MH TEXNIKH ПEPI^H ΨH

3．इYNOПTIKH ПЕРІГРАФН T®N EPГЛN

3．1．Baбıкá бтолхвía тои в́рүои

E．E．A．

ПAPAMETPOE		ПAPOYГA ФAEH	ФAEH EXEAIAEMOY
Eॄuпnperoủ	Kar．	140，00	190，00
	$\mathrm{m}^{3} / \mathrm{d}$	21，00	28，50
акаӨápтшv	$\mathrm{m}^{3} / \mathrm{d}$	31，50	42，75
	$\mathrm{m}^{3} / \mathrm{h}$	1，31	1，78
	$\mathrm{m}^{3} / \mathrm{h}$	4，72	6，41
	gr／kat／d	60，00	60，00
Eıбıко่ Puпavтıко́ ¢ортіо TSS	gr／kat	70，00	70，00
Eıठıкȯ Punavtikó 甲ортio TN	gr／kat／d	10，00	10，00
Eıठıкó Punavtikó 甲ортio TP	gr／kat／d	2，00	2，00

	kg/d	8,40	11,40
	kg/d	9,80	13,30
	kg/d	1,40	1,90
Фортіо TP охદঠıабиой	kg/d	0,42	0,57

 ича́биатос.

Та катабкєиаотıка́ отогхвіа тои غ́pyou перı入aןßávouv:
Фáon A^{\prime} : X Xuиatoupvikés epvaoies E.E. \wedge.

3.2.1 Пєріүра甲й лєıтоирүіая

 ठıax

 ठ̈апєрато́тŋта UVT 50\%/cm.

aпоßАர்тшv

－Катабкєиغ́ऽ апо́ đкиро́ठ̄єца $57 \mathrm{~m}^{3}$ ．
－\wedge Өобо $\mu \varepsilon ่ \varsigma ~ 67 \mathrm{~m}^{2}$ ．

Xpion evépyeias

 42 kWh алтітогха．

Xprón xпиाкढ்v

3．3．2 Побо́тптес апоß入ウ்тшv

К ω бъко்̧ Е．К．А．：19．08．05

Yypá anóßスnta

Aغ́pıa aпо́ß入nta

 ठı६u่Өuvon avé $\mu \omega \mathrm{V}$ ）．

 عivaı oı ако́入ouӨєऽ；

ПЕріүра甲й	Xpóvoç леıтоupyias （h／غ̇тоৎ）							
		CO	NOX	$\mathbf{S O}_{2}$	voc	PM10	PM2．5	CO_{2}
$\begin{gathered} \mathrm{H} / \mathrm{Z} \\ \text { (IOXúc 13,8 } \\ \text { kVA) } \end{gathered}$	20	1，02	1，62	0，22	0，33	0，20	0，19	159，41

4．$\Sigma T O X O \Sigma$ KAI इKOПIMOTHTA YАOПOIH亡H亡 TOY EPIOY－

4．1．इто́хоя каı бкопицо́тпта

 та μ крой $\mu \varepsilon \gamma \varepsilon ̇ Ө$ оuç отєрєd поu aı

 апобॄєктல்．

 عрүато́onıт ω v.

Oı кєvтрıкоі ay

4.3.1 Ектіцףоף бuvoגıкои่ проӥпоגоүıбной

 бع 436.594,42 Еupळ்.

4.3.3 Тро́поৎ Хрпиатобо́тпопৎ

 проүра́диата.

 'Opos.

5．इYMBATOTHTA TOY EPГOY ME OE乏MOOETHMENE X RPIKE乏 KAI ПONEOLOMIKE乏 $\triangle E \Sigma M E Y \Sigma E I \Sigma$ TH乏 ПEPIOXH乏

5．1．Oモ́oŋ tou épyou

5．1．1＇Opıa oıкıоцஸ்v

5．1．2＇Opıa проотатєuó $\mu \varepsilon v \omega v$ періохळ்v

5．1．4．1 Обіко́ ঠіктио

 $\chi \omega \mu$ то́б̄роно．

 İpıббои่ каı Tрипптт่s．

5．1．4．3 Діктиа теХviкís Yпобоии́с Апороіината

5．1．4．4 Aпохह́тعиणП

 єпદそॄрүабiaç $\lambda u \mu a ่ т \omega v$.

5.1.4.5 'үбреиणП

tou ع́pyou

 unoठ̄о $\omega \dot{\omega}$.

5.2.1 ПроßАغ́чعוৎ

 4% avá ठぇкавтіа.

5.2.2 Өєбинко่ каӨєотळ்؟

 ГХООАП, ПЕРПО К.т.А.).

 oú $\mu \varphi \omega \mathrm{va} \mu \varepsilon$ та крітท่pıa тои àp θ pou 19 , $\omega \varsigma$:

6．ANAАYTIKH ПЕРIГРАФН ГXEAIA乏MOY TOY ЕРГОY

 524507,84 ка। $Y=4452590,50$.

 evepyoú عாı甲áveıaç 1500 m²．

 $\lambda u \mu \dot{t} \boldsymbol{\omega} \mathrm{v}$.

 ठıаперато́тпта UVT 50\%/cm.

 ифа́бцатос.

- Ефєठ̄рıко́ пХХ

Піvaкас 6.1. Парохє́я каІ фортіа 入ица́тшv

ПAPAMETPOE		ПАРОYЕA ФАЕН	ФAEH EXEAIAEMOY
	кat.	140,00	190,00
	$\mathrm{m}^{3} / \mathrm{d}$	21,00	28,50
акаӨ́́pтшv	$\mathrm{m}^{3} / \mathrm{d}$	31,50	42,75
	$\mathrm{m}^{3} / \mathrm{h}$	1,31	1,78
Пapoxń aıx	$\mathrm{m}^{3} / \mathrm{h}$	4,72	6,41
Eıठıкк̇ Punavtıкó ¢ортio BOD_{5}	gr/кат/d	60,00	60,00
Eİıкк่̇ Puпavtıкó ¢ортio TSS	gr/kat	70,00	70,00
Eıठıко̇ Punavtikó ¢ортio TN	gr/kat/d	10,00	10,00

Eıöıкó Puпavtikó ¢ортio TP	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	2，00	2，00
Фортіо BOD_{5} бXहঠıa\％นой	kg／d	8，40	11，40
	kg／d	9，80	13，30
	kg／d	1，40	1，90
Фортіо TP бхદঠıабиои่	kg／d	0，42	0，57

Пара́нетроя	KYA 5673／400／97	KYA 145116 －Miv． 2
Апоठ̇̇ктทऽ	Епı甲．Uठ̈átiva đஸ́ μ वтa （ $\mu \eta$ عиаїоӨптоऽ， апоठ̄́кктПS）	
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{l})$	≤ 25	≤ 25
COD（mg／l）	≤ 125	≤ 125
Aı ω poúusva oteped̀（mg／l）	≤ 35	≤ 35
Eschericia Coli（E．coli） （EC／ 100 ml ）	＊	

 tou Ay．＇Opouç（દiठoç ठıáӨをoņ D8）．

 50 Hz ．

 єпع६६pүaवiac，

－ミúotnua yeíwons
－Еүката́oтабп аvтіквраииікп்я проотабіая
－Пєріфраそ̃п каı Өúpa عıбóס̄ou

6．3．Enıนع́คou̧ દ́ γ үa

6．3．1 Kтıрıaкá ह̇pya

 $\mu \eta$ Xavoorácio．

 каӨаро́ úчо̧ пєріпоu $2,70 \mu$ ．．

 túnou Imhoff.

 m .

 парохウ่я $3 \mathrm{m3} / \mathrm{h}$ бє μ аvонєтріко் $7,0 \mathrm{MY}$.
 бтعрعळ்v кaı Tnv ava

6.3.4.2 Biodoviкों हाहEEovaनia

 п入ǹpŋs viтропоinon.

 $\varepsilon v \tau \dot{\mu} \mu \omega \mathrm{v}$.

 єпıфáveıac.

 $\lambda u ́ \mu a т a ~ Ө a ~ \varepsilon i v a ı ~ a п o ́ ~ a v o \xi ६ i ठ \omega т о ~ x a ́ \lambda u ß a . ~$
H μ оváס̄a aпот $\varepsilon \lambda \varepsilon$ हitaı anó:

- Pouneráv
- Poöė̀es
- Дактú入ıoı аб甲алвіая

 Titley 2014).

$8 m^{3} / m^{2}-h r$.

 прокаӨiZ̆пбпя.

6.3.4.4 Anolúnavan

 ठıаперато́тŋта UVT 50\%/cm.

 рікроорүаvібнஸ்v．

 парако入ои́Өпоך каı $\lambda \varepsilon ı т о и р ү і а ~ \mu \varepsilon ~ п р \omega т о ́ к о \lambda \lambda а ~ \varepsilon п ı к о ı v \omega v i a c, ~ C A N, ~ E t h e r n e t, ~ U S B, ~ S e r i a l ~(M o d b u s, ~$ TCP／IP，CANopen）．

катадацßáveтаı

Ta véa غ́pүa перıスацßávouv：

 عкпоvŋӨві.

 IKAO.

6.4.4 Avaүкаia uגıкá катабкєuท่я

- \wedge Өоठо

 үіvovtaı عvто́द тои عрүота६ıакой хळ்pou.

6.4.6 ПАعоváそovтa u入ıкả

 घiठ̄ous عpyaøia.

 ठІєúӨuvoŋ avè $\mu \omega \mathrm{v}$).

- 1 Мпعто才и́ра

Mıxávпиa	LWa dBA	Leq/LWa	Eu̇vodo				-ıápквıа			dB(A)
			$\begin{gathered} \text { Res.Laeq } \\ \text { dBA } \end{gathered}$	Dist. Ratio	Equiv. On-time	Equiv. On-time	Active dur.	Corr. On-time	PNi	
Eкбкафє́a̧ 200 kW	109	Lwa	61.00	4.00	0.32	0.32	8	21.6\%	0.02	54
Фортпүо்$\mu п \varepsilon т о v i \varepsilon ̇ p a ~$	106	Lwa	58.00	4.00	0.32	0.32	8	21.6\%	0.01	51
Avatpenóyzvo 257v 120kw	108	Lwa	60.00	4.00	0.32	0.32	8	21.6\%	0.02	53
Xроvıкர் пєрioठoc: 8h										
Combined (Leq): 59 dBA										

6.5. Фáoŋ \हıтоupYiaৎ

Xprion عvépyeias

IIINAKA							
	E. E.A. Ispac Movic ©tiodison						
A/A		Tapáyue are之arovpyia	Toziç/reat.	Алоррородикіт Iaxiç/rap.	\qquad	Xpóvos ientovpriac	Ндіррыฺюа tivéprawe
	Периурapif	Tas.	kW	kW	kW	b/d	$\mathrm{kWh} / \mathrm{d}$
1	Broд- Babutörov	1	0,55	0,44	0,44	12	5,3
2	Kiviŋтipas жериатрорís Bюодíaкеш	1	0,75	0,60	0,60	24	14,4
3		1	0,55	0,44	0,44	2	0,9
4		1	0,66	0,53	0,53	12	6,3
5	Avrouanofós	1	0,50	0,50	0,50	24	12,0
6	©wotroúc	1	0,25	0,25	0,25	12	3,0
	EYNOAO					0071	42

Xpr்on xпuiкळ்v

6．5．3 Екроє́я uүpஸ்v anoß入ク̇тшv

6．5．4 Екроє́c отєрعळ்v anoß入ウ่тตv

Кшठ̈кк்̧ Е．K．A．：19．08．05

 घival ol aкó入ouӨє؟：

Пергүрафй	Xpóvos גеıтоupyiac （h／غंтос）							
		CO	NOX	SO_{2}	voc	PM10	PM2．5	CO_{2}
$\begin{gathered} \text { H/Z } \\ \left(\begin{array}{c} \text { (IOXU̇ç } 13,8 \\ \text { kVA) } \end{array}\right. \end{gathered}$	20	1，02	1，62	0，22	0，33	0，20	0，19	159，41

6.6. Пaи́бП Аहıтоируіая - aпокатáбтабך

 проц аvaки̇к $\lambda \omega \sigma \eta$.

 anó тŋŋv Iعpá Movṅ.

 п入йршс.

 апаाтधाта.

 عпо́ $\boldsymbol{\varepsilon v o ~ к є \varphi a ̀ \lambda a ı o . ~}$

7. ENAMAKKTIKE乏 AYEEİ

- η סоцй tou oठiıoú סıkтúou
 є६บппре்тПoர்ऽ тои

 anó Tך Өغ̇on TクS E.E.^.

 фúoņ, к $\lambda \pi$)

7．1．3．1 ГعVIKó

1．ミuotṅuata Evepyoú Iגủos，
i．इuнßатікó би́бтпйа
ii．इúoтпиa паратвтацغ̇vou aعpıఠนоu่

2．इúotnua aımpoú $\mu \varepsilon v o u$ ßıo久oүıкоú pı $\lambda \mu$（MBBR－Moving Bed Bio Reactor）
3．$\Sigma u ́ \sigma T \eta \mu a ~ \mu \varepsilon \mu ß \rho a v \dot{v}$（MBR－Membrane－Bio reactor）
4．Пєрıбтрє甲о́ $\mu \varepsilon$ voı ßıо入оүıкоі ठібко৷
（7．）Фuбiká इuotn่ $\mu a r a$

3．ミuorínaтa Eпı甲aveıaкńs Pońs

ii．Үүроßıо́топоו катако́pu甲̣ク̧ pońs（SFS）

6．TEXVクTE่ৎ＾íuvȩ

7．1．3．2 इúotпиa evepvoú ılúas

ミuußatikó oúornua evepvoú ıiúos

 пои ovoцáそovtaı ßıкрокіঠєц，

 пара апо́ то бйбтпиа．

$\begin{gathered} \text { Aпода́криvøп } \\ \mathrm{BOD}_{5}(\%) \end{gathered}$	Opyaviкí фо́ртї́ $\left(\mathrm{KgBOD}_{5} / \mathrm{kg}\right.$ เ＾úoç $\eta \mu$ ह́pa）		Aváuıкто uypó MLSS （ $\mathrm{mg} / \mathrm{It}$ ）	Xpóvos Парацоvウ̀s （hr）	Avaкиклочоріа ıגu̇os	
85－95	0．2－0．4	0．3－0．6	1500－3000	4－8	0．25－0．50	5－15

 хацп入ои́ фортіои．

 $\mathrm{BOD}_{5}(85-95 \%)$ ．

 ı λ ヘúos．

ミúotnua пapaterauદ̇vou aعpiouoú

To oúชтпиa парaтєтa

 عпıтєuхӨвi каı апоviтропоіпоп．

 паратвтанغ்vou aعрıбนоu่．

Anopáкрuvón BOD $_{5}$（\％）	Opyaviкi่ фópтín （KgBOD ${ }_{5} / \mathrm{kg}$ เ入u̇oç $\eta \mu$ ह́pa）		Aváuıктo uypó MLSS （ $\mathrm{mg} / \mathrm{It}$ ）	Xpóvos Параиогท่я （hr）	Avaкиклочоріа ıAúos	Xpóvoç Параиогท்я ı λ ủos （ $п \mu \varepsilon \dot{\varepsilon} \rho \varepsilon$ ）
85－95	0．05－0．15	0．16－0．4	3000－6000	18－36	0．95－1．50	20－30

 ウ̀ μ عбаіас к入інакас．

\checkmark Niтропоinon $\lambda u \mu a ́ т \omega v$.

 тои $\mu \varepsilon ү a ̀ \lambda o u ~ x p o ́ v o u ~ a \varepsilon p ı \sigma \mu о u ́ . ~$

 паратвтанв́vои аєрıюцои́．

※ Ү $\Psi \eta \lambda \grave{~ к а т а v a ̀ \lambda \omega \sigma п ~ \varepsilon v e ́ p y \varepsilon ı a c . ~}$

 каı апоца́криvón тои аद̧ف்тои.

 тпऽ virponoinons.

 ı入úoc.

 прЕцía̧ otov пUӨнદ̇va.

 ı λ úos.

$\Theta c=300 / T \eta \mu \varepsilon \rho$.

 náxuvon．

Anopáкрuvön BOD $_{5}$（\％）			Avápıкто uypó MLSS （ $\mathrm{mg} / \mathrm{It}$ ）	Xpóvos Параиокர்я （hr）	Avaкиклочоріа ıגúoc	Xpóvos Параиогท̀s ıไủos （ $\eta \mu \varepsilon \dot{\varepsilon} \rho \varepsilon \varsigma)$
85－95	0．05－0．30	0．08－0．24	1500－5000	12－50	－	－

\checkmark Y ŋŋ入ń anouákpuvon opyaviкoú 甲ортiou．

 аитоцатоповітв．
甲ортішv．

7．1．3．3 玉úotnua alwpoúusvou Biodovikoú 甲ilu（MBBR－Movina Bed Bio Reactor）

乃оорі $\lambda \mu$.

 (Rusten et al., "Upgrading to nitrogen removal with KMT moving bed biofilm process", Water Science

 Өгриокрабіа ото вйроц， $10-20^{\circ} \mathrm{C}$ ．

Піvaкас 7．3．Характпрıттıка биотท́цатоц MBBR

Anopákpuvén BOD 5 （\％）	Opyaviкí甲о́ртїп （KgBOD ${ }_{5} / \mathrm{kg}$ 		Aváuıктo uypo MLSS （mg／lt）	Xpóvos Параиоvìs （hr）	Avaкuклофоріа ıגỦoç	Xpóvoc Параиогท่я inúos （ $п \mu \varepsilon \dot{\varepsilon} \rho \varepsilon \varsigma)$
85－97	0，05－0，3	－	2－10．000	0．25－1．5	0．95－1．50	20－30

\checkmark Ханп入ウ่ параушүர் ı入úos，

 ı入úos عival та кárшӨl：

 $\mu \dot{\jmath} \boldsymbol{\varepsilon}$ Ө๐，
 прохшрпи̇̇v т тртоßа́Өниа єкрой

 $\mu \varepsilon$ аvтлıота́ণо．

Пара́цєтроя	Tıиウ่	Аıspyacia nou anaıteitaı
Өо入о̇тпта	＜ 1 NTU	
Ano\úpaovn	＞LRV 5	
BOD	＜ $5 \mathrm{mg} / \mathrm{l}$	
A $\mu \mu \omega$ viaká $\left[\mathrm{NH}_{4}\right]$	＜ $1 \mathrm{mg} / \mathrm{l}$	
O＾ıkóa a̧uto	＜ $5 \mathrm{mg} / \mathrm{l}$	Anovitponoinon＋Aहрıбно́ + бúotnua $\mu \varepsilon \mu \beta$ paváv
Одıко́s фш்ळ甲ороऽ	＜ $1 \mathrm{mg} / \mathrm{l}$	

Anouákpuvō BOD 5 （\％）	Opyavikí фо́pтї́n （KgBOD ${ }_{5} / \mathrm{kg}$ เ\u̇oç $\eta \mu$ ह̇pa）	$\begin{gathered} \text { Оукоиєтрікй } \\ \text { фо́ртıō } \\ \left(\text { KgBOD }_{5} / \mathrm{m}^{3}\right. \\ \eta \mu \varepsilon \dot{\rho}) \end{gathered}$	Avápıктo uypo MLSS （ $\mathrm{mg} / \mathrm{It}$ ）	Xpóvos Параиоvìs （hr）	Avaкиклочоріа ıגủos	Xpóvos Параноvìs （ $п \mu \varepsilon \dot{\rho} \rho \varepsilon$ ）
95－99	0，02－0，06	0，2－0，4	5－15．000	6－30	3－5	20－50

\checkmark Хацп入ウ் параүшүท் ı入úos．

Tクム عvepyoủ ıגúoc．

 $\varepsilon \vee \tau \dot{\mu} \mu \omega \mathrm{v}$ ．

 m^{2} عпı甲áveıaç．

 uypŕ ¢áon，nou кuцaivovtaı anó 90 ह̇ $\omega \varsigma 95 \% \omega \varsigma$ проц то BOD．

 μ ккрウ்．

Eninをठัo Enをछ๕pyaoiac		
$\triangle \varepsilon \cup \tau \varepsilon \rho о \beta a ́ \theta \mu ı O ~$	$\Delta \varepsilon \cup \tau \varepsilon \rho о \beta \dot{\partial} \theta \mu \prime 0 \mu \varepsilon$ таито́хроvп viтропоinon	vitponoinon oe छехшрıото́ ттд́бıо

Үбраилıк் фо́ртіоп $\left(m^{3} / m^{2} d\right)$	0．08－0．16	0．03－0．08	0．04－0．1
O¢уаvікர் ¢о́ртіоп			
－$K g S B O D_{5} / m^{3} d$	0．003－0．01	0．002－0．007	0．0005－0．001
－Kg $\mathrm{TBOD}_{5} / \mathrm{m}^{3} d$	0．01－0．017	0．007－0．015	0．001－0．003
прผ́то бта́б̈о			
－Kg SBOD $5 / m^{3}$ d	0．02－0．03	0．02－0．03	
－$K g T B O D_{5} / m^{3} d$	0．04－0．06	0．04－0．06	
		0．0007－0．0015	0．001－0．002
Yסраulıós хро́voç параноvís（hr）	0．7－1．5	1．5－4	1．2－2．9
BODs $E \xi \delta \dot{\delta} O u(\mathrm{mg} / \mathrm{t})$	15－30	7－15	7－15
		＜2	1－2

\checkmark Мікр
\checkmark Ап入о́тпта $\lambda \varepsilon$ וтоupүiac，
\checkmark Хаип入ó גєıтоирүіко́ ко́ттос，

\checkmark பuvatóтпта viтропоinoŋヶ．

 оруаviкои́ фортіои．

 ठїкळv．
\％Про́ßлпиа оо $\omega \dot{\omega}$ ．
 oxहठठıaбนంu่．

7．1．4 Фưıкá оưтท̇นата

7．1．4．1 £uनтíuata Boaбsiac Eqapuovís

 вфарноуп̆я．

 ßабıкойц тùnouc：

 тоछ゙ィКல்．

	Aрঠвvä¢	$\Delta u j \theta \eta \sigma \eta$ ¢
	$\mu \dot{\varepsilon}$ 官оठо	$\mu \varepsilon ́ \theta o \delta o t$
Yסрадגıко́ 甲ортіо（ $\mathrm{m} /$ ह́roc）	0．60－2．00	1．70－6．00
（ $\sigma \tau, . / 0^{3} m^{3} d$ ）	170－550	56－200
	Aлоитеita	Алоateitoa

 ßגáotnons．

 ка入入ıвंрүвıа̧，

\checkmark Гоvı䒑опоiŋon \＆ठ́áqouç．

Ta кúpıa $\mu \varepsilon ו о v \varepsilon к т \dot{n} \mu a t a ~ a \varphi o p o u ́ v ~ T \eta v: ~$

7．1．4．2 ミuotriuata Taxeiac Δ Iİ̇̈nons

Пара́цвтроя	$\begin{aligned} & \text { Фóprıō } \\ & \underset{\mu \mathrm{Kg} / \sigma \mathrm{p} \rho . \eta}{\mu)} \end{aligned}$	Baөuós anóōơท乌 （\％）	Паратпрர்бвıя
BODs	4．50－18．0	86－100	
A $\langle\omega$ то	0．33－4．10	10－93	Eğaptátaı anó： －To धпinहסัo проєпє६६рүабіая －Tnv avaגoyia BOD／N －Tov кúк入o גहוтоupүiaç －To uбраидлко́ фортіо
Фшо¢о́pos	0．11－1．34	29－99	бוаס̄роиท่ร

Ко入оßактпровıӧท̆	2－6 ¢орદ́ऽ	H anoцákpuvan oxetiદॄтaı： －miv перioбo छ்̇pavoñs

 ßраб̈віас єфариоүйя．

 фшбфо́pou（uпо́ проӥпоӨદ்øвı¢）．

7．1．4．3 ミиотńuata Eпו甲аveiaкís Pońs

 пооб́тクт६ৎ，BOD（80－95\％），aı

غ̇хદા:

 kal:

7.1.4.4 TEXVntoi Yүроßіо́топоі

 (甲uтá tou үદ̇vouç Typha).

 фибікоі uүроßіт்топоו.

 Өрєптіка́ каı фитофа́риака.

Mnxaviouoi anouákpuvons T ω v pún ω v oz Texvntoúc uypoßiótonous

 T $\omega \mathrm{V}$ pún $\omega \mathrm{V}$.

 عпाтиүхávยтаı वє μ ккро́тєро ßаӨно́.

Oı $\mu \eta$ хаvıб

Yypoßı́топоі впіраvعıакйs pońs (FWS)

 ßגáotnons.

 отعрळ்v.

Yypoßıótonol katakópupns pońs (SWS)

 иүроßıȯтопаv．
 орүаviкои่ фортіои

	Movódeç		ミvootทua SES	
	$\eta \mu \varepsilon ́ \rho \varepsilon ¢$	5－14	5－14	
Bâtoç vepov́	m	$0.1-0.5$	0．3－0．8	
Oрүаvıкฑ！¢о́рпtıך	kgBOD／$/ \tau$ ．${ }^{\text {d }}$	8	8	
	$\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}$	0．01－0．06	0．01－0．06	
	$\sigma \tau \rho / \mathrm{m}^{3} . \mathrm{d}$	$0.02-0.14$	0．02－0．14	
	－	2：1－10：1	＜1	
Eגçरoç коwvovatónv	－	A $\pi \alpha \\| \tau$ íc ${ }^{\text {a }}$		
 	yr	3－5	1－2	

 aı ω рой $\mu \varepsilon v \omega v$ от

1．Aعpóßıa（ $\mu \eta$ a $\varepsilon \rho ı\langle ̧ o \mu \varepsilon v a)$ ，

3．єпанчотєріそоvта avaعро́ßıa．

 גعітоupүウ்боuv $\mu \varepsilon$ ичП入á орүаvіка́ фортіа．

 Tóvouc．
 घпıплह்ovта 甲utá．

Пара́нєтроІ				
	ає $\rho \dot{\beta} ß \imath$	B＇$^{\prime}$ ßá̈ $\boldsymbol{j} \mu \mathrm{o}$ 	Аеро́ßıas Aпонáкрuvaņ （xшpis аерıгцо́）	इиотர்иата $\mu \varepsilon$ фитá tク̧ oıкоүモ̇veıa̧ Lemnaceae
Tvлıкג́ критipta бरहסıабиои́				
Anaitnon Провпє६घруабіая	Eoxápoon ウ் KäiZ̆̃on	Eoxáp ω on ウ̀ KäiZ̆on	B＇$^{\prime}$ ßà ${ }^{\text {a }}$	Ekpoì anó єпар甲отеріگоибєц入iuves
$\begin{aligned} & B O D_{5} \text { घIoóסou } \\ & (\mathrm{mg} / \mathrm{lt}) \end{aligned}$	130－180	130－180	30	40
Opyaviki фо́ртібп（Kg BODs／OTp．d）	4．5－9．0	16．8－33．6	1．12－4．50	$2.24-3.36$
Bá θ ¢̧ vepoú（m）	0．5－1．0	1．0－1．22	0．6－1．0	1．22－1．83

xpóvos параноvїя（d）	10－36	4－8	6－18	20－25
убраиліко́ фортіо $\left(m^{3} / m^{2} d\right)$	$\begin{gathered} 0.019- \\ 0.056 \end{gathered}$	0．094－0．28	0．037－0．15	0．056－0．084
－ероиокрабіа лицátшv（＂C）	＞10	＞10	＞10	＞7
Про́үрадиа оичкоиібп́я	Enoxiakń 	$\Delta \dot{0} 0$ 甲орદ்ऽ бuvexढ̈s	$\Delta u ̈ 0 ~$ 甲орદ்̧ то $\mu \check{j v a}$ غ́ $\omega \varsigma$ бuvexต்s	$\mu \eta$ viaia
Avauรvóuevn поо́тпта вкрои́s				
BOD 5 عIÓ̇סOu （ mg / t ）	＜20	<15	<10	＜30
SS（mg／ti）	＜20	<15	<10	<30
TN（mg／t）	<15	<15	＜5	<15
TP（mg／t）	＜6	＜1－6	＜2－5	<6

Tа $\mu \varepsilon ı о v \varepsilon к т \grave{\eta ̆ \mu т а ~ т о и ~ б и о т и ́ \mu а т о \varsigma ~ \varepsilon i v a l: ~}$

※ ПıӨavó про́ß入пиа обны்v каı عvто́ $\mu \omega$ v．

 tou anóß $\lambda \eta$ тои otn $\lambda i \mu v \eta$.

7.1.5.1 Гعиाкá

 апобЕ்̇кє६؟)

 каı фшофо́рои.

Enavaxpnoıuonoingn via ápठzuon

 пробıaүра甲ผ́v Tпऽ KYA 5673／400／1997．

 про́оßапп．

 апоррофптікои́ $\beta \dot{\theta}$ Өрои.

 каӨ்́c:

- Xарактпріґ६таı anó впа́рквıа хஸ்роu

Bopsıoठutiká TnC I. Movic (ENAN, OEEH 1).

 عпıßápuvon.

- тПऽ $\sigma u v \grave{Ө}$ -

 عпıßápuvoŋ.

ミúgTnua alwpoúusvou Biohovikoú pi $\lambda \mu$ (MBBR-Moving Bed Bio Reactor)
 Reactor), λ óy ω :

 عпıßàpuvoŋ.

- тПऽ $\sigma u v \grave{\ddots}$ -

 λ д́үш:

 عva入Мактікá бưтйиата.

 عпıßápuvon.

ミuounumara عпı甲aveıakńs pońs

 touc．

 touc．

－$\varepsilon \mu \varphi a ́ v i o n \varsigma ~ п \rho о ß \lambda п \eta a ́ т \omega v ~ o \sigma \mu \omega ் v, ~ \varepsilon v т o ́ \mu \omega v . ~$

TEXVnT

 touc．

 отŋv перıохウ்．
 то Xpóvo）
 никро́ßıa тшv גuцátшv．

 عוбદрхо́ $\varepsilon \varepsilon v \omega v ~ \lambda u \mu a ́ т \omega v . ~$
－Мغуá入n ап入о́тпта ото хеוрıбио́．

OI киріо்т

弓 ω ர்，к．л．п．）．

 غ́pyou. Ol кuрıóтepȩ anó autés عivaı:

- Апо́oтаö тоu $\rho \varepsilon ́ \mu a т о \varsigma ~ a n o ́ ~ т \eta v ~ E . E . \Lambda . ~$

 ठраотпріоттптес.
入єкávŋ.
 uठ̈át ω v
 поІо்тПтаৎ̧ T $\omega \mathrm{V}$ uठ́àт $\omega \mathrm{V}$ тои
 uппрєбієя

 охЕтıк'் ठıаб̈ıкабіа

 $E 1 \beta / 221 / 65$.
 घцпतоuт।

ото параквіцєvo ре́ua.

 Mov'் $\mu \varepsilon$ по入ú μ וкро́тєро оптเко́ пعठ̄io.
 घпіптшणन.

 пєрıாтஸ்ఠદı,

 НАєктронаүvŋтіка́ пєठі́a ठєv unápxouv.

8．YФİTAMENH KATA乏TA乏H חEPIBAMAONTO乏

 $\mu \varepsilon$ TПV YA 5980／16－10－1965－ФЕК 714／B／29－10－1965．

 фиđıкй β 人áoтпоп．

 घıкס̇va．

Eıкỏva 8．1：H пєрıхХウ่ $\sigma \varepsilon$ aктiva $500 \mu \varepsilon ่ т \rho \omega v$.

8.1.2 £пиعıaкó غ̇pyo

8.1.3 Катпүopia épyou

8.1.4 Проотатвио́цвvๆ періохй

8.1.5 Үүротопики่ перıохй

 tou A θ.

8.2. КАıнато৯оүıка́ каı 乃ıокДıнатıка́ характпрıотıка́

 avغ́pхєтаı $\sigma \varepsilon 16-17^{\circ} \mathrm{C}$ ．

$\begin{array}{\|l\|} \hline \text { Пєpioठo̧ } \\ \text { 1978-2004 } \\ \hline \end{array}$	Xарактпріотікш்v			
Mrjvas	$\begin{gathered} \text { 0гриокрабіа } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	＇Үшоя Bpoxñs	Exeтıkí uypaơia aغ́pos	$\begin{gathered} \text { Е乡а́тиıӧ } \\ (\mathrm{mm}) \end{gathered}$
Iavouápıs，	2，6	47	85	21
Феßpouápıos	3，4	55	83	21
Ма̇ртіо̧	6，5	50	80	34
Апрілоя，	11，0	51	73	51
Máıos	16，2	50	71	59
Ioúvios，	20，9	41	66	76
Ioú入ıos，	22，9	54	65	84
Aúyouotos，	22，3	38	67	SO
इєпте̇нßрıоя	18，6	31	72	63
Октө்ßрıоя，	13，3	56	80	40

Noż^ßpıos	7,6	84	85	20
$\triangle \varepsilon к \varepsilon ์ \mu ß р ı ¢, ~ ¢$	4,7	90	86	23
Mżon (o\ıкı่)	12,5	649	76	568

8.3. МорчоАоүıка́ каı топıолоүıка́ Характпрıотика́

8.3.1 Kатаурафй топiou ava甲opác

 проотатви́घтаı апо́ autó.

 BaӨिıaia avepxó
 tou $A \theta \omega$.

8.3.4 Епиалткко́тাта - трато́тпта топіои

8.4.1 Гعшдоүıка́ характтрıотıка́

CR: Перبодотих Giovn, (Pe: Ziovn Пnoviaç, Pa: Zồn Пä́кou, Al: Zionn Aднюлiaç = Zờv A Açıó,

Pk: Ziam Пlapvacroo- Пntouvac,
P: Zóvn livion,
G: Zóvๆ Гаßро́pou-Tpizoìŋs
1: lónoç ̧óvon,

 O＾OKAINO）

 IOYPAEIKO）

 TPIAAIKO）

9．Ец甲аviбвı̧ каı котта́б μ ата $\mathrm{Fe}-\mathrm{Cu}$

12．Мвта入入દia．

8．4．2 ЕбаяроДоүıка́ характүрıотıка́

 ото＇Аүıо＇Оро̧（I．Г．M．E．1978，Nта̀甲п̧ к．á 1999）．

IZпиатоуEvท่ петрळ́иата

－A入入oußıaкદ่ऽ anoӨغ்øعıร

＇Eठapos

 va đuбow

 （ти̇поu Грпүоріои）．
 кєроотı৯ßıко́ үраvitך．

 ота μ втаїそ’иата．
п：Пєрıб̄отітєц каı боuviтєऽ，

 1：50．000）

8．4．3 Tعктоиıка́ характпріотıка́

Me ßàon，ó $\mu \omega \varsigma$ ，то vह̇o avaӨz

 oxモ்̇ŋ：

$$
A=\mathbf{a} \cdot \mathbf{g}
$$

Onou：\quad g：हпıтáxuvö ßapútŋtac каı

8.5. Фибıко́ пعрıßádMov

8.5.1 Гeviká otorxeia

X $\lambda \omega$ ріба

 Мєбદирюпаїка́ (4\%) каı топıка́ єvঠ̄пиıка́ (2\%).

Aпعı入oúueva kal пpootateuóueva عión

 (Мпанпал ω vac 1998).

a/a		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii		X		
4	Asperula aristata ssp. thessala		X		
5	Astragalus thracicus ssp. monochorum		V		
6	Atropa belladona		X	R	$\mathrm{A} \Delta$
7	Aubrieta erubescens		X		
8	Beta nana	A		X	
9	Campanula lavrensis			A	
10	Centaurea pannosa			A	
11	Centaurea peucedanifolia				

12	Cephalanthera longifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		$\mathrm{A} \Delta$
15	Fritillaria euboeica		X	R	
16	Fritillaria graeca				$\mathrm{A} \Delta$
17	Helichrysum sibthorpii		X	V	
18	Hypericum athoum	B	X		
19	Isatis tinctoria ssp. athoa		X		$\mathrm{A} \Delta$
20	Limodorum abortivum		X		A
21	Linum leucanthum	B			
22	Linum olympicum ssp. athoum	B			
23	Neotinea maculata		X		
24	Neottia nidus-avis		X		A
25	Polygonum icaricum	A			
26	Silene echinosperma		V		
27	Silene multicaulis ssp. genistifolia		X		
28	Silene orphanidis			$\mathrm{A} \Delta$	
29	Viola athois				

EnをEnyñozis Пivaka 18

 Провठріко́ б̈а́таүна 67/80.
2. Evōпиıко́. NaI: χ.
 عiठ̄oc [(V)], A5: इnávio عiठ̄oc (R).
 к.à. (1998)

Пaviбa

 пропуоüцєvๆ пара́урафо．

EIDIKA XAPAKTHPI乏TIKA：EIAH TH乏 ПPOミTATEYOMENH XEP $\Sigma O N H \Sigma O$＇AO Ω

－Oauvต்vec $\mu \varepsilon$ Laurus nobilis 5230
－इUơáס̄ec ס̄á甲vクç 5310

－Фpúyava Sarcopoterium spinosum 5420
－Aбßعбтои́XoI a入пıкоі $\lambda \varepsilon ı \mu \omega ் v \varepsilon \varsigma ~ 6170$

－Yполеıциттıка́ а入入oußıака́ סáon（Alnion glutinoso－incanae）91EO

－E入入nviká ठáon o६ıác $\mu \varepsilon$ Abies borisii－regis 92701 C C B C
－$\Delta a ́ o n ~ o \xi i a ́ c ~ \mu \varepsilon ~ Q u e r c u s ~ f r a i n e t t o ~ 92805 B B A A ~$

－$\Delta u t ı к \grave{\varsigma ~ I ß ~ I ß p ı к ウ ் \varsigma ~ X \varepsilon p \sigma o v ウ ் \sigma o u ~(S e c u r i n e g i o n ~ t i n c t o r i a e) ~ 92 D 0 ~}$
－$\Delta \mathrm{a} o ̛ \eta \mu \varepsilon$ Quercus brochyphylla otףท Kрர்тт 9310
－Δ áon $\mu \varepsilon$ Quercus ilex 934025 A B A B
－Δ áa $\eta \mu \varepsilon$ Quercus macrolepis 9350
 Pinus mugo kaı Pinus leucodermis 7 B C B B

（avapopá oтףv парака̇тш 入iఠта）：

Eiön Bגáotnons

Abies borisii－regis（Макєठоvıкó ह̇лато）
Abies cephalonica
Acinos alpinus nomismophyllus

Aethionema orbiculatum
Allium quttatum sardoum
Allium moschatum
Allium chamaespathum
Alyssoides utriculata

Anthemis sibthorpii
Anthyllis montana jacquinii
Anthyllis vulneraria pulchella
Arabis brvoides
Arctostaphylos uva－ursi（Арктобтáqu入оऽ）
Arenaria biflora
Asperula aristata nestia
Asperula suberosa
Astragalus thracicus monachorum
Atropa bella－dorma
Aubrieta erubescens
Aurinia corymbosa
Beta nana
Berberis cretica（Bepßepis п крптıкウ่）
Bromus cappadocicus cappadocicus
Buxus sempervirens（Пu६óc）
Calamintha hirta
Campanula albanica sancta
Campanula chalcidica
Campanula lavrensis
Campanula orphanidea
Centaurea athoa athoa
Centaurea chalcidicaea
Centaurea huliakii
Centaurea pannosa
Centaurea peucedanifolia
Cephalaria flava flava
Cephalanthera Iongifolia
Cephalanthera damasonium
Cerastium banaticum speciosum

Colchicum doerfleri
Convallaria maialis
Coronilla varia
Corydalis integra
Crepis athoa
Cruciata glabra
Cruciata pedemontana
Cyclamen graecum graecum
Cyclamen persicum
Danthonia alpina
Delphinium fissum
Dianthus gracilis qracilis
Dianthus pinifolius pinifolius
Dianthus stefanoffii
Digitalis leucophaea
Erysimum calycinum
Erysimum drenowskii
Euphorbia amygdaloides amygdaloides
Euphorbia deflexa
Festucopsis sancta
Fritillaria euboeica
Fritillaria graeca
Fumana procumbens (Фoufáva η غंpnouoa)
Gagea bohemica
Gagea pusilla
Gagea villosa
Galium asparaqifolium
Galium demissum
Galium incanum incanum
Galium insularae
Galium pyenotrichum
Genista lydia (Гкviota Tņ ^uঠ̈iac)
Geocarvum capillifolium
Globularia bisnagarica
Helianthemum nitidum (Hıáv $\theta \varepsilon \mu \mathrm{O}$)
Helichrysum sibthorpii
Heracleum humile (Hpák $\lambda \varepsilon ı$ то хан $\ \lambda$ ó)
Heracleum sphondylium ternatum
Hypericum athoum
Hypericum cerastoides
Hypericum montbretii
Hypericum rumeliacum rumeliacum
Hypericum vesiculosum
Isatis tinctoria athoa
Juniperus communis hemisphaerica（Bouvóкєठ̄ро то ПцІб甲аıрıко́）
Juniperus foetidissima（Bouvokunápıơo）
Linum elegans
Linum olvmpicum athoum
Matthiola fruticulosa valesiaca
Melica nutans
Neotinea maculata
Neottia nidus－avis Onosma paradoxum
Qphioglossum vulgatum
Orobanche purpurea
Qrthilia secunda
Paeonia perearina
Platanthera bifolia
Platanthera chlorantha
Phyllitis scolopendrium
Pimpinella tragium polyclada
Pinus brutia（Tpaxzia пعúkn）
Pinus nigra pallasiana（Avaтоגıко́ μ аиро́пєико）
Poa compressa
Poa hybrida
Poa thessala
Polygala nicaeensis mediterranea
Potentilla speciosa
Pterocephalus perrenis perrenis
Rhamnus saxatilis prunifolius（Páuvoç o npouvóqu\入os）
Polygonum icaricum
Rosa villosa（AvpıттоavtaФu入入ıá η трıxढтர்）
Satureia parnassica athoa
Saxifraga juniperifolia sancta
Saxifraga sempervivum
Scorzonera cana
Sedum cepaea
Sedum grisebachii grisebachii
Sedum reflexum
Sideritis perfoliata athoa
Silene compacta
Silene flavescens thessalonica
Silene multicaulis qenistifolia
Silene orphanidis
Silene vulgaris prostrata

Sorbus aucuparia aucuparia（Aypıooopßıá）
Sorbus chamaemespilus（Xaцаıц்бпı入oc）
Sorbus umbellata（Мıкрй aon $\mu \circ \sigma о р \delta$ ı́á）
Stachvs leucoglossa
Taxus baccata（Tтаноऽ）
Tephroseris integrifolia aucheri
Teucrium divaricatum athoum
Thymus praecox iankae
Thymus thracicus
Vaccinium mvitillus（Baккivio o μ úpті入入ос）
Veronica barrelieri
Valeriana alliariifolia
Veronica chamaedrys chamaedrys
Veronica officinalis
Vicia cracca stenophylla
Viola arvensis
Viola athois
Viola delphinantha
Viola orphanidis orphanidis
Viola reichenbachiana
Viola sieheana
Eiōn Onגaotikஸ்v
Canis lupus（＾úкос）
Sus scrofa（Aypioyoúpouvo）
Mustela nivalis
Felis silvestris
Capreolus capreolus
Eiön Augıßicuv
Bombina variegata
Triturus karelinii
Triturus alpestris
Eiōn عのпยт由̀v
Podarcis muralis
Lacerta viridis
Testudo graeca
Testudo hermanni
Eiōn opvıOnaviōas
Accipiter brevipes（ $\Sigma a i ̂ v i)$
Accipiter nisus nisus（Tбıx入оүغ́рако）
Apus melba melba（ Σ кєтіарvás）
Aquila chrysaetos chrysaetos（Xpuซaعтós）
Bubo bubo bubo（Mnoúqoc）
Buteo buteo buteo（Г₹ракiva）
Caprimulqus europaeus（Гuס̃oßu̧̧áxтpa）
Ciconia nigra（Maupone入apyóc）
Circaetus gallicus（ФIठ̄aદтós）
Columba livia livia（Aypıoпєрioтєро）
Corvus corax corax（Ко́ракас）
Delichon urbica urbica（ $\Sigma п ı т о х \Sigma \lambda i \bar{\delta} o v o)$
Emberiza cirlus（ $\Sigma 1 \rho \lambda$ otoix λ ovo）
Erithacus rubecula rubecula（Kokкivoגainnc）
Falco eleonorae（Mauponєтрітпऽ）
Fringilla coelebs coelebs（ \sum nivoc）

Hieraaetus fasciatus（ \sum nıそ̧atóc）
Lullula arborea arborea（ $\triangle \varepsilon v \tau \rho о$ отapŕ $Ө \rho a$ ）
Phalacrocorax aristotelis（ \quad д入аббоко́ракас）
Tetrao urogallus（Aүpıoкоupvóc）

92／43／EOK

1150 Пара́ктієৎ $\lambda ı$ vvoӨá入аббб६－OXI

2220 Oivec $\mu \varepsilon$ Euphorbia terracina－OXI

92A0 Σ Toह́ৎ $\mu \varepsilon$ Salix alba kaı Populus alba－OXI

 m．

 ६u入ока́рßouva．

8.5.3.1 Xapaктńpac tns ह́ктаönc tou ह́pyou

 ठoó̀v $\mu \varepsilon$ Castanea sativa 9260.

 naviठ̄as η x $\lambda \omega$ piठ̄ac.

 каı тоv плクӨuбцó бє акераıо́тпта.

8.6.1 Хшрота६ıко́я охЕб̈ıаоио́я

 uпа́pхоuv тонвіс параүшүıко́тптас,

 Халкıঠıкণ่ऽ.

8.6.2.1 Xарактпрıбтіка́ по́גешv каו оוкібиа́v

 'Opous عival hovaxoi.

 Moví.

8.6.2.2 Пооотатधио́ивvа тип́иата

 1965.

 غ́xouv.

8.6.3.1 Apxalolovikoí Xápol - ̧áves

коıцптпрıaкós vaós T $\omega \mathrm{v}$ Aүi $\omega \mathrm{v}$ Пávт $\omega \mathrm{v}$.

 TПऽ Фi入oӨźou.

 10-1965.

8.7. Кольшvıко́ каı оוкоvонıко́ перıßádМоv

8.7.1 Апроүрафикп் ката́отаӧ

 Ayiou 'Opouc.

8.7.2 Параушүıк்่ бıа́рӨршоп

8.7.2.1 ПаралауIкоіं тоиеі'

$\Delta \varepsilon v$ unápxouv параүшүікоі тонві,

$\Delta \varepsilon v$ uпа́рхоuv параүшүıкоі тонвіс,

8．8．1 Yпоб̄оиモ̇я цєтафорळ்v

 каı oı періпатоı عivaı ouxvó $\mu \varepsilon ̇ \sigma o ~ \mu \varepsilon т а 甲 о р a ́ s . ~$.

 каӪ்̧ каı anó uठ̄роп入єктрıкó غ̇pyo．$\Delta \varepsilon v$ uпápxouv ठіктua $\triangle E H$ ．

8．8．3 Аіктua ủठр

8．9．1 YnápXoưeç nクүモ̧̇ pủnavơŋ̧

8．10．Атнобчаıрıко́ пєрıßáגАоv－Поıо́тпта aв́ра

Характпррıбцо́я púnavoŋ̧	$\begin{gathered} \text { CO } \\ (8 \omega \rho \varepsilon \varsigma \text { тір } \bar{c}, \\ \left.\mathrm{mg} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \text { Kanvó } \\ (24 \omega p \varepsilon \varsigma \\ \left.\mathrm{T} \mu \varepsilon \varepsilon^{\prime}, \mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{SO}_{2} \\ (24 \omega \rho \varepsilon \varsigma \\ \mathrm{T} \mu \dot{\varepsilon} \mathrm{c}, \\ \left.\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	O_{3} （wpıaiss тו $\mu \varepsilon \dot{c}, \mu \mathrm{~g} / \mathrm{m}^{3}$ ）	NO_{2} （wpiaiss т $\left.\mu \dot{\varepsilon}, \underline{,}, \mu \mathrm{g} / \mathrm{m}^{3}\right)$
Хацп入à	＜15	＜250	＜200	<180	＜200
Мغ̇трıа	$>15 \leq 20$	$>250 \leq 275$	$>200 \leq 250$	$>180 \leq 250$	$>200 \leq 350$
Y $\psi \eta \lambda$ da	$>20 \leq 25$	$>275 \leq 300$	$>250 \leq 300$	$>250 \leq 360$	$>350 \leq 500$
Ho入ú uuņá	＞25	＞300	＞300	＞360	＞500

8．11．Акочотıко́ перıßáגАоv каı боvŋ்бєıৎ

8．11．1 Ппүध̇я Өори́ßou

 латрєиткк்，к．к．п．．）．

перıßа̀入入оитоя

 пivaka tou ápӨpou 2 пар． 5 tou П．А．1180／81（ФEK－293 A＇）．

a/a	Пєрıохй (хрர்णп үп¢)	Avஸ்тато ópıo Oopúßou $\sigma \varepsilon$ dBA
1		70
2	Bıо пихаviкó	65
3	каı аотıк் бтоххघіо	55
4		50
5		45

 Өо́pußo.

8.12. НАектронаүvптіка́ пебїa

uпо́ßaӨpou

8.13. 'Үбата

$\lambda u ́ \mu a t a$.

8．13．1．2 EleVYOc đu

8．13．2 Eпı甲aveıaкá úס̄ara

8．13．2．1 Періураюп́ ибооурафікои́ ঠікти́ои

 апоотраүүіदદı тпи періохウ่．

－Yס̄peữ
－＇Aрঠвиのп

 otףv катаvá̀ ω ơn μ иóvo．
$\Delta \varepsilon v$ uпápXeı púnavãn anó проїóvта 甲utопробтабіая，

8.13.3 Yпóүعıa úठ̄ata

 перюххウ่я.

- Үठрєиणп
- Apס̄عữ

 катavà $\lambda \omega$ on μ óvo.

катабтрочю́v

ү. Eпіßapnyėva anóß入nta

норфо入оүıка́ үعш入оүіка́ характпрıбтıка́ тпя．

 актіvoßо入іяя．

9．EKTIMH乏H KAI AEIO＾OГH乏H ПEPIBAANONTIK』N EПIПT $\Omega \Sigma E \Omega$ N

 ยпıாтஸ்ఠॄ ω v．

 unápxouv．

 'Epyou:

- Фàon Kатабквип̧̆,
- Фảon ^عıтoupyias,

Характпрıотіка́

$\Delta \varepsilon v$ ह̇X

9.2.3 Екпоцпйс аєріои тоu Өгриокппіои

9.2.3.1 Фáon катабкعuís

 ако入ои́Ө ω с:

Eiōos púnou	$\mathbf{C O}_{\mathbf{2}}$
$\mathbf{g} / \mathbf{H P}-\mathrm{hr}$	587,3

M \quad xảv ${ }^{\text {a }}$	CO_{2}	
	Kg/d	tn/y
$\begin{aligned} & \text { Екбкаче́ас 200kW } \\ & \text { (286.5 HP) } \end{aligned}$	1346.1	40
100 kw (134.5 HP)	632	19
Avaтрєпȯuعvo 120 kw (161 HP)	756	23

 غ́pyev.

9.2.3.2 Фáon \हוтоupvias

 каı Өع

	$42 \mathrm{kWh} / \eta \mu \varepsilon \dot{\mathrm{c}} \mathrm{a}$
П入єктропараүшүท่	$0.855 \mathrm{~kg} / \mathrm{kWh}$
	$35.91 \mathrm{~kg} / \mathrm{d}=0.036 \mathrm{tn} / \mathrm{d} \dot{\dagger} 13.1 \mathrm{tn} / \mathrm{y}$

 катабквuท่ каı $\lambda \varepsilon ा т о u p y i a ~ T \omega v ~ \varepsilon ́ p ү \omega v . ~$

характпріотіка́

9．4．1 Макроокопикє̇ц параттрŋ்бвıৎ

9．4．1．1 Alloíwon，катáтипоп हпи甲áveiac пहтршиátшv

 μ нкрव́ $\mu \varepsilon \gamma \varepsilon \dot{\varepsilon} \theta \eta$ ．

 عпıраvєıака́ ர் uпعठ̄a甲iшc．

9．5．2 Проотатвио̇นєvєя періохє̇я

X λ шрібд

Пavióa

 $\mu \varepsilon т а к ı v ウ ் \sigma \varepsilon \omega v ~ T \omega V ~ \zeta \omega ं \omega V$

9．5．2．1 Eıठікá णтоィरहía

Eión Bגáotnons

вүката́бта⿱㇒пя．

Eiön Aupißıa каı Eiön عのпЕт由́v．

＊$\Delta \varepsilon v$ Өa a入入ágョı η норфо入оүіа тпऽ перıохŋ́я．

9.5.3.1 Enиாтט́ovic oe סócos

 apкєтய்v onयavtıкக்v taxa.

 Twv Tón $\omega \mathrm{v}$ шотокіас, к кп.

 о́пшц проаvачغ́рӨпкє (то по入ú $100 \mathrm{~m}^{2}$).

 uүıहIvก்c．
 тпр проотабіа тои періßа́入лоитоя，

9．6．2．1 Eктіипоп हпиптшंбвши

 тпр проотабіа тои перıßà $\lambda \lambda$ оитос，

 періохй．

9．6．3 ПоАıтотикท่ келрроvориа่

ミтпV á

9．6．3．1 Enиттஸ́øعIs

 вүката́oта⿱㇒㠯ף．

9．6．3．3 Eіठікர் हктіцпоп

9．7．Епıптஸ́бєıц ото коıvตvıко－оוкоvонıко́ перıßáßМоv

9．7．2 Δ ıápӨр

9．7．3 Oźozıс عpyaoiac

9．7．5 Поьо́ттта Zюஸ்я

 OTףV I．M．Фі入O日غ்ou．

9．8．1 Eпиттळ்овıя

9．8．2 Eпа̉ркєıа

9.9.1 ПıӨavóт!тта вvioxuợя

 каı 入оіпท่ऽ ठраотпріо́тұтая,

 $100 \mathrm{mg} / \mathrm{m}^{3}$, пои каӨорі६६таı апо́ то àpӨро 2 параү. ठ тои П. Δ. 1180/81 (ФЕК 293/А/6-10-1981).

 T $\omega v \mu \eta X a v \eta \mu a ่ T \omega v ~ a u t \dot{v} v$.

 ठєкáठॄ६ৎ ppm).

Katá tov ox६סıaø

Епıп

 ßıо入оүıкйऽ єп६६६руабіая,

 aитокіvŋтшv.

 293/A/6-10-1981).

 גеттоupyia тоия,
 anóotaon

 סivetaı anó tఇv $\varepsilon \xi i \sigma \omega \sigma \eta:$

$$
\mathrm{L}_{\mathrm{P}}=\mathrm{L}_{\mathrm{N}}-10 \log _{10}\left(4 \cdot \pi \cdot \mathrm{r}^{2}\right)
$$

ónou:

 غ̇хоч $\mu \varepsilon \mu \varepsilon i \omega \neq \eta$ autou่ кaтá $6 \mathrm{~dB}(\mathrm{~A})$.

9.12.2 ПіӨavóттти

$\Delta \varepsilon v$ uпápxouv $\eta \lambda \varepsilon к т \rho о \mu a ү v \eta т і к а ́ ~ п \varepsilon ठ ̄ i a . ~$

9．13．Епıптஸ́бعıৎ ота и́б̄ата

9．13．2．1 Eпıптш̈णєıに ото ঠіктио

9．13．2．3 Eкtíunon нетаßо入ஸ́v

 à иعба каı $\mu \varepsilon \lambda \lambda$ 人оvтіка́．

Фáon Kataokeuńs

 عivaı по入ú μ лкра́（ 2 －2，5 μ غ่тра）．

Sáon λ हıitoupvias

 бıappowiv.

9.13.3.4 Eкті́uпоп ивтаßо入ढ́v

Фáon катабкєuńs

1. ПPAミINH ENAEIEH avtıoтoIxEi oع ӨETIKH EПIMT $\Omega \Sigma H$

2. KOKKINH ENAEIEH avtiotoוxદi oع APNHTIKH EחIחIT $\Omega \Sigma \mathrm{H}$

ФAइH EPROY	ПEPIBANAONTIKO ミTOIXEIO	EMIMTREEİ			BAPYTHTA				DIAPKEIA		ANAETPE世IMH		
		블	W	8	¢	京	¢		年	ㄷ	－	W	¿
	К入ıиатıка́ каı ßıок久ıцатıка́ характпрıоттка̇		$\sqrt{ }$			\checkmark				$\sqrt{ }$	\checkmark		
	Морфолоүıка́ каı тополоүıка́ характтрıттıа		$\sqrt{ }$				$\sqrt{ }$			\checkmark			\checkmark
	характпріотка́			$\sqrt{ }$									
	Фuđıкó пعрıßà $\lambda \lambda$ оv		$\sqrt{ }$				\checkmark			\checkmark			\checkmark
				$\sqrt{ }$									
	Kоıvமvıкооікоуоиıко́ пєрıßá入hov	$\sqrt{ }$			$\sqrt{ }$					\checkmark			
			$\sqrt{ }$					$\sqrt{ }$		\checkmark			$\sqrt{ }$
				$\sqrt{ }$									
	Поıо́тпта тоu аغ́pa	\checkmark				$\sqrt{ }$				$\sqrt{ }$		$\sqrt{ }$	
	Єópußо̧，каı ঠоvŋ̇бєı¢，	$\sqrt{ }$					$\sqrt{ }$			\checkmark		$\sqrt{ }$	
	НАєкроцаүуŋттка́ пєठіа			$\sqrt{ }$									
	＇Үסата			\checkmark									
		$\sqrt{ }$				$\sqrt{ }$				$\sqrt{ }$		\checkmark	

EPIO : «EPIA ETEEEPTAEIAI KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K S N ~ A Y M A T I Z N ~ \Sigma T O ~ A / I O N ~ O P O \Sigma » ~$

	\wedge		1				\wedge				1		
				A				\wedge			1	DLOQ λ.	
									\wedge				
1				A		\wedge					1	SİOḶNOQ IDY Sojndọe	
1				1	1						1	Dd3̧ nol oıluoiou	
				1				1			\wedge		
									\wedge				
				\wedge				1			1		
				1				1			\wedge		
				\wedge				1			\wedge	^Oүүp̣did3u Ọ>10n¢	
									\wedge				
	1			\wedge	1					\wedge			
Z		O		3 3 2 2 3 3	3 3 3 3 3 m	X $\substack{3 \\ 3 \\ \text { 2 }}$	$\frac{3}{7}$	k E	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \underset{\sim}{2} \end{aligned}$	M	Z	OI3XIOL3 OMILNOVVVGIdEL	
	Bd.		Vİ	IV		-11	dVa			$ひ 1$			

10．1．МєӨобоฝоүıкє́ц апаıтர்бєıৎ каı про́бӨєта $\mu \varepsilon ́ т \rho а ~$

ГЕviкغ̇ऽ катєuӨúvgeis

 ото П．$\Delta .1180 / 81$（ФЕК 293／А／81）каı عıठıко்тعра то ápӨро 2 autoú：

 тои періßы̀ Моитос．

 ако்入ouӨa：

 єкбкарйv．

 перıßа́入入оитос．

 та проß入єпо́ $\mu \varepsilon v a$ от।ऽ：
－YA A5／2375／78（ФEK 689／B／78）
－YA 56206／1613／86（ФЕK 570B／86）
－YA 69001／1921／88（ФЕK 751／B／88）
－YA 765／91（ФEK 81／B／91）

 （EK 801ß／74），KYA 5673／400／1997，KYA 145116／2011 каӨஸ்̧ каı ото П．$\Delta .1180 / 81$.

 apxウ்s．

 ठ̄пиоируoủv aıюрŋ่ната．

 праүнатопоппөві．

 тПऽ бко̇vク૬：

Фáon λ हItoupvias

клиаттка́ каı ßıоклıнатıка́ характпрıотıка́

Фáan катабкहий́s

 о入ок入ウ่ршon тои غ́pyou．

Фáon deitoupvias

норфоАоүıка́ каı топıо৯оүıа́ характпрıотıка́

Фáon катабкеuís

Фáon λ हıтoupvias

Фáon катабкеиѓs

єкбка甲ウ่ऽ	

Фáon \हitoupvias

甲ибıкó перıßádAov

фáon катабкеuís

$\beta \lambda a ́ ß \eta$ o ε autìv

 anó TПV $\mu \varepsilon \lambda \varepsilon ̇ t \eta$.

 à $\lambda \lambda \omega V$ u $॥$ ı $\dot{\omega} V$ (орикт

 OTףV KYA 71560/3053, ФEK 665/B/85.
 Фáon גeוtoupvias

фóon катаокहии́s

 тоu غ́pyou.

Фáon deitouovias

фáon катабквuńs

 перıßà入loov عival:

 ठіа́ркєіа TШv єрүасішंv.

Фáon גEItoupvias

фáon катаокеuŕs

Фáon \eltoupvias

Фáoп катабкеиÍs

 ठраотпріо́тптая

Фáon λ हוтоupvias

отПи поіо́тпта тои aย́ра

фáan кaтаокहuís

 $\mathrm{mg} / \mathrm{m}^{3}$, пои каӨорі६६таı апо́ то àpӨро 2 парау. ठ тои П. Δ. 1180/81 (ФЕК 293/А/6-10-1981).

Атноораıрıкй рúnavōn	

Фáon तeitoupvias

Өо́pußo í סоvர்бєıя

Фáon катабквuŕs

 проßגєпо́ $\mu \varepsilon v a$ anó тףV KYA 37393/2028/2003 (ФЕК 1418/B/1-10-2003) «Мغ்тра каı ópol үıа

 17252/1992 (ФЕК 395B/29-06-1992) ópia Өopúßou.

Өópußoç anó тпv кivŋon охпиáт ω к каı та 	

Фáon 入eitouovias

$\Delta \varepsilon v$ uпápxouv $\eta \lambda \varepsilon к т р о \mu a ү v \eta т і к а ́ ~ п \varepsilon ঠ i a . ~$

úסara

Фáon катабкеuŕs

 бıарров́¢,

Фáon λ हitoupvias

Фáon катабквий́s

Фáon \eitoupvias

10.15. АпотвАвбнатıко́тпта $\mu \varepsilon ́ т р \omega v ~$

Фáon катабквuís

Арабтпрıо́тпта-парє́цßабך	
Өópußoç anó Tпŋ kivŋon oxпиáтшv каі та катабквиаотіка́ épүа	
Атноб¢аıрıкл่ рúnavon	
Катабквиท் ориүцáтшv 	
єкбка甲ก'ऽ	

Фuđiкó пعрıßà入入ov	

Фáōn λ हוtoupvias

Араотпріо́тпта－ парє́цßaō	
Xprion Yns	вүкатаотаӨві то в́pүо характпріद६таı апо́ ауротıко́ Характท่ра．
ouvtṅpnons	 періохйя．
Еүката̇отаоп ह̇pyou	 ठєvठрофи்тعиणך
Граниغ́я μ втачора́я， 	

Ефікто́тпта uغ́траv

 tou．
 tov unعúӨuvo tクc Movnç，

 Tou．

фáon катабкहuñs

Фраотпрıо́тпта－паре́цßабп	
Өópußoç anó тףv kivŋon oxпиát $\omega \mathrm{V}$ ка। та катабкєиаоттка́ ह́pya	 пยрıорıбиผ்v $Ө$ ори́ßou．
Атцоб¢аıрıкй рúnavon	
єкбка甲ウ่ऽ	
Фuđikó пहрıßà入入ov	

Фáón \eltoupvías

पраотпрıótๆтапар $\dot{\mu} \beta a \sigma \eta$	
Xprion Yns	Н періохض̆ тои घ̇pyou каı то око்пєठо ото опоіо θ а
ouvtripnons	 періохйя.
Eүкстव̇otaon ह̇pyou	
AıөӨŋтıкn่ uпоßáӨرıбп топіои	
Граниદ́я, нвтачора́я 	unóyeıa סıと̇ไعuøๆ.

 145116/2011

(Ппүர்: aпо́чаनп 171914 ФEK 3072/B 3-11-13)

 anó трітои,

 12，пар． 2 тпऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каı В）ота घпıкivठuva aпóß入пта
 $287 \mathrm{~B}^{\prime} / 07$ ）．

B．Фáoп катаокеuńs

 отغүacमદ̇vouc Xढ́pouc,

 поu Өa прокu่ $\frac{1}{}$
 тоиа λ ह่тध¢.

 та ако்’оиӨа:

 ع\áxıாто ठ̄uvató

Yypá kal oteped́ anóß λ nta

 тои غ́pyou, ón $\omega \varsigma$ п.х. үє ω орфо

 1312) ón $\omega \varsigma$ عка்бтотє ıбхய่ย।

B.3.6 H тuxóv ठ̄ıaxદipıəŋ T T

Өópußoc - סovñozis

 ठıaтáद̨धı, пعрі Өорúßou

Фáon \eitoupvias

 фaivó $\mu \varepsilon$ va п $\lambda \eta \mu \mu u \rho \dot{\omega} v$

 проßлппи́тшv.
 غ̇үкаıр каІ тактıкウ่ апоконıб̈'் тоиц,

¿uүкєкрıц̇va va үiveтal:

 тПऽ عүката́бтаoŋ々

 avtippúnavens.

 1999 ($\Delta^{\prime} 580$) ón

 үוа тіৎ aváyкє̧ тоu غ̇pүou.

 5673/400/1997 (B' 192) ón

 aठ̄हıоठотпи (B^{\prime} 1909) каı ото N. 4042/2012 ($A^{\prime} 24$), о́n $\omega \varsigma ~ \varepsilon к а ́ о т о т \varepsilon ~ ı б х и ̇ o u v . ~$

 єка́ототє ІбXúouv.

$\Delta .3 .2$ Ta $\lambda u ́ \mu a \pi а ~ Ө a ~ o ठ ̄ \eta y o u ́ v t a ı ~ ү ı ı ~ a n o \lambda u ́ \mu a v a \eta . ~$

 апоß入ウ่тшV тпऽ параүшүıкп்ऽ ठıабıкабіас．

ミтеред́ Aпóß入nта

 （ФЕK 24／A＇／2012）．

 41624／2057／E103／10（ФЕК 1625 B＇）ón $\omega \varsigma$ ，IбXúouv．

 ón $\omega \varsigma$ וбхบ่ยા．
 （ФEK $81 \mathrm{~A}^{\prime}$ ）．

 1312 B＇）ón $\omega \varsigma$ ıбхйعı．
 13588／725／28．3．06（ФЕК 383 B＇＇），$^{\prime}$ 24944／1159／30．6．06（ФЕK 791 B＇），8668／2．3．07（ФЕК 287 B＇）ка।

 Ioxúouv.
 oTnv KYA 114218/1997 (ФEK 1016 B'/17-11-1997).

 Еүкикліши.

 Періßа́ММоитоц，

 о入ок入ウ่р ω on тоиद．

Фáon oxeठIaOHOú

 xpóvo．
 12，пар． 2 тпऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каı ß）ота єпıкіvठ̄uva aпóß入пта
 $287 \mathrm{~B}^{\prime} / 07$ ）．

Фáon kataokeuńs－Opvavштikés anaitnioels

 ерүабієс.

 тоиа入દ่т६ৎ.
 пะрıорıণ

А

 та ако́入оиӨа：

 ع入áxıтто ठ̄uvató

Yypá kal oteped́ anóß $\lambda_{n t a}$

 1312）òn $\omega \varsigma$ єка́бтотє ıбบ́ยı

Oópußoc - ठ̄Ovñozıs

 ठıaדáद̧ıı, nepi Өopúßou

Фáon 入हाтoupvias

Ае́pıa Апо́ß入nta

 проß入пистшv．
 غ̀үкаірП каІ тактікウ் апоконӧŋ் тоиद．

¿uүкєкрри̇̇va va yivetal：

 avtippúnavons．

Yypá Aпóß入nta

 праүнатопоıіттаı $\mu \varepsilon$ ßáon та ако́入оиӨа：

 үIa TIৎ，aváyкєৎ тоu ह́pyou．

 тクऽ пعріохウ่я

 єка́oтотє ІбXúouv．

А．3．2 Ta גúرata $\theta \mathrm{a}$ oठ̄nyoúvtaı yıa ano入ú $\mu a v o \eta$ ．

 апоß入ウ่тшv тпऽ параушүікйऽ ঠıаб̈кабіая．

ミтeped Aпóß入nтa

 （ФЕK 24／A＇／2012）．

 Nouо日をбіас．Еıӧıко́тєра：

 41624/2057/E103/10 (ФЕК 1625 B') ón ω ¢ Іби̛́ouv.

 (ФEK $81 A^{\prime}$).

 1312 B' $^{\prime}$) о́n $\omega \varsigma$ ıбхบ่ยı.
 13588/725/28.3.06 (ФЕК 383 В'), 24944/1159/30.6.06 (ФЕК 791 В'), 8668/2.3.07 (ФЕК 287 B') каı

 $\varepsilon п \varepsilon \xi \varepsilon р у а \sigma i a c, ~ а п о ß \lambda ク \dot{т} \omega \mathrm{v}$.

 Үпоирүıкє́ц Апофа́бєı̧ 13588/725/06 (ФЕК 383 В') каı Н.П. 24944/1159/06 (ФЕК 791 В') о́пшৎ, 10xủouv.
 oTnv KYA 114218/1997 (ФЕК 1016 B'/17-11-1997).

 $\Delta / v \sigma \varepsilon \omega v$ T ωv ouvapúóठi ωv Yпoupysi ìv．

 Еүкик入i ω v．

 Пєріßа́入Моитоऽ，

 о入ок入ウ่р ω оा тоис．

Maúon 入eitoupvias

Oi ठ६६̧̧a

EPIO : «EPIA ETIEEEPTAIIAI KAI $\triangle I A O E E H \Sigma A E T I K S N ~ A Y M A T S N ~ \Sigma T O ~ A / I O N ~ O P O \Sigma » ~$

ФAEH EPTOY	ПEPIBAMAONTIKO ETOIXEIO	EMIMTREEİ			BAPYTHTA				DIAPKEIA		ANAETPE世IMH			TAPATHPHEEIE
		そ	W్W	징	$\stackrel{\text { I }}{\substack{5 \\ 3}}$	$\frac{5}{2}$			$\sum_{i=1}^{2}$	들 등 읃	8	W 言 플	$\frac{2}{2}$	
														$\mu \varepsilon т а \varphi о р а ́ ̧ ~ а д ̄ \rho a v \omega ் v . ~$ $\Delta ı \beta p o x \dot{~ \sigma \omega р \omega ் v ~}$ $\chi \omega \mu a ̀ т \omega v$ каı $\mu \varepsilon т \dot{\Pi} п \omega v$ єкбка甲ц்้
	Өópußо̧ каı боvฑ̇бદı¢，	\checkmark					$\sqrt{ }$			$\sqrt{ }$		\checkmark		θ орúßou aпó та $\mu \eta \chi а v \grave{\mu} \mu$ ата катабквип̆я． Tinpnon opi $\omega \mathrm{v}$ voноӨとのiac anó тоия epyòáßous．
	Н入єкроиаүvワтіка̇ п¢ठia			\checkmark										
	＇Yסата			\checkmark										
	¿оßapá aтuxŋ்щата ท் катаотрорв́я			\checkmark										
Nㅡㄹ	Клıатіка́ каı ßıокдıаттіка́ характпріттіка́		$\sqrt{ }$					\checkmark	\checkmark			\checkmark		Пєрıорıбノо́я т $\omega \mathrm{V}$ àv θ рака $\mu \varepsilon$ вфариоүй бибті்натоя， autonatoпоіпопद ка। ع६оп入ıव
$\begin{aligned} & \text { T } \\ & \\ & \hline \end{aligned}$	Морфолоүıка́ каı тополоүіка́ характпріттіка́		V					v	v					Мє та μ е̇тра пои протвіvovta। перıоріदєта। брабтіка̇ η опттк่ óxえnon．

EPIO ：«EPIA EПEEEPTAIIAI KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K S N ~ A Y M A T S N ~ I T O ~ A T T O N ~ O P O \Sigma » ~$

©AEH EPROY	חEPIBAAAONTIKO ETOIXEIO	Enintseeis			BAPYTHTA				AIAPKEIA		ANAETPE			חAPATHPHEEİ
		$\frac{2}{2}$	W్W	딩	$\begin{aligned} & \text { I } \\ & \substack{3 \\ 7} \end{aligned}$	$\begin{aligned} & \text { S } \\ & \frac{1}{2} \\ & \hline \end{aligned}$			$\sum_{i=1}^{\sum_{0}^{1}}$	ㄷ 른 응 읃	苍	W 홀 를	$\frac{\text { Z }}{2}$	
	Гєш入оүікд́，тєктоvіка́ ка। єбачолоүіка характпріотіка́			\checkmark										
	Фuđiкó перıßà入入ov	\checkmark			\checkmark				\checkmark					
		$\sqrt{ }$			\checkmark				\checkmark					
	перıß̈̀̀hov	\checkmark			\checkmark				$\sqrt{ } \sqrt{ }$					
	TEXVIKદ̇¢ unoঠ̃o\દ̇¢，			\checkmark										
	ото перıßàMov	$\sqrt{ }$			$\sqrt{ }$				$\sqrt{ }$					
	Поıт̇ทта тоu aغ́pa	$\sqrt{ }$						\checkmark	$\sqrt{ }$				$\sqrt{ }$	ठєछаuєvய̈v каı
		$\sqrt{ }$					$\sqrt{ }$		$\sqrt{ }$				\checkmark	плєктропараүшүо் द̌u̇Yoc．
	Н入єкронаүvทтіка̇ пєठia			\checkmark										
	Үбата	\checkmark			\checkmark				\checkmark					
	ミоßара́ aтuхŋ்ゥата ウ் катаотрочє́ц	$\sqrt{ }$				\checkmark				$\sqrt{ }$		\checkmark		

Tax．$\Delta / v \neq \eta$ ：Папа́甲п 82，Өعбба入оviкп，Т．К．54453，
Tп入．： 2310902321
Email：skarageo＠gmail．com
¿фраүіб̈а－Үпоүра甲г＇

OERPHOHKE

ecooodovikn． 14.04 .20 .2 ．
O AIEYOYNTHE TH乏
TEZNIKHE VIHPEEIAE

Гعш́pүıoç Marpanáそ̧ņ

11. ПEPIBAMMONTIKH $\triangle I A X E I P I \Sigma H ~ K A I ~ П A P A K O \Lambda O Y O H \Sigma H ~$

 Plan (EMP) عival:

 avaӨع $\omega \rho \dot{\jmath} \sigma \varepsilon \omega \mathrm{v}$

11.2.ПعрıßaגМоvтıкர́ парако৯ои́Өŋбך

11.2.1 Паракоגои̇Өŋоך aย̇рıaç pủпavoŋ̧

 عוठاко́ $\mu \eta т р \omega ் о ~$

- 'Opia үnпह́O்ou EEA
- Opıa ктірі涪 Movท́s

- Пєріпт

	Пардиетроऽ	Méboठ̃os	ouMhoyis	ठєıуนáтแv	X ¢óvos тархцоvท்s	
					E§aywy门	Avồưon
Eicoōoc） 	BOD－5	MCAWW Method 405.1	One $500-\mathrm{mL}$ amber glas jar with TeflonTM－lined cap	Store at $4^{\circ} \mathrm{C}$	48 hours	5 days
	COD	MCAWW Method 410.4	One $500-\mathrm{mL}$ amber glss jar with Teflon ${ }^{\text {TM }}$－lined cap	$\mathrm{H}_{2} \mathrm{SO}_{4}$ ；store at $4^{\circ} \mathrm{C}$	NA	28 days
	TSS	MCAWW Melhod 160.2	One 500－mL polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	7 days
	O\＆G	MCAWW Method 413.2	One 1－L amber glass jar with Teflon ${ }^{\mathrm{TM}}$ ． lined cap	HCl ；store at $4^{\circ} \mathrm{C}$	28 days	40 days
	Chloride and sulfate	MCAWW Method 300	One $250-\mathrm{mL}$ ．polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	28 days
	Micobiolog． parameters		$120-\mathrm{mL}$ sterilized borosilicate glass bottle	Store at $4^{\circ} \mathrm{C}$	1 hr	48 hours
	DO	MCAWW Method 360.1	One $250-\mathrm{mL}$ ．polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours
	pH	MCAWW Method 150.1	One $250-\mathrm{mL}$ polyethylene botle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours

 घंद๐ठо．

ПAPAMETPOE	EIEOAOE	EEOLOE	IAYE	$\triangle E I T M A$	ПAPATHPHEEİ
Парох'̆		$+$			
$B O D_{5}$	\#	\#		M.H	
COD	\#	\#		M.H	
SS	\#	\#		M.H	
А $\mu \mu \omega$ viaкá, \quad vitp $\omega \dot{\partial} \bar{\eta}$, vitpıка́	\#	\#		M.H	
TP	\#	\#		M.H	

\# : Пєрıобıка́ (п.х. 1-2/ μ пиııai $\omega \varsigma$)

* : ミпораб̄ıка́

- $\Omega \varsigma$ аvштغ่ра пivaкая

ПAPAMETPOE	EYTKENTP Ω EH
BOD ${ }_{5}(\mathrm{mg} / \mathrm{lt})$	<25
COD (mg/t)	< 125
Alwpoúheva oreped, SS (mg/lt)	≤ 35

－$\quad \Delta \varepsilon \xi а \mu \varepsilon v \dot{~ п р о к а \Theta i そ n o п ऽ ~}$
－Opıa ктірі ωv Movís

－＇Үпарछп סıарроळ́v

－＇Opia Xஸ́pou EEA
－Opıa ктррíwv Movís

－Auگ̆пцغ́voc Өópußos

11．2．5 ПаракоАои̇Өŋัワ обนஸ்v

 દรัп入ıศนои่．

 عทо́тптє६:

- $\Delta \varepsilon \xi$ ангvท่ прокаӨіZпопऽ

KaӨapiouóc - Euvtripnon

- ОофрПтіко́ц غ்лЕүХоऽ

- KaӨпиерıivá

- 'Opia xஸ́pou EEA
- Opıa ктıрі ω v Movńs

11.3.1 Eюатюүர்

 апоб́غ்kтท.

 перıххŋ́ каו та vepà.

11．3．3 Evepyonoinoŋ тоu Exєठiou

a．Дıакопй Н入єктрıкой Pعúцатоऽ，

β ．Екठ̄̀̀ $\lambda \omega \sigma$ п пиркаүіа́я

－Aué̀zia
－YперӨ́́p $\mu a v o n$

ү．Eпıßapпиع̇va aпóß入凤та

－ دıappoñ oع aүшүó 2
 $\varepsilon \varphi \varepsilon$ рікои่ є६оп入ıбиои่．

 апоß入ர்т ωv ．

 Acquisition or SCADA）кaı ठ $\varepsilon ı ү \mu a т о \lambda \eta \psi i \varepsilon \varsigma-a v a \lambda u ́ \sigma \varepsilon ı \varsigma . ~$

11．3．4 Anevepyonoinol tou ミxeठiou

Naı OXI

B. Xpŕon ßutio ¢óp ω v

 к.л.т.

Г. Мદ̇ба єктव́ктоu aváyкクร

апоßлウ่тьv

12．K $\triangle \Delta I K O П O I H \Sigma H ~ A П O T E \Lambda E \Sigma M A T \Omega N ~ K A I ~ П P O T A \Sigma E \Omega N ~$ IIA THN EГKPIEH חEPIBAAMONTIKRN OP』N

12．2．1 Kaтג̇тaگŋ モ̇pyou

 2703／B75－10－12）．
 1931B／27－12－2004）．
 3－2007）．

KatátaEn кaтá ミTAKOД 2008 каı NACE Rev． 2

 E．E．＾．हival：

	इuvtetay	
	X	X
	524523,64	4452585,58
	524513,83	4452597,48

 524507,84 ка। $Y=4452590,50$.

	इuvtetaypėvec ELEA 87	
	X	Y
'Ȩ\%ס̃o̧ anó EE^	524502,74	4452587,40
	524480,54	4452591,35

12.2.3 Періүрафп் 'Epүои

Aпохетеutiká ठіктug

 ича́бнатос,

ПAPAMETPOE		ПAPOY ${ }^{\text {¢ }}$ ФAEH	ФAEH EXEAIAEMOY
	kar.	140,00	190,00
	$\mathrm{m}^{3} / \mathrm{d}$	21,00	28,50
акаӨápтшv	$\mathrm{m}^{3} / \mathrm{d}$	31,50	42,75
	$\mathrm{m}^{3} / \mathrm{h}$	1,31	1,78
	$\mathrm{m}^{3} / \mathrm{h}$	4,72	6,41
Eiठıкȯ Punavtıkó ¢oprio BOD_{5}	$\mathrm{gr} / \mathrm{kat} / \mathrm{d}$	60,00	60,00
EIठıкȯ Punavtıkó ¢ортio TSS	gr/kat	70,00	70,00
Eıठıкó Punavtıkó 甲ортio TN	gr/kat/d	10,00	10,00
Eıठıкȯ Punavtıкó ¢ортio TP	gr/kat/d	2,00	2,00
Фортіо BOD_{5} бхеठıабนой	kg/d	8,40	11,40
Фортіо TSS охहסІабนой	kg/d	9,80	13,30
Фортіо TN охहठıабиой	kg/d	1,40	1,90
Фортіо TP охहठІабนоบ่	kg/d	0,42	0,57

Кшס̌ィко́ç E.K.A.: 19.08.05

Пєріпои 5-6 m³/غ่тоя

 145116／2011．

12．2．5．1 Ае́рıа апо́ß入пта

 ठıата́दॄця：

 Koivotit $\boldsymbol{T} \omega \mathrm{v}$ ．
II．KYA $\mu \varepsilon$ 14122／549／E103／24．3．11（ФЕК 488／B／30．3．11）«Мદ́тра үIa Tп Be入ti ω OП TПS

12．2．5．2 Y Y а́ апо́ß入лто

$\Lambda а \mu ß a ̉ v o v t a c ̧ ~ u п о ́ ч \eta ~: ~$

חAPAMETPOE	EYTKENTP Ω EH
BOD ${ }_{5}$（mg／lt）	≤ 25
COD（mg／t）	≤ 125
Alwpoủheva oreped，SS（mg／lt）	≤ 35
О入ıка่ ко入о३актпрıввıӧń	
pH	5，5－8，5

 Парápтпиа 1 tП̧ KYA 5673／400／97．

Katá Tn 甲áon Kataorevís：
－KYA 9272／471／07，ФEK 286／B／2．03．07：«Tponomoinon tou ápөpou 8 tnc un＇apı θ ．

 81／1051／EOK ка।

Katà Tn 甲áon＾єाтoupyiac：

 нováठac．

Eпıாтம்ரேமv

12．2．7．1 Kará т刀 甲óon Kaтaoк\＆uric：

 12, пар. 2 тпऽ К.Y.А. Н.П. 50910/2727/03 (ФЕК 1909 В'/03) каı β) ота عпıкіvठ̄uva aпóß入пта
 287 B'/07).

 X рроuc．

 aкó入ouӨa：

 ع入áxıтто ठ̄uvató

Yyod́ каı отeped anóß入nta

 1312) ón ω ¢ عка́бтотє ıбхйย।

 апорріциаттшv.

Oópußoc - ठovígeıs

 єпо́ццทп̆ параүра́чои

 кoıvท่s nouxias,

- Aпаүорعúвтаі η vuxtepivn் epyacia.

- To Ú $\psi \circ \varsigma ~ T \omega \mathrm{v}$ ко $\lambda \omega \dot{v} \omega \omega \mathrm{v}$ ф ω тіб

12.2.7.3 Kaтá īn फáon ^हाтоupviac:

 фaivó $\mu \varepsilon v a ~ п \lambda \eta \mu \mu u p \omega ் v ~$

 параквіцєvшv перıохळ้̈.

 провлпиатт $\omega \mathrm{v}$ ．
 غ̇үкаıр каІ тактıкク่ апоконıб́＇тоиц．

¿uүкєкр॥ц̇va va yiveтal：

 тпऽ عүката́отабпя

 ठuvatท் єкпоипர் рún $\omega \mathrm{v}$ ．

Yypá AnóßAnta

 праүнатопоєіітаı $\mu \varepsilon$ ßа́øп та ако̇入оиӨа：

 4042/2012 (A' 24), о́n $\omega \varsigma$ عка́бтотع ıбxủouv.

Eteped AnóßAnta

 24/A72012).

 NоноӨعбіас, Еіठіко்тєра:

 41624/2057/E103/10 (ФЕK 1625 B') ónw̧, Iбxúouv.

 óп ω, Ібхய்धા.

 1312 B' $^{\prime}$) ón $\omega \varsigma$ ıбхúદા.
 13588/725/28.3.06 (ФЕК 383 В'), 24944/1159/30.6.06 (ФЕК 791 В'), 8668/2.3.07 (ФЕК 287 B') каı

 Ioxúouv.
 KYA 114218/1997 (ФЕК 1016 B'/17-11-1997).

 хढ́pac，η опоіа віvaı avapтпц

 Еүкик入i ωv ．

 ПєріßӹМоитоя

 катабкєบஸ்v．

13. ПPO¿OETA $\Sigma T O I X E I A$

2. Yүıєıvoגоүıкоі uno入оүıбноі

13.2. ПроßАŋ́ната єкпо́vпопя

14. ФЛТОГРАФІКН TEKMHPI』ЕH

Xépoç катабквuņ̃ E.E.^.
15. XAPTE - IXEDIA
15.1.Хápтпя пробаvатоגıбной

15.8.Хáртпৎ проүра́циатоৎ паракоАои́Өпопৎ

$$
<
$$

\bigcirc
\bigcirc

2 i 8
? $\quad \because \frac{1}{2} \frac{2}{2}$

7346－．27n

そく』：
4

 парако入ои̇Өŋəпя.

16. ПАРАРТНMA

16.1. YГIEIONOАOГIKOI YПOАOГTEMOI THE E.E.А.

IEPA KOINOTHTA
AГIOY OPOY乏
$A \Theta \Omega$

EPГO：«EPГA EПE＝EPTA乏IA乏 KAI $\triangle I A O E \Sigma H ~ A \Sigma T I K \Omega N ~$ AYMATRN $\Sigma T O$ ATION OPO乏»

ANA \triangle OXOE	EYГTPATIO Е А．КАРАГЕОРГIOY Пaாá甲ๆ 82，Т．K．54453，ӨEEEAへONIKH TПА．：2310－902321 \＆6976801783 Email：skarageo＠gmail．com

ПАРАРТНМА А：
 YГIEIONOAOFIKOT YПOAOГTさMOI EГКАTAETAEHE EПEEEPГAETAE AYMATRN I．M． ФIAOOEOY

ПEPIEXOMENA

1．EIइAI Ω ГH 1
2．ПAPAMETPOI $\Sigma X E \triangle I A \Sigma M O Y ~ E E \Lambda$ 1
2.1 ПарохЕ̇я каІ Фортіа＾uца่тшv 1
2.2 Поіо́тұта Eкройя 1
2．3 Euvortiкn่ Перıypa甲ń EEへ 2
3．$\triangle I A \Sigma T A \Sigma I O N O T H \Sigma H$ MONA $\Delta \Omega N$ 3
 3
3．1．1 「हviká 3
 4
3．2 Bıолоүıкர่ Eпє ε вруабіа ． 5
3．2．1 Eıбаүшү＇்－перıүра甲ர் 5
 6
3．2．3 дıабтабтодо́упоп－Yподоүıбиоі 10
3.3Δ เu่入ıロワ 11
3．3．1 Eıбаүшүण́ 11
 11
3.4 Апо入ủuavor 12
3．4．1 Eıøаүшүท่ 12
 13
 14

1．EIEAГתГН

 İpác Movウ́ऽ Фi入oӨżou．

2．ПAPAMETPOL EXEALAEMOY EEA

2.1 Парохе́ц каı Фортіа Аицáтаv

ПAPAMETPO乏		ПAPOYミA ФAH	ФA乏H ミXEAIAEMOY
	кат．	140，00	190，00
	$\mathrm{m}^{3} / \mathrm{d}$	21，00	28，50
	$\mathrm{m}^{3} / \mathrm{d}$	31，50	42，75
	$\mathrm{m}^{3} / \mathrm{h}$	1，31	1，78
Пapoxń aıxuís Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	4，72	6，41
Eø̄ıкó Punavtikó ¢ортio BOD ${ }_{5}$	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	60	60
Eıб̈кȯ Punavtıко่ 甲ортіо TSS	$\mathrm{gr} / \mathrm{Kat}$	70	70
Eıठіко̇ Punavtikó ¢ортіо TN	$\mathrm{gr} / \mathrm{kat} / \mathrm{d}$	10	10
Eıठ̈ккó Punavtikó ¢ортio TP	gr／Kat／d	3	3
	kg／d	8，40	11，40
	kg／d	9，80	13，30
	kg／d	1，40	1，90
Фортіо TP бхеסІабиой	kg／d	0，42	0，57

2.2 Пого́ттта Eкроѓs

 عival:

ПAPAMETPOE		OPIA	
BOD_{5}	$\mathrm{mg} / \mathrm{lt}$	\leq	25
COD	$\mathrm{mg} / \mathrm{lt}$	\leq	125
Alwpoúneva oteped (TS)	$\mathrm{mg} / \mathrm{lt}$	\leq	35

ПAPAMETPOE		OPIA	
BOD_{5}	$\mathrm{mg} / \mathrm{lt}$	\leq	15
COD	$\mathrm{mg} / \mathrm{lt}$	\leq	120
AIWpoúhzva orepeá (TS)	$\mathrm{mg} / \mathrm{lt}$	\leq	15
Ко入оßактпрібıа (E.coli)	EC/ 100 ml		ıعбп тıй)

2.3 इuvoптткர் Перıүрач!́ EEA

 оріदॄтаı отоv Піvaка 1 TП̧, KYA 145.116/2011.

3. AIAETAEIOAOLHEH MONAARN

3.1.1 Гeviká

 $\mu п о р \varepsilon i ~ v a ~ x p \eta \sigma ן \mu о п о ı ŋ Ө \varepsilon i ~ ठ \varepsilon \xi а \mu \varepsilon v ท ่ ~ T u ́ n o u ~ I m h o f f . ~$

 отعрعஸ்v.

H ठє६,

 єпє६єрүабіас,

 пара
 ßıо入оүıкク்ऽ عпє६६рүасіас,

 oxモ̇oŋ:
$\mathrm{q}=\mathrm{Q}_{\mathrm{d}, \mathrm{m}} / \mathrm{A}$

ПAPAMETPOE	MONA 4	TIMH
	$\mathrm{m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$	0,6
	$\mathrm{m}^{3} / \mathrm{hr}$	6,41
	m^{2}	10,68

 $25,5 \mathrm{~m}^{3}$.

ПAPAMETPOE	MONA	TIMH
Mह̇ץıoтn wpıaia пapox'̆ Qd,max	$\mathrm{m}^{3} / \mathrm{hr}$	1,78
	m^{3}	5,34
	m^{3}	20,0
	hr	11,24
	hr	3,12

 аб甲á $\ell \varepsilon ı a ~ \omega \varsigma ~ а к о \lambda о u ́ \theta \omega \varsigma ~(A T V-H a n d b u c h, ~ M e c h a n i s c h e ~ A b w a s s e r r e i n i g u n g, 1996): ~$

ПAPAMETPOE	MONADA	TIMH
BOD 5	\％	25
COD	\％	25
Alwpoú μ vva orepeá SS	\％	60
O入кко́ áそんто	\％	10
Фஸ்ర甲ороऽ，	\％	9

 $\omega \varsigma \varepsilon \xi \check{\varsigma} \varsigma$

Піvaкац 2．4．इúoтaon $\varepsilon \xi \varepsilon p \times o ́ \mu \varepsilon v \omega v$

ПAPAMETPOE	MONA \triangle A	TIMH
BOD5	mg／l	300，00
	kg／d	8，55
COD	mg／l	540，00
	kg／d	15，39
Alwpoúhzva oreped SS	mg／l	186，67
	kg／d	5，32
	mg／l	60，00
	kg／d	1，71
Фஸ்б¢ороऽ，	mg／l	18，20
	kg／d	0，52

3．2 BıoAoүıкѓ Eneçepyacia

3．2．1 Еıбаүшүர்－перıүра甲！́

 inủos.

 $0.0049 \mathrm{~m}^{3} / \mathrm{m}^{2}$ عпा甲ávéac.

 ¢áon, поu кupaivovtaı anó 90 غ́ $\omega \varsigma$ 95\% $\omega \varsigma$ проя то BOD.

	Enineठo En¢£̧.pyaoias		
		$\Delta \varepsilon u т \varepsilon \rho о \beta \dot{\text { á }} \boldsymbol{\mu}$ ı $\mu \varepsilon$ таuтóxpovn vitponoínon	$\mu \varepsilon$ vitponoinoŋ оє छєxшріото́ oráठıo
Yסраu入ıкণ่ фо́ртіळп $\left(\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}\right)$	0.08-0.16	0.03-0.08	0.04-0.1
Opүаvік'̆ фо́ртїп			
$\mathrm{Kg} \mathrm{SBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0.003-0.01	0.002-0.007	0.0005-0.001
$\mathrm{Kg} \mathrm{TBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0.01-0.017	0.007-0.015	0.001-0.003
Mह̇ץıতтך Opyaviкก่ фо́ртібп ото пра́то 			
$\mathrm{Kg} \mathrm{SBOD} /{ }^{\text {/ }} \mathrm{m}^{2} . \mathrm{d}$	0.02-0.03	0.02-0.03	
$\mathrm{Kg} \mathrm{TBOD}_{5} / \mathrm{m}^{2}$. d	0.04-0.06	0.04-0.06	
$\begin{aligned} & \text { Фо́ртї а а } \mu \omega \text { viac (} \mathrm{Kg} \\ & \mathrm{NH}^{3} / \mathrm{m}^{2} . \mathrm{d} \text {) } \end{aligned}$		0.0007-0.0015	0.001-0.002
Yठраu入ıко́s Xро́vos параноvís (hr)	0.7-1.5	1.5-4	1.2-2.9
	15-30	7-15	7-15
A $\mu \mu \omega v i a \quad$ E६ंठ̄ou ($\mathrm{mg} / \mathrm{lt}$)		<2	1-2

3．2．3 Аıабтабоодо́yпоп－Yпоגоуıбиоі

	（mg／l）	（ Kg / d ）
BOD_{5}	300，00	8，55
COD	540，00	15，39
SS（aı	186，67	5，32
$\mathrm{NO}_{3}-\mathrm{N}, \quad \mathrm{NH}_{4}-\mathrm{N}$ ）	60，00	1，71
Oגıко́¢ Фஸ்ОФОроく（P）	18，20	0，52
Өєрнокрабіа	$12-20^{\circ} \mathrm{C}$	
pH	7，5	

BOD_{5}	$\leq 20 \mathrm{mg} / \mathrm{l}$
COD	$\leq 125 \mathrm{mg} / \mathrm{l}$
AlwpoúHzva oteped́（SS）	$\leq 25 \mathrm{mg} / \mathrm{l}$

$6 \mathrm{~g} /\left(\mathrm{m}^{2} \mathrm{xd}\right)$
$8,55 \times 1000 / 6=1425 \mathrm{~m}^{2}$
$1500 \mathrm{~m}^{2}$
1
0，75 kW

O入ıкn่ єп।甲̣ávยıa $1500 \mathrm{~m}^{2}$

3．2．3．6 \quad Параушуர் ıA⿱㇒日勺os

	$13,3 \mathrm{~kg} / \mathrm{d}$
	$5,32 \mathrm{~kg} / \mathrm{d}$
	$7,98 \mathrm{~kg} / \mathrm{d}$

 $\mathrm{kg} \cdot \mathrm{SS} / \mathrm{kg} \cdot$ BOD $_{5}$ апонакриvó $\mu \varepsilon v o$.
 апоиакриvóuвvo．

ミuvo入ıкń параүшүท́ ı λ ủos
$8,55 \mathrm{~kg} / \mathrm{d}$
$20 \times 28,5 / 1000=0,57 \mathrm{~kg} / \mathrm{d}$
$0,55 *(8,55-0,57)=4,39 \mathrm{~kg} / \mathrm{d}$
$7,98+4,39=12,37 \mathrm{~kg} / \mathrm{d}$

3.3 पाÚlıのワ

3．3．1 Eıवаүшүர்

 （Andreadakis 2003，Metcalf \＆Eddy 2003，Titley 2014）．

 фо́ртıбп тои фіАтрои $Ө$ а घіval＜ $8 \mathrm{~m}^{3} / \mathrm{m}^{2}$－ hr ．

8
$\mathrm{m}^{3} /\left(\mathrm{m}^{2} \mathrm{xh}\right)$

Anartoúhevๆ عпı¢áveıa ¢ìтроu	0,80	
	2	m^{2}
	3,21	$\mathrm{m}^{3} /\left(\mathrm{m}^{2} \mathrm{xh}\right)$

 mg / l.

$B_{\text {SS }}=0,65 * 1,42 * 0,68 * S S$
ónou:

$B O D_{5, \text { eff }}=B O D_{5, i n}-B O D_{s s}$
ónou :

$B O D_{s, \text { eff }}=13,72 \mathrm{mg} / \mathrm{l}$

3.4 Amo৯úpavaŋ

3.4.1 Eıбаүшүท่

 паранغ்троис：
\Rightarrow Поіо́тпта тои vepoú

－Alwpoúneva oтepeá

\Rightarrow BaӨцós ano入úuavons

 （Total Coli，TC）пре́nモı va عivaı $\leq 200 \mathrm{TC} / 100 \mathrm{ml} \omega \varsigma$ ठıá $\mu \varepsilon \sigma \eta$ тıиウ่．
 $10^{7} \mathrm{FC} / 100 \mathrm{ml}$ ．

 Disposal Reuse，1979，p．287）：

Eoxápoon

$$
\begin{aligned}
& \mathrm{Eff}_{\text {SCN }}=10-20 \% \\
& \mathrm{Eff}_{\text {SF }}=10-25 \% \\
& \mathrm{Eff}_{\mathrm{BB}}=90-98 \%
\end{aligned}
$$

Прокаөiそnøп
Вıофоүıки̇ ßаӨціб̈а
 прокúrteı anó tov túno：

Colifeif $=$ Colifin $_{\text {in }} *\left(1-\mathrm{Eff}_{\mathrm{PC}}\right) *\left(1-\mathrm{Eff}_{\mathrm{BB}}\right)$

Colifeff $=10^{7}(1-0.10) *(1-0.90)$

Colifeff $=9 \times 10^{5} / 100 \mathrm{ml}$
入a μ ßávetaı ion $\mu \varepsilon 10^{6} / 100 \mathrm{ml}$ ．

 A $^{\prime}$ тáधnऽ：

$$
\mathrm{N} / \mathrm{N}_{\mathrm{o}}=\mathrm{e}^{-\mathrm{k} . \mathrm{i} . \mathrm{t}}
$$

ónou，
N_{o} ：o apXıко́s apıӨио́я，TC

k ：oraӨョрá
i ：ך ह́vтaon тпৎ актıvoßо入iac（mW／cm²）

$$
-k^{*}{ }^{*} * t=\ln \left(10^{-5}\right)=-11,51
$$

$$
\mathrm{i}^{*} \mathrm{t}=9,21 \mathrm{mWsec} / \mathrm{cm}^{2}
$$

 T $\omega \mathrm{V}$ 入apпт

16.2. ПTYXIO MEЛETHTH

EAAHNIKH AHVIOKPAT:A
YHOVPIEIO YHOAOMS2N
METAФOPRN \& AIKTY
ГEN.TPAMMATEIA YПOSOMQN
REN, A/NEII TEXNIKHE YTIOETHPIEH工 Δ / N Н MH МР $\Omega \Omega \mathrm{N}$
TMHMA MHTP $\Omega O Y$ MEAETHTתN

ПTYXIO ME

П 1 138/2009 / N. $3316 / 2005$

AP. MHTP $\Omega O Y$:

19558

А.Ф.М.:

119767005

A.O.Y.:

上T' $\operatorname{OE\Sigma \Sigma AAONIKH\Sigma }$

KAPAГE®PГIOY

EyETPATIOE

andpeaz
XHMIKOE MHX.
OEL/NIKHL
ПАПАФН 82 อЕट/NIKH TK 54453
ПАПАФН 82 ӨЕЕ/NIKH TK 54453

KATHTOPIE MEIETQN

16．3．EIAIKH ОIКОЛОГIKH AミIOАОГНЕН

0

0

EIAIKH OIKOЛОГIKH AミIONOГHटH

ANADOXOE
EYETPATIOE KAPAFERPFIOY
ПАПАФН 82， 54453 ӨЕโミAЛONIKH
email：skarageo＠gmail．com

EIEAГОГН－ПEPIOXH ME＾ETH乏 3
1．YФIミTAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBAN＾ONTO乏 4
1．1 КАТАТРАФН KAI ANAAY乏H TQN इTOIXEIQN ФY乏IKOY ПEPIBANAONTO乏 ミTHN ПEPIOXH MENETH乏 4
 4
 5
 6
 10
 ПЕРIOXH MEAETH乏 32
 32
1.4 ФЛТОГРАФІКН TЕКМНРI $\Omega \Sigma H$ 33
1．5 KATAIPAФH TH乏 KATA乏TA乏H乏 TOY ФY乏IKOY ПEPIBANMONTO $\Sigma T H N ~ П E P I O X H ~ T O Y ~ \triangle I K T Y O Y ~$ NATURA 2000 33
 33
 34
1．5．3 Kủptȩ̧ тıи̧́́ avaфорáৎ 40
 40
1．5．5 Оıко入оүькє́ 入єıтоирүієц 41
 45
2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \equiv I O \wedge O T H \Sigma H ~ T \Omega N ~ E П I П T \Omega \Sigma E \Omega N ~$ 45
3．METPA ANTIMETQПI亡H $\Sigma T \Omega N ~ \Pi I \Theta A N \Omega N ~ E \Pi I \Pi T \Omega \Sigma E \Omega N$ 47
4．ANTIITAOMIITIKA METPA 51
 4014／2011 51
 51
 52
 53
5．ПРОГРАММА ПАРАКОЛОҮӨНЕН乏 54
6．$\Sigma \mathrm{Y} N O \Psi \mathrm{H}$ ГYMПEPA乏MAT ΩN 58
7．BIBAIOTPAФIKEL ПHTE乏 60
8．OMA $\triangle A$ MEAETH Σ 64
ПAPAPTHMA I 65

EİAГОГН - ПEPIOXH ME^ETH乏

- Н.П. 37338/1807/E. 103 (B' 1495), к $\alpha \theta \omega ́ \varsigma ~ к \alpha ı ~ \alpha ́ \lambda \lambda \omega v ~ \varepsilon เ \delta \omega ́ v ~ \mu \varepsilon т \alpha v \alpha \sigma \tau \varepsilon u t ı к ク ́ \varsigma ~ о р v i Ө о \pi \alpha v i ́ \delta \alpha \varsigma ~ \mu \varepsilon ~$

 סпицоирyoúvtal aró to épyo
- Eлutt

 524507,84 ка। $Y=4452590,50$.

1．YФIミTAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBAへへONTO乏

MEAETHE

Abstract

 коıvotukó Síktuo Natura 2000.

'Ektaøๆ: 33.567,80ha

1.2.2 Ava入utıKń $\pi \varepsilon \rho เ ข \rho \alpha \phi n ́ ~ \tau n \varsigma \pi \varepsilon \rho เ o x n ́ \varsigma \mu \varepsilon \lambda \varepsilon ́ t n s$

 （Млацлал $\omega \mathbf{v} \alpha$ ¢ 1998）．

 тпऽ เঠıо

 Пcuoviaç，Pa：Zóvn Пáñoov，Al：Zần

P：Пekayovaij Coiov．

Pk：Zövq Пlapvasoóó－「nkóvas，
P：Zivin Mivoor，
G：Zövn 「аßpópou－Tpixaiņ

丂övns

 бт $\alpha \mu$ етаїไń $\mu \alpha \tau \alpha$ ．
π ：Перьסотітєऽ каи סouviteऽ．

 tou $24 \dot{\omega}$ pou.

Etкóva 4. О $\mu \beta$ ро $\varepsilon \varepsilon \rho \mu$ tкó δ ıó $ү р \alpha \mu \mu \alpha$ M.. . Apvaias

$\mathrm{X} \wedge \Omega P I \Delta A$

 u $о \mu \varepsilon ́ \tau \rho o u ~ 800-1600 \mu, ~ 4 . ~ Z u ́ v \eta ~ \psi u \chi \rho o ́ ß t \omega v ~ к \omega v o ф o ́ \rho \omega v ~(V a c c i n i o p i c e t a l i a) ~ đ \varepsilon ~ \varepsilon u ́ \rho o \varsigma ~ u \psi о \mu \varepsilon ́ t \rho o u ~$

 $\pi \lambda \alpha ү \iota \omega \dot{v}$ каı $\tau \eta$ фúणך $\tau \omega v \pi \varepsilon \tau \rho \omega \mu \alpha ́ \tau \omega v$ ．

1． $\mathrm{H} \pi \alpha \rho \alpha \lambda เ \alpha к \eta ́ ~ \zeta \omega ̈ v \eta ~ \beta \lambda \alpha ́ \sigma т \eta \sigma \eta \varsigma . ~$
 （ α 人

 lentiscetum.

 (Phlomis fruticosa), orapáүүı (Asparagus aphyllus), a入oүo日ú $\alpha \rho \rho \circ$ (Anthyllis hermaniae)k $\lambda \pi$.
 (Pistacia lentiscus), ot ápквuӨot (Juniperus sp.), $\tau \alpha$ р $\varepsilon i ́ \kappa ı \alpha ~(E r i c a ~ s p p) ~ к. ~ \lambda \pi . ~$

 клıцатиќє,

 confertae (frainetto)-cerris $\mu \varepsilon \phi \cup \lambda \lambda о \beta o ́ \lambda \alpha \alpha \delta \alpha ́ \sigma \eta ~ \delta \rho u \omega ́ v ~ \alpha \pi o ́ ~ Q u e r c u s ~ f r a i n e t t o, ~ Q u e r c u s ~ p u b e s c e n s, ~$
 $\chi \omega ́ p o t ~ t o u ~ Q u e r c i o n ~ c o n f e r t a e-d a l e c h a m p i i ~ \mu \varepsilon ~ t \varepsilon ́ \sigma \sigma \varepsilon p ı \varsigma ~ \varepsilon v \omega ́ \sigma \varepsilon ı \varsigma ̧ ~ к \alpha \iota ~ t o u ~ Q u e r c i o n ~ c o n f e r t a e ~ \mu \varepsilon ~ \mu ~ / \alpha ~$ Év ω on.

 to Carpinetum orientalis.

 $\mu \varepsilon \tau \varepsilon ́ x o u v \tau \alpha ~ \xi u \lambda \omega \dot{\delta} \eta$ हíठŋ Ilex aquifolium, Fraxinus ornus, Sambucus nigra, Clematis vitalba, Rosa canina, Hedera helix, Sorbus aucuparia, Sorbus torminalis, Quercus conferta,Alnus glutinosa ($\sigma \alpha$

 عivaı та Ханореíkıа (Erica manipuliflora) кגı to поupvápı (Quercus coccifera).

Пivaкая 1：Eiठп $\chi \lambda \omega p i \delta \alpha \varsigma$
Eión Bגáơnons
Abies cephalonica／इúvクӨิȩ
Aethionema orbiculatum／$\Sigma \pi \alpha \dot{v} v o$
Allium chamaespathum／Mapóv
Anthemis sibthorpii／£ndivio
Arabis bryoides／П $\alpha \rho$ óv
Arctostaphylos uva－ursi／Mapóv
Asperula aristata ssp．nestia／Пapóv
Asperula aristata ssp．thessala／Па oóv
Astragalus thracicus ssp．monochorum／¿rávio
Atropa bella－donna／£návio
Aubrieta erubescens／П $\alpha \rho o ́ v$
Beta nana／Erávto
Campanula lavrensis／Пapóv
Centaurea pannosa／ח $\alpha \rho$ óv
Cephalanthera damasonium／Mapóv

[^0]Stachys leucoglossa／Mapóv
Thymus thracicus／חapóv
Valeriana alliariifolia／ミnávto
Viola athois／Пo入ú $\Sigma \pi$ ávio
\section*{Zerynthia polyxena}

 immanuelis－loewii，Centaurea peucedanifolia，Silene orphanidis，Viola delphinantha，Viola athois，
 $\pi \alpha \rho \alpha ́ \rho \tau \eta \mu \alpha$ 3．3．13），$\varepsilon v \omega \dot{\omega} \tau \alpha ~ \varepsilon i \delta \eta$ Arctostaphylos uva－ursi，Atropa bella－donna，Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．orbelicus，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus $\pi \rho \circ \sigma \tau \alpha \tau \varepsilon$ úovt α ц α пó to $\Pi \Delta 67 / 1981$ ．T α Heracleum humile，Saxifraga juniperifolia ssp．sancta，Ophioglossum vulgatum عivaı orávı α otŋv E $\lambda \lambda \alpha \dot{\delta} \alpha \alpha$ ท́ k $\alpha \iota$

 т $\mu \dot{\prime} \mu \boldsymbol{\mu}$ тทs．

－$\Delta \varepsilon v \delta \rho o \varepsilon เ \delta \dot{n}$ Matorrals $\mu \varepsilon$ Juniperus spp．（Arborescent matorral with Juniperus spp．）－ 5210
－$\Delta \varepsilon v \delta \rho o \varepsilon เ \delta \dot{\eta}$ Matorrals $\mu \varepsilon$ Laurus nobilis－ 5230

－Фpúyava anó Sarcopoterium spinosum－ 5420

－Mı日́veç tп̧ Avaroגıкர்̧ Méoүعiou－8140
－$\Delta \dot{\alpha} \sigma \eta$ o§uáç aró Luzulo－Fagetum－9110

－A入入oußı $\alpha \kappa \alpha \dot{\alpha} \delta \alpha \dot{\alpha} \eta \eta$ μ Alnus glutinosa каı Fraxinus excelsior－91E0
－$\Delta \dot{\alpha} \sigma \eta \mu \varepsilon$ Castanea sativa－ 9260

－$\Delta \alpha ́ \sigma \eta$ o६ıá $\varsigma \boldsymbol{\mu}$ Quercus frainetto－ 9280
 Xepбovíбou（Securinegion tinctoriae）－92D0
－$\Delta \alpha ́ \sigma n$ סjuós tou Alyaiou $\mu \varepsilon$ Quercus brachyphyllo－ 9310
－$\Delta \alpha ́ \sigma \eta ~ \mu \varepsilon$ Quercus ilex каı Quercus rotundifolia－ 9340
－$\Delta \alpha \dot{\sigma} \eta \mu \varepsilon$ Quercus macrolepis－ 9350

 Matorrals $\mu \varepsilon$ Laurus nobilis， 9180 －$\Delta \alpha ́ \sigma \eta ~ \sigma \varepsilon ~ \pi \lambda \alpha ү \iota \varepsilon ́ ¢, ~ \lambda ı \theta \omega ̈ v \varepsilon \varsigma ~ ท ́ ~ \chi \alpha \rho \alpha ́ \delta \rho \varepsilon \varsigma ~ \alpha \pi o ́ ~ T i l i o-A c e r i o n, ~ 91 E 0-~$

 $\theta \alpha \lambda \alpha ́ \sigma \sigma t a \varsigma ~ \beta \lambda \alpha ́ \sigma t \eta o n \varsigma ~ \mu \varepsilon$ Posidonia．
 ката́入n廿ŋ́s tous（\％）عival：

N16－Пגатúфu入入 α фu入入оßó入 α סáon $(24,38 \%)$
N17－$\Delta \dot{\alpha} \sigma \eta$ Kんvoф́ópuv（ $10,03 \%$ ）

 фaivovtat otov 犭áptn tou ПAPAPTHMATOEI．

Abstract

 k.a. (2001).

CORINE 45.3 Ad́on aptác Quercus ilex. Kwסıkós 9340.

 бuvӨદ́touv.

X $\lambda \omega \rho t \delta!k n ́ ~ \sigma u ́ v \theta \varepsilon \sigma n$

Quercus ilex, Myrtus communis, Arbutus unedo, Erica arborea, Smilax aspera, Arbutus andrachne, Phillyrea latifolia, Quercus coccifera, Pistacia lentiscus, Acer sempervirens, Carex distachya, Laurus nobilis, Pistacia terebinthus, Galium fruticosum, Lithodora hispidula, Cistus salviifolius, Asparagus aphyllus ssp. orientalis, Erica manipuliflora, Hypericum empetrrifolium ssp. empetrifolium, Anthyllis hermanniae, Salvia pomifera ssp pomifera, Brachypodium retusum, Scaligeria napiformis, Carex flacca ssp. serrulata, Prasium majus, , Hedera helix, Rubia peregrina, Asplenium onopteris, Ruscus aculeatus, Hypericum hircinum ssp. albimontanum,Teucrium massiliense, , Chamaecytisus creticus.

Katáotaon סıatńpnonc-Aлعı入és

 ßookńs．

CORINE 41.9 Aáon Kaбtaviác．Kwסıкós 9260.

 （ $\kappa \alpha \sigma \alpha a v \omega t \alpha \dot{)}$ ．

 ка兀 $\mu \varepsilon \mu$ ккр medwediewii，Carpinus orientalis，Sorbus domestica，Fagus sylvatica s．l．к．$\dot{\alpha} ., \kappa \alpha \theta \omega \dot{\omega}$ к $\alpha \iota ~ \alpha \varepsilon i \phi u \lambda \lambda \omega v$ $\varepsilon \iota \delta \omega ́ v$, ón $\boldsymbol{\omega}$ т $\tau \alpha$ Pinus nigra，Abies cephalonica，Abies borisii－regis，Ilex aquifolium，Quercus ilex k．α ．Ot

$\chi \lambda \omega \rho \iota \delta ı k \dot{\eta}$ बúv૭̊zan
Castanea sativa，Pteridium aqulinum，Alliaria petiolata，Carpinus orientalis，Corylus avellana，Fragaria vesca，Campanula spatula，Calamintha grandiflora，Fagus sylvatica，к．α ．

 к $\alpha \iota \mu \varepsilon \mu$ ккр medwediewii，Carpinus orientalis，Sorbus domestica，Fagus sylvatica s．l．к．$\dot{\alpha}$, ，$\kappa \alpha \theta \dot{\omega} \varsigma ̧<\kappa \iota ~ \alpha \varepsilon i \phi \cup \lambda \lambda \omega v$
$\varepsilon \iota \delta \dot{\omega} v$, órt $\omega \varsigma$ t α Pinus nigra, Abies cephalonica, Abies borisii-regis, Ilex aquifolium, Quercus ilex к. α. Ot

 $\mu u ́ k \eta \tau \alpha$ Pseudonectria (Endothia) parasitica.

 тои $\mu \varepsilon \sigma о ү \varepsilon เ \alpha$ кои́ оเкобบбтท́ $\mu \alpha$ то̧

ПANIDA

OpviЭoravi $\delta \alpha$

 Handrinos and Akriotis (1996), Birdlife Intenational (2004) kai Mлоúбرлоupac (2009), η

 Tetrao urogallus (Aүpıókoupкос).

 chrysaetos chrysaetos kat Circaetus gallicus, a

 Eıбıко́tгра:

Φ = ФӨıvón $\omega \rho \circ$
$\mathrm{X}=\mathrm{X} \mathrm{\varepsilon} \mu \dot{\mu} \mathrm{v} \boldsymbol{\alpha}$,
$A=A v o t \xi \eta$
$K=K a \lambda$ ккаipt
2) Katఇpopiec "Kókkıvou Bı $\beta \lambda$ iou":
$K 1=K ı v \delta u v \varepsilon u ́ o u v ~ \alpha ́ \mu \varepsilon \sigma \alpha$
$K 2=K ı v \delta u v \varepsilon u ̉ o u v$
$T P=T \rho \omega \tau \alpha$

$\Sigma=\Sigma \pi \alpha \dot{v i \alpha} \alpha$

$\mathrm{A}=\mathrm{A} \rho \rho \circ \sigma \delta$ เó $\rho เ \sigma \tau \alpha$

BON．$=\Sigma$ ú $\mu \beta \alpha$ ö Bóvvŋヶ，о́тои：
1． $\mathrm{SPEC}=\mathrm{Ei} \delta \eta$ $\chi \rho \dot{\zeta} \zeta о v \tau \alpha \pi \rho о \sigma \tau \alpha \sigma i \alpha \varsigma:$
2．SPEC1 $=\mathrm{E}(\delta \eta \pi \alpha ү к о \sigma \mu i \omega \varsigma ~ \alpha \pi \varepsilon \iota \lambda о \cup ́ \mu \varepsilon v \alpha$

 каӨعот

EIAH		Ф	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovopuaía										
	Gavia arctica			$+$				11	11	3
£коифоßоuтп入та́pt	Podiceps cristatus		＋	＋						
Koккıvoßoutnxtápt	Podiceps grisegena		＋			A		11	II	
Maupoßoutnxtápi	Podiceps nigricoiiis		＋			$A \Gamma$		11		
Aptérūs	Caionectris diomedea	$+$		＋	＋			11		2
Múzos	Puffinus yeikouan	＋	＋	＋	＋		＊	11		
Kориорávos	Phalacrocorax carbo	＋								
Өалаббоко́ракає，	Phaiacrocrax aristoteiis	$+$				TP	＊	11		
Kриттотоıкııás	Ardeoia railoides						＊	II		3
＾єuкотoukviás	Egretta garzetta	$+$					＊	11		
ミтахтотоıкviás	Ardea cinerea	＋								
Maupore入арүóc	Ciconia nigra	$+$		＋	$+$		＊	II	II	3
Пе入аруós	Ciconia ciconia	$+$					＊	11	II	2
Воиßо́кикvos	Cygnus oior		＋						11	
B $\alpha \rho \beta \alpha{ }^{\text {人 }}$ 人 α	Tadorna tadorna		＋			$T P$		11	11	
Прабเvoкह́фа入П	Anas piatyrhynchos	＋	＋						11	
ミарбє́入 α	Anas querqueduia	＋		$+$		$A \Gamma$			11	3
¿фпкıápク¢	Pernis apivorus	＋		＋	＋		＊	II	11	

EIAH		（1）	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovopuasia	Etuotnuovıкй Ovouacia									
Toítins	Miivus migrans	$+$				K1	＊	11	11	3
Aотporápns	Neophron percnopterus	＋				TP	＊	11	11	3
Фıбавтó¢	Circaetus gallicus	＋		＋	＋		＊	11	11	3
К $\lambda \lambda \alpha \mu$ ккркоя	Circus aeruginosus	＋				TP	＊	11	II	
¿тепо́кцрко¢	Circus macrourus	＋						11	II	
	Curcus pygargus	＋		＋		K1	＊	II	11	
$\Delta u r \lambda o \sigma \alpha{ }^{\text {a }}$ ，	Accipiter gentiiis	＋	＋	＋	＋			11	11	
Toıx入оүе́paкo	Accipiter nisus	＋	＋		＋			II	11	
¿aivl	Accipiter brevipes	＋			$+$		＊	11	11	2
「epariva	Buteo buteo	＋	＋	＋	＋			11	11	
Xıovovepakiva	Buteo lagopus		＋					11	11	
Kpauyaetós	Aquilia pomarina	＋				TP	＊	II	II	2
Xpuoaztós	Aquiia chrysaetos	＋	＋	＋	＋	TP	＊	II	11	3
ミru̧aztó¢	Hieraaetus fasciatus	＋	＋	＋	＋	TP	＊	11	II	3
Etaupaztó¢	Hieraaetus pennatus	＋				TP	＊	II	11	3
Kı¢кıVÉそ，	Fa／co naumanni	$+$		＋		TP	＊	11	1／11	1
Врахокıркіvєて̧०	Fa／co tinnuncuius	＋	＋	＋	＋			11	II	3
Маирокьркіvӗ̧	Fa／co vespertinus			＋				II	11	
АЕvтроүе́рако	Fa／co subbuteo	＋						11	11	
Mauporterpitns	Fa／co eieonorae	＋				A	＊	11	11	2
Хрибоуе́рако	Fa／co biarmicus		$+$			TP	＊	11	11	3
Петрitns	Fa／co peregrinus	＋				A ${ }^{\text {r }}$	＊	II	11	
Aуpióкоирко¢	Tetrao urogaiius	＋	＋	$+$	＋	Σ		11		
Пєтропе́рб์кка	Aiectoris graeca	＋	＋	＋	＋					2
OptúkL	Coturnix coturnix	＋		＋	$+$	AT			11	3
Nepókota	Gailinuia chioropus	＋	＋	$+$	＋					
Фаларi $\delta \alpha$	Fuilica atra		＋						11	
Потаноафupytris	Charadrius dubius	＋						II	11	
	Charadrius aiexandrinus	＋	＋					II	11	3
K $\alpha \lambda \cap \mu \alpha{ }^{\text {a }}$ 人	Vanellus vane／us		＋						11	2
	Scoiopax rusticoia		$+$						11	3
Потацо́триүүая	Actitis hypoieucos	＋	＋					11	11	3
ミтеркора́рıо̧	Stercorarius parasiticus			＋						

EIAH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovopuoia										
Маироки́фа入оऽ，	Larus meianocephaius		＋			TP	＊	11	11	
Navóphapos	Larus minutus	＋						II		3
Каотаvокв́фа入о¢，	Larus ridibundus	＋	＋							
＾єлтоорацфос	Larus genei		＋			K2	＊	II	II	3
Alyaıóy入apos，	Larus audouinii			$+$		K2	＊	11	1／11	1
	Larus cacchinans	$+$	＋	＋	＋					
「ع入оү入ápovo	Gelochelidon ni／otica	＋				K1	＊	II	11	3
	Sterna sandvicensis		＋			A	＊	II	11	2
Потацоү入ápovo	Sterna hirundo			＋			＊	II	II	
Aүрьолеріотеро	Columba iivia	＋	＋	＋	＋					
Фабоотеріотеро	Co／umba oenas	＋	＋	＋	＋	Σ				
Фáooa	Co／umba pa／umbus	$+$	＋	＋	＋					
$\Delta \varepsilon к о \chi$ тои́ ${ }^{\text {d }}$	Streptopelia decaocto	＋	＋	$+$	＋					
Tpuyóve	Streptopelia turtur	$+$		＋	＋					3
Koúко¢	Cucu／us canorus	$+$		$+$	＋					
Tutú	Tyto alba	＋	＋	$+$	＋			II		3
「кıL̈vn¢	Otus scops	＋			＋			II		2
Мтои́фо¢	Bubo bubo	＋	＋	＋	＋		＊	II		3
Kouкoußáyıа	Athene noctua	＋	$+$	$+$	＋			II		3
Xouxoupiotŕs	Strix aluco	＋	＋	＋	＋			II		
Navóцлоифо̧	Asio otus	＋	＋	＋	＋			11		
「tסoßú̧，	Caprimulgus europaeus			＋	＋		＊	II		2
ミтахтáp α	Apus a pus			＋	＋					
ミкعтарvás	Apus melba	＋		＋	＋			II		
A入kuóva	Alcedo atthis	＋	＋				＊	II		3
Me入ıбоофа́үo¢	Merops a piaster			$+$	$+$			II	11	3
	Coracias garrulus			＋	＋	TP	＊	II	11	2
	Upupa epops			＋	＋			II		3
之траßо入аінп¢	Jynx torquilla			＋				11		3
	Dendrocopos syriacus	＋					＊	II		
「 $\alpha \lambda ı$ ı́vt ${ }^{\text {a }}$ 人	Melanocoryha calandra			＋			＊	II		3
Katoou入ıย̇pク¢	Galerida cristata	＋	＋	＋	＋					3
$\Delta \varepsilon v \tau \rho о \sigma \tau а \rho \grave{\theta} \theta \rho \alpha$	Lululla arborea	＋	＋				＊			2

EIAH		（1）	X	A	K	K．BIBA．	79／409	BEP．	BON．
Kotví Ovopuóa	Eruotnuovıки́ Ovouんбia								
	A／auda arvensis		＋	＋					3
	Riparia riparia	$+$		＋			11		3
Bpaxoxe入íSovo	Ptyonoprogne rupestris	$+$			＋		11		
X $<\lambda$ ¢ δ óvt	Hirundo rustics	＋		＋	＋		11		3
Δ evtpoxe入ióovo	Hirundo daurica	＋		＋	＋		11		
ミmıtoxe入ióovo	Delichon urbica	＋		＋	＋		11		3
Δ－vtpoкe $\lambda \alpha \delta \alpha$	Anthus triviaiis			＋	＋		II		
Kıtpıvocoũoupá $\delta \alpha$	Motaciiia fiava	$+$		＋	＋		11		
	Motacilia cinerea	＋		$+$	＋		11		
	Motaciiia alba	＋	$+$	＋			II		
Nepoкótбuфа¢	Cinc／us cinc／us	＋	＋	＋	＋		II		
Tpuroфpóxtrs	Troglodytes troglodytes	＋	＋				II		
Өацvo廿д́入tns	Prunella modularis		＋				II		
Xiovo廿áhtns	Prunella collaris	＋	＋	＋	＋		11		
Kouфanర̇óvt	Cercotrichas galactotes	$+$		＋	$+$		11	11	3
Kоккıvohaiuns	Erithacus rubecula	＋	＋	$+$			II	11	
AПర̧óvt	Luscinia megarhynchos	＋		＋	＋		11	11	
Kapßouviópns	Phoenicurus ochruros	＋	＋		$+$		II	11	
Kokkıvoúpns	Phoenicurus phoenicurus	＋		＋	＋		II	1	2
Kaotavo入aiuns	Saxicola rubetra	＋		＋			11	11	
Maupohaiuns	Saxicola torquata	＋					11	11	
¿тахтопетро́к入ля	Oenanthe oenanthe	＋		$+$			11	11	3
	Oenanthe hispanica	＋		$+$			11	11	2
Петроко́тбифа¢	Monticola saxatilis	＋		＋	＋		II	II	
「а入а弓око́тбuфа¢	Monticola solitarius	＋	＋	＋	＋		11	11	3
Kȯtouфas	Turd us merula	＋	＋	＋	＋			11	
Toix $\lambda \alpha$	Turd us philomelos	$+$	＋	＋	＋			11	
Tбартоג́p ${ }^{\text {a }}$	Turd us viscivorus	＋	＋					11	
Чrutanoióvi	Cettia cetti	＋					II	II	
	Locuste／a luscinioides	＋		＋			11	11	
	Acrocephalus	＋		$+$			11	II	
Охроотрıтоi 6α	Hippolais pallida	＋		＋	$+$		11	11	3
	Hippolais olivetorum	＋		＋	＋	＊	11	II	2

 IEPAE MONHE ФI＾OOEOY

EIAH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovopaoía	Eruotף									
Kıтрเvötpıtбi $\delta \alpha$	Hippolais icterina	＋						11	11	
Kоккเvoroupopd ко̧	Sy／via cantillans			＋				11	11	
Маиротбироßа́ко̧	Sy／via melanocephala		＋					II	11	
Аеутротбтроßа́ко̧	Sy／via hortensis	＋		$+$	＋			II	11	3
＾人дототроßа́ко؟	Sy／via curruca	＋		$+$	＋			II	11	
	Sy／via communis	＋		$+$	＋			11	11	
Кппотбьроßадкоя	Sy／via borin	＋						II	11	
Маиробкои́фп¢	Sy／via atricapiiia	＋	＋					11	11	
Bouvoфи入入обко́ros	Phyloscopus boneili	＋		＋	＋			11	II	2
Аеутрофиネлобко́тоৎ	Phyloscopus coliybita	＋	＋	＋				11	11	
Єגuvофи入入обко́то¢	Phyloscopus trochiius	＋						11	11	
хрибоßабиlíkos	Regu／us reguius	＋		＋				11	II	
Baбi入ioxos	Regu／us ignicapilius	＋	＋					11	II	
Muyoxáфṫs	Muscicapa striata	＋		＋	$+$			II	11	3
Navouvyoxáфtпs	Ficeduia parva	＋					＊	11	11	
Maupouuyoxáфtrns	Ficeduia hypoieuca	＋						II	II	
Alyiearos	Aegithaios caudatus	＋	＋	＋	＋			11		
	Parus pa／ustris	＋	＋	＋	＋			II		
K $\lambda \varepsilon$ ¢ $\delta \omega \mathrm{vác}$ ，	Parus iugubris	＋	＋	＋	＋			II		
＾офопалабітб	Parus cristatus	＋	＋	＋	＋			II		
E入атопалаర̇ito	Parus ater	＋	＋	＋	＋			II		
	Parus caeruieus	＋	＋	＋	＋			II		
Ka入óyepos，	Parus major	＋	＋	＋	＋			11		
Кацпобеvтроßа́tп¢	Certhia brachydactyia	＋	＋	＋	＋			11		
\еvtpotaonaváko¢	Sitta europaea	＋	＋	＋	＋			11		
Bpaxotooravákos	Sitta neumayer	＋	＋	＋	＋			11		
¿ßapviotpa	Tichodroma muraria		＋			Σ		11		
Iukoфáyos	Orioius orioius	＋		＋	＋			11		
Aहtouáxos	Lanius coilurio	＋		＋	$+$		＊	II		3
	Lanius minor	＋		＋	＋	Ar	＊	11		2
Kоккıvoкعф α 入ás	Lanius senator	＋		＋	$+$			11		2
П $\alpha \rho \delta \alpha \lambda$ океф $\alpha \lambda \alpha ¢$	Lanius nubicus	＋				Σ		11		2
	Garruius giandarius	＋	＋	＋	＋					

EIAH		（1）	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovouacoia	Ertornhovıkí Ovouacia									
Kаракג́ $¢ \alpha$	Pica pica	＋	$+$	＋	$+$					
Káppla	Corvus moneduia	＋	＋	＋	$+$					
Koupoúva	Corvus corone	$+$	＋	＋	$+$					
Kópaka¢	Corvus corax	＋	$+$	＋	＋					
Wapóvi	Sturnus vulgaris	＋	＋	＋	＋					3
Enoupyitns	Passer domesticus	＋	＋	＋	$+$					3
Xepaфooтоupyitns	Passer hispaniolensis	＋		＋	$+$					
Петроотоирүitns	Petronia petronia	$+$	$+$	＋	＋			11		
	Fringilla montifringilla		$+$							
Enivos	Fringilla coe／ebs	＋	＋	＋	＋			II		
	Serinus serinus		$+$					II		
Ф λ ¢́po̧	Cardueiis chioris	＋	＋	＋	$+$			11		
Kapoepiva	Cardueiis cardueiis	＋	＋	＋	$+$			II		
＾óuyapo	Cardueilis spinus		$+$					II		
Фavéto	Cardueïs cannabina	$+$	＋					II		2
Xovtpouv́tns	Coccothraustes	＋	$+$	＋	＋			11		
ミıphotoix ${ }^{\text {dovo }}$	Emberiza cirius	＋	＋					11		
Bouvoroixdovo	Emberiza cia	＋		＋	$+$			II		3
B λ óxos	Emberiza hortuiana	＋		＋	$+$		＊	11		2
	Emberiza caesia	＋		＋	$+$		＊	11		
Aureरoupyós	Emberiza meianocephaia	＋		＋	＋			11		2
Toidrás	Miliaria calandia	＋		＋						2
Eúvo入o：	173					29	40	134	81	68

Өалаббоко́ $\alpha к \alpha \varsigma$（Phalacrocorax aristotelis）

1．000－1．2000 そعuүव̉pta عv

Oикодоүіа

Алєц入દ́ऽ

ミru\}aعrós (Hieraaetus fasciatus)

K $\alpha \vartheta \varepsilon \sigma t \dot{\omega} \varsigma \pi \alpha \rho о \cup \sigma i \alpha \varsigma ̧-\pi \lambda \eta \vartheta ิ \cup \sigma \mu o ́ \varsigma$

Oиколоүіа

Алєし入દ́ऽ

Фi δ aetós（Circaetus gallicus）

Oıкодоріа

 ठабокд́ $\lambda u \psi \eta$ ．

Xoúaetóc（Aquila chrysaetos）

 $\sigma \alpha$ ठutik $\dot{\alpha}$ tou Avtiá $\theta \omega \mathrm{vv} \alpha$ ．

 そعuyápia（Tucker \＆Heath 1994，BirdLife International 2004）．

Оєколоүіа

 $\dot{\alpha} к \rho \varepsilon \varsigma \tau \tau \omega \mathrm{~V} \delta \alpha \sigma \dot{\mathrm{~V}}$ ．

Areı $\lambda \varepsilon$ ह́ऽ

 то ε ह́ठоऽ．

Пetpitnc（Falco peregrinus）
K $\downarrow \vartheta \varepsilon \sigma \tau \dot{\omega} \varsigma ~ \pi \alpha \rho о \cup \sigma i \alpha \varsigma \varsigma-\pi \lambda \eta \vartheta v \sigma \mu o ́ s$

 6．000－10．000 そعuүápta（BirdLife 2004）$\varepsilon v \omega ́ ~ \sigma \tau \eta v ~ \chi \omega ́ \rho \alpha ~ \mu \alpha c ~ o ~ \pi \lambda \eta \theta u \sigma \mu o ́ \varsigma ~ t o u ~ \varepsilon i ́ \delta o u ̧ ~ k u \mu \alpha i v e t \alpha u ~$ $\mu \varepsilon \tau \alpha \xi u ́ 100$ к $\alpha \iota 250$ そeuүápıа（Tucker \＆Heath 1994）．

Oико入оүіа

 $\alpha \varepsilon ́ \rho \alpha$ ．

Aлモı入е́ऽ

Bouvootaxtápa（Apus melba）
K $\alpha \vartheta \varepsilon \sigma \tau \omega ́ \varsigma ~ \pi \alpha \rho о \cup \sigma i \alpha \varsigma ~-\pi \lambda \eta \vartheta v \sigma \mu o ́ s ~$

Оккодоріа

On入aotuk

 （Erinaceus concolor），η vavouvүa入i $\delta \alpha$（Sorex minutus），η к $\eta \pi о \mu u ү \alpha \lambda i \delta \alpha$（Crosidua suaveolens），$\eta$ олıтоциүа入i $\delta \alpha$（Crosidua russula），o бкioupos（Sciurus vulgaris），o orepuóфilos（Spermophilus citelus），о μ кротифлопóvttкац̧（Spalax leucodon），о тpavorovtıкós（Spalax mikrophthalmus），o
 бабопоvtıkó（Sylvaemys sylvaticus），o apoupaioç（Microtus arvalis），o β рахопоvtıkó̧（Apodemys ystacinus）．

 $\lambda \alpha ф \dot{\alpha} \tau \varepsilon \varsigma$（Elaphe quatuorlineata），oaitȩ̧（Coluber najadum），$\delta \varepsilon v \delta \rho \circ \gamma \alpha \dot{\lambda} \imath \varepsilon \varsigma$, （Coluber gemonensis），
vepóфı $\delta \alpha$ (Natrix natrix), onıtóфı $\delta \alpha$ (Elaphe situla) kaı $\sigma \alpha u ́ p \varepsilon \varsigma, ~ \varepsilon v \omega ́ ~ a r o ́ ~ t \alpha ~ \alpha \mu ф i \beta ı \alpha ~ u \pi \alpha ́ p x o u v ~$

 $\mu u ́ к \eta t \alpha$ Phytophthora cinnamomi, поu $\alpha \pi о т \varepsilon \lambda \varepsilon i ~ \beta \alpha \sigma ı к o ́ ~ к i v \delta u v o ~ \alpha \lambda \lambda o i \omega \sigma \eta \varsigma ~ t o u ~ \xi u ́ \lambda o u . ~ ¿ u ́ \mu \phi \omega v \alpha ~ \mu \varepsilon ~$

 vekpŕ opүavikń ú $\lambda \eta$ к $\lambda \pi$).

 arudinaceum, Apiospora montagnei, Porpolomyces farinosus, Microthyrium ilicinum каı по $\lambda \lambda \dot{\omega} v$

 (Mukńv η кuavó $\mu \alpha u \rho \eta)$), Antrodia ramentacea, Ramaria myceliosa (Papápı $\eta \eta \mu \nu \kappa \eta \lambda t \omega ́ \delta \eta \varsigma)$ к. α.
 катаүрафвí ot ơג́viot aбкоцúkŋтȩ Mollisia cinerea, Ciboria americana, Lanzia echincephala, Rustroemia firma, R. sydowiana, Sarcoscypha coccinea ($\left.\sum \alpha \rho к о \sigma \kappa и ́ \phi \eta ~ \eta ~ к o ́ к k ı v \eta\right) ~ k . \alpha . ~ M \varepsilon t a \xi u ́ ~ t \omega v ~$

 Crucibulum leave (Kроибißou入o to $\lambda \varepsilon i o$), Tremella foliacea ($T \rho \varepsilon \mu \varepsilon ́ \lambda \lambda \lambda \alpha \eta$ $\varnothing \cup \lambda \lambda o ́ \mu о \rho \phi \eta$), Auricularia

 Caloscypha fulgens（Ka入ookúф η ү үua入ıotepí），Pithya vulgaris（ Π ıӨúa η koıvŋ́），Cortinarius

1．2 ANAФOPA AMAQN YФI乏TAMENSN H／KAI ETKEKPIMENQN EPIתN＇H $\triangle P A \Sigma T H P I O T H T \Omega N ~$ इTHN ПEPIOXH MEAETHE

1．3 AЛАEЕ ГXETIKE乏 ПЛHPOФOPIE乏 ПOY AФOPOYN ГTHN ПEPIOXH MEAETH乏

1.4 ФЛTOГРАФІКН ТЕКМНРІЛЕН

Фwroүp α фí 1：X ω ро̧ катабкєuท́s E．E．＾．

1．5 КАТАГРАФН TH乏 КАТАЕTA乏H乏 TOY ФY乏IKOY ПEPIBAA＾ONTO乏 इTHN ПEPIOXH TOY AIKTYOY NATURA 2000

1．5．1 Etóxol סıatńpnons tns oukias π пeploxńs Natura 2000

Aró to $\alpha \rho \theta \rho o 8$ tou N．3937／2001

e．tף סuvo入ıkń ouvoxŋ́ tou סıkтúou «Natura 2000»．

 ठıatripnoris tou．

 tou入áxıotov Éva μ riva

TÛTOC OLKOTÚTOU	Kんరtкó¢	Ká入uゅท（\％）тワৎ $\pi \varepsilon р เ o \chi ウ ̆ \varsigma$ Natura	Avтเா $\rho \circ \sigma \omega \pi \varepsilon \cup \tau เ к о ́ \tau \eta \tau \alpha$ $* 2$	Erııф́áveıa ミ义モtik！ ＊3	K α т́otaon סıatท́pクoņ ＊	$\begin{aligned} & \text { £uvoגıkí } \\ & \alpha \xi \text { เo入óvnon } \\ & * 5 \end{aligned}$
－Asuß́nnsı反́ń Matorrals $\mu \varepsilon$ Juniperus spp．	5210	1	D			
－Asußinnaikń Matorrals $\mu \varepsilon$ Laurus nobilis	5230	1	C	A	C	B
	5310	1	C	A	C	B
Funhorhia knutá π тs актє́ऽ	5320	2	A	A	B	A
－Cnívavar Sarronnterium spinosum	5420	4	A	C	B	B
－ArRertinújol a入rıkoí $\lambda \varepsilon \iota \mu \dot{\omega} v \varepsilon \varsigma$	6170	3	C	B	B	B
－Miftíneretre Avato入ıки́c Méoүعiou	8140	3	B	B	B	B
－Nárón nquíve aாó Luzulo－Fagetum	9110	1	D			
Alnus olıtinnca krul Fraxinus excelsior	91E0	1				
－Ańrn $\mu \varepsilon$ Castanea sativa	9260	39		A	A	A
－FAגnuikúr Kríñ nfiŕr $\mu \varepsilon$ Abies borisii－regis	9270	1		C	B	C
－Δ áon o̧ı⿺廴¢ $\mu \varepsilon$ Quercus	9280	5		B	A	A

[^1]

α / α		1	2	3	4
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii			V	
4	Asperula aristata ssp. thessala		X		
5	Astragalus thracicus ssp. monochorum		X		
6	Atropa belladona	Γ			A \triangle
7	Aubrieta erubescens			R	
8	Beta nana		X	R	
9	Campanula lavrensis		X		
10	Centaurea pannosa		X		A
11	Centaurea peucedanifolia	A			A

Ere\&nyños⿺𠃊 Пivaka 3

2. Evбппикó. Nau: X.

α / α			Ei $\delta \eta$ Х α 人кктпрıбนои́
1	Phalacrocorax aristotelis	Өалаббоко́ракаऽ	H meninvń siverı viato sikoc wir каı фı入оहsuғi >1\% тои) ε Өviкоú $\pi \lambda \eta \theta$ иб μ о́.
2	1-lieraaetus fasciatus		H meninví siver via to sifiner min $\pi \lambda \eta \theta \cup \sigma \mu \circ$ и́.
3	Puffinus yelkouan	Múxos	Kpıtŕpıo Bird Life : B1ii, C3

α / α		E入入Пviкí ovouñia	
3	Falco peregrinus	Петрitı,	
4	Apus melba	Bouvootaxtápa	

 $\alpha u \xi \alpha ́ v o v t a l$.

MĖүعӨо¢	K ω \% 6 кó¢	Характпрıбио́я
$\chi \propto \mu \eta \lambda \eta \dot{\prime}$	B01.02	
$\chi \propto \mu \eta \lambda \dot{\prime}$	E01.03	бıабкортıбүе́vŋ катоккí
$\chi \alpha \mu \eta \lambda$ ¢́	A01	
$\mu \varepsilon ́ \tau \rho ı \alpha$	109	\$ ω tıá (\$uđukń)

 2000 - STANDARD DATA FORM

$160 \Delta \alpha \sigma$ кк் δ tax

948 Пиркаүı่́ алó фибıкג́ аitıa

 tous μ оvaxoúç avtuદt

Пuркаүıés

 μ п́коऽ $^{\text {tns }}$ Xepoovíбou.

 Eppou.

 $\lambda i \mu v e s$

 67/1981)-OXI

 -OXI

＞Mauremys rivulata IUCN－LC，Kókkivo Bı $\beta \lambda i o$ E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha \alpha \varsigma-L C$ ，Annexes II of the EU Natural Habitats Directive－OXI
 uчо́нетра

 67／1981）－NAI
 каı 反абıка́ ßобкото́тıа．

 $\Delta \dot{\alpha}$ taү $\mu \alpha$ 67／1981），－NAI

 EKOסnүia 92／43／EOK，OXI
＞Platanus orientolis PD67／81 חo入ú kotvó đe rotá $\mu \mathrm{I}$ OXI

＞Trapa natans Annex II of Council Directive 92／43／EEC OXI
＞Pancratium maritimum Annex II of Council Directive 92／43／EEC OXI
＞Fraxinus angustifolia Annex II of Council Directive 92／43／EEC OXI
＞Groenlandia densa Annex II of Council Directive 92／43／EEC OXI

 трофп́

$\Sigma \pi о \rho \alpha \delta \iota \kappa n ́ \varepsilon \xi \alpha \dot{\alpha} \pi \lambda \omega \sigma \eta$.

 Пара́ $\rho т \eta \mu \alpha$ V. Проотабí CITES- OXI

$>$ Accipiter brevipes 2009/147/EC: Пара́ptq $\mu \alpha$ I, $\Sigma u ́ \mu \beta \alpha \sigma \eta ~ t \eta \varsigma ~ B \varepsilon ́ p v \eta \varsigma ~ I I, ~ \Sigma u ́ \mu \beta \alpha \sigma \eta ~ \tau \eta \varsigma ~ B o ́ v v \eta \varsigma ~ I I, ~$

$>$ Anthus campestris 2009/147/EC: Парáptп $\mu \alpha$ I, $\Sigma u ́ \mu \beta \alpha \sigma \eta ~ B \varepsilon ́ p v \eta c ̧ ~ I I, ~ K B E-E \lambda \lambda \alpha ́ \delta \alpha c ̧: ~ L C, ~ I U C N: ~ O X I ~$

 K ω voфó $\rho \omega v$ OXI

 иүрото́лоия $\mu \varepsilon \alpha \mu \mu$ о́ офоия. OXI

 екта́беเц ท́ ßобко́топоиц OXI

 про́бßаоп бє є $\lambda \dot{\omega} \delta \eta$ иүрото́лоис. OXI

$>$ Circaetus gallicus 2009/147/EC: Парáptп $\mu \alpha$ I, $\sum u ́ \mu \beta \alpha \sigma \eta ~ \tau \eta \varsigma ~ B e ́ p v \eta \varsigma ~ I I, ~ \sum u ́ \mu \beta \alpha \sigma \eta ~ \tau \eta ̧ ~ B o ́ v v \eta \varsigma ~ I I, ~$

 CITESII/A, KBE-E $\lambda \alpha \alpha \delta \alpha \varsigma: ~ V U, ~ I U C N: ~ O X I ~$
＞E $\delta \alpha$ фóßıo ε í
 E入入áסac．
＞Coracios garrulous 2009／147／EC：Парáptnua I，£úußaon tףc Bépvņ II，£úußaon tnç Bóvvnc II， KBE－E入入д́ $\delta a c ̧ \wedge / u$ ，IUCN：OXI

＞Dendrocopos syriacus 2009／147／EC：Парáptп $\mu \alpha$ I，$\Sigma u ́ \mu \beta \alpha \sigma \eta ~ B e ́ p v \eta c ~ I I, ~ K B E-E \lambda \lambda \alpha ́ \delta \alpha c: ~ N E, ~ I U C N: ~$
 EKtáбeıら．

＞Haliaeetus albicilla 2009／147／EC：Пара́ptף μ I，¿ú $ß \beta \alpha \sigma \eta ~ B e ́ p v \eta ̧ ~ I I, ~ B o n n ~ C o n v e n t i o n ~ I / I I, ~ C I T E S I, ~$
 лара́ктıєऽ $\lambda \iota \mu v 0 \theta \dot{\alpha} \lambda \alpha \sigma \sigma \varepsilon \varsigma$ каı $\lambda i \mu v \varepsilon \varsigma$.

 OXI

 актіvoßодієऽ．

2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O \wedge O Г H \Sigma H ~ T \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N ~$

－Eпutt

 єлє६єрүабіац）．

Eruлt山̈gelc ह́pyou otouc olkotónouc tnc π epioxńs

 $\theta \varepsilon \rho \mu o ́ \beta t \omega v \pi \varepsilon u ́ k \omega v$ ．

 ठıatnpŋ $\theta \varepsilon i ́ a v a \lambda \lambda о i ́ \omega t o$.

3. METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma T \Omega N ~ \Pi I O A N \Omega N ~ E \Pi I \Pi T \Omega \Sigma E \Omega N$

 "Xe

 Quercus coccifera.

 Cephalanthera damasonium, Convallaria majalis, Dianthus petraeus ssp. Orbelicus, Neottia nidusavis, Platanthera bifolia, Platanthera chlorantha, Poa thessala, Sorbus chamaemespilus) $\pi \rho о \sigma t \alpha \varepsilon \varepsilon u ́ o v t \alpha t ~ \alpha \pi o ́ ~ t o ~ \varepsilon \lambda \lambda \eta v i к o ́ ~ \pi \rho о \varepsilon \delta \rho t к o ́ ~ \delta t \alpha ́ \tau \alpha ү \mu \alpha ~(67 / 1981), ~ 3 ~ \varepsilon i ́ \delta \eta ~(H e r a c l e u m ~ h u m i l e, ~$ Saxifraga juniperifolia ssp. Sancta, Ophioglossum vulgatum) عival orávı α otףv E $\lambda \lambda \alpha ́ \delta \alpha$ ń / T α $\beta \alpha \lambda_{\kappa \alpha v i \kappa \alpha ́ \alpha ~}^{\text {ev } \delta \eta \mu \text { кк } \alpha \text { (Allium chamaespathum, Arabis bryoides, Asperula aristata ssp. Nestia, }}$ Colchicum doerfleri, Erysimum drenowskii, Stachys leucoglossa) к $\alpha \iota 1$ t $\alpha \xi$ เvo μ ккó (Thymus thracicus).

 тоu α व́xเซтov 420 عíठๆ．

 пиркаүıáç عivaı ๆ Fritillaria euboeica（Phitos et al．1995）．

 тПऽ $\pi \alpha v i \delta \alpha \varsigma$ ：

 $\tau \omega v$ ：
 ठáon）

4．иүрото́л ωv ，лот $\alpha \mu \omega ́ v$ каt п $\alpha \rho о ́ \chi \theta t a \varsigma ~ \beta \lambda \alpha ́ \sigma t \eta o \eta \varsigma . ~$

5．$\pi \varepsilon р เ о \chi \omega ́ \vee \mu \varepsilon \pi о \lambda \lambda \alpha ́ ~ \omega ́ \rho ц \mu \alpha / ү \varepsilon ́ р ı к \alpha ~ \delta \varepsilon ́ v \delta \rho \alpha ~$

 $\alpha v a \pi \alpha \rho \alpha ү \omega \gamma \iota \kappa \eta ́ \pi \varepsilon \rho i o \delta o, \mu \varepsilon \tau \alpha \xi u ́$ Arpi入iou каи lou入iou．
 про́бкроибпs

 غ́pүшv.

4. ANTI乏TAOMI乏TIKA METPA

 N. 4014/2011

Enirtwon	Mét α^{\prime}
ф $\omega \lambda$ हотoínons	 (то ह́pyo عivaı по入ú $\mu \mathrm{uk} \mathrm{\rho ó)}$

 $\mu \pi о \rho \varepsilon i \operatorname{va} \varepsilon \xi \alpha \lambda \varepsilon ı \phi \tau \varepsilon i)$.

 $\pi \lambda \tilde{p} \rho \omega \varsigma$.

 ката́ to र \quad óvo ékӨroņs.

 пробтатвио́ $\mu \varepsilon v \eta \varsigma$ перเохท́s.
 тпv $\alpha \rho \mu o ́ \delta \iota \alpha \alpha \rho \chi$ ฑ́.

 $\pi \rho о к \lambda \eta$ Өои́v ох入ウ́бєıऽ．

5．ПРОГРАММА ПАРАКОЛОҮОНГНЕ

 к α Өoptotoúv．

 192/B-14.3.1997)

- Пробтабía tou $\alpha \pi о \delta \varepsilon ́ к т \eta ~ \tau \omega v ~ \varepsilon \pi \varepsilon \xi \varepsilon \rho ү \alpha \sigma \mu \varepsilon ́ v \omega \nu ~ u ү \rho \omega ́ v ~ \alpha \pi о \beta \lambda ท ́ t \omega v . ~$
 бплт兀кท́ऽ $\delta \varepsilon \xi \alpha \mu \varepsilon v$ ŋ́s.

Перıß $\beta \lambda \lambda$ оvtкки́ $\pi \alpha \rho \alpha к о \lambda о и ́ Ө \eta \sigma \eta ~$

 (KYA 5673/400/1997 (DEK 192/B-14.3.1997).

Eiбepróuevo opyaviкó بoptio

A. $\Delta \varepsilon \xi \alpha \mu \varepsilon v \eta \dot{\eta} \pi \rho о к \alpha \theta i \not \subset \eta \not \square \eta \varsigma$

[^2]

 тпV aróסoon tou סuбтńuatoc．

 $\lambda u \mu \alpha ́ \tau \omega v$ ．

 $\mu \varepsilon \tau \alpha ́ ~ т \eta ~ \delta п \eta \mu о \pi \rho a ́ t \eta o n ~ t o u ~ e ́ p y o u . ~$

 －λ ок λ íp ω oŕ touc．

 каvoviки́ $\lambda \varepsilon ı r o u \rho \gamma i \alpha, ~ \sigma \varepsilon ~ \sigma \chi \varepsilon т ı к o ́ ~ \alpha \rho \chi \varepsilon i o . ~$

TAPAMETPOE	EİOAOE	EEOAOE	INYE	\triangle EITMA	ПAPATHPHEEI乏
BOD_{5}	\＃	\＃		M．H	
COD	\＃	\＃		M．H	
SS	\＃	\＃		M．H	
А $\mu \mu \omega \mathrm{v}$ เ $\alpha \kappa \alpha ́, ~ v ı \tau \rho \tilde{́} \delta \eta$ ， vitpıкर́	\＃	\＃		M．H	
TP	\＃	\＃		M．H	
：\sum торабıка́					
	ठعípua				

6．$\Sigma Y N O \Psi H ~ \Sigma Y M \Pi E P A \Sigma M A T \Omega N$

 $\lambda u \mu \alpha ́ \tau \omega v:$

 $\pi \varepsilon \rho \iota \beta \dot{\alpha} \lambda \lambda$ ov.

7．BIBNIOTPAФIKEL ПHTE

 Роठórпŋ．A日ந்va．

－EइYE Aлоүрафர́ 1991.

 Eкסóбetç Пaraowtnpiou， 342 бع λ.
－Dimou D，Gikas GD，Tsihrintzis VA：＂Water quantity and quality monitoring of Lissos river，North Greece＂，Proceedings of the Third International Conference on Environmental Management， Engineering，Planning and Economics（CEMEPE 2011）\＆SECOTOX Conference，2011，Skiathos， Greece，p．151－157
 Etaıpías，Өeб／viкn Aлрì λ ıos 2004
－Гıavvóлоuخоৎ，PYПANEH TQN Y $\triangle A T I N \Omega N ~ \Sigma \Omega M A T \Omega N ~ A П O ~ T H N ~ K Y K \wedge O Ф O P I A ~ T \Omega N ~ O X H M A T \Omega N ~$ 2o Пlave入入ŕvıo ミuvéరpıo Oסorotiaç，Bóגos，Máıoş 2005
－＂The AOPII Cost Effectiveness Study Part III：The transport base case Annex B4 Greece，The European Commission，Standard \＆Poor＇s DRI and KULeuven＂

－Taylor，E．C．，Green，R．E．，\＆Perrins，J．（2007）Stone－curlews Burhinus oedicnemus and recreational disturbance：developing a management tool for access．lbis， 149 （1），37－44．
－Tucker，G．M．\＆Heath M．F．，（1994）Birds in Europe：Their conservation status．Cambridge，UK．： BirdLife International（BirdLife Conservation Series No 3）
－Barros，C．\＆De Juana，．E．（1997）Breeding success of the Stone Curlew Burhinus oedicnemus at La Serena（Badaioz．Spain）．Ardeola 44 （2），199－206．
－Bealey，C．E．，Green，R．E．，Robson，R．，Taylor，C．R．，Winspear，R．（1999）Factors affecting the numbers and breeding success of Stone Curlews Burhinus oedicnemus at Porton Down，Wiltshire． Bird Study 46 （2），145－156．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．
－Giannangeli，L．，De Sanctis，A．，Manginelli，R．，Medina，F．M．（2005）Seasonal variation of the diet of the stone curlew Burhinus oedicnemus distinctus at the Island of La Palma，Canary Islands． Ardea 92 （2），175－184．
－Green，R．E．，Tyler，G．A．，Bowden，C．G．R．（2000）Habitat selection，ranging behaviour and diet of the stone curlew（Burhinus oedicnemus）in southern England Journal of Zoology 250 （2），161－183．
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Thompson，S．，Hazel，A．，Bailey，N．，Bayliss，J．，Lee J．T．（2004）Identifying potential breeding sites for the stone curlew（Burhinus oedicnemus）in the UK．Journal for Nature Conservation 12， 229 － 235.
－Catry T．，Ramos JA．，Catry I．，Allen－Revez M．，Grade N．， 2004 Are salinas a suitable alternative breeding habitat for Little Terns Sterna albifrons？IBIS 146 （2）：247－257 APR 2004
－Fasola M．，（1993）Distribution，population and Habitat Requirements of the Vommon Tern and the Little Tern breeding in the Mediterranean in Aguilar，J．S．，Monbailliu，X．Paterson，A．M．Status and Conservation of Seabirds，Proceedings of the 2nd MEDMARAVIS，SEO，Madrid
－Goutner V．，Charalambidou T．，\＆Albanis A．（1997）Organochlorina Insecticide Residues in Eggs of the Little Term（Sterna albifrons）in the Axios Delta，Greece．Bull．Environmental Contamination and Toxicology 58－61－66
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Joris E．，\＆Stienen E．，（2009）Impact of wind Turbines on Terns in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．
－Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute （VLIZ）．Oostende，Belgium．Viii＋68 p．
－Medeiros R．；Ramos J．，Paiva V．，Almeida A．，Pedro P．，Antunes S．（2007）Signage reduces the impact of human disturbance on
－Little tern nesting success in Portugal，Biological Conservation 135 （2007）99－100

－Ruben F．，Krijgsveld K．，Camiel Heunks，Martin Poot \＆Sjoerd Dirksen．（2009）Nocturnal and Diurnal Flight Intensity and Altitude of Seabirds and Migrants in and around an Offshore WindFarm in the Dutch North Sea in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．
－Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute（VLIZ）．Oostende，Belgium．Viii＋68 p．

三র́vӨn 2006．$\sigma \varepsilon \lambda .64$
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－BirdLife International（2008）Species factsheets．Downloaded from http：／／www．birdlife．org Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
 каı тŋร Eupártnc．

－Xavס́pıvós Г．，（1992）Mou入ıá oto Kapavסeıvós M．，＾eүákıç A．To Kókкıvo Bı $\beta \lambda i o$ twv
 OpvıӨo入oүıкń Etaıpعía．
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．
－De La Montana，E．，Rey－Benayas，J．M．，Carrascal，L．M．（2006）Response of bird communities to silvicultural thinning of Mediterranean maquis．Journal of Applied Ecology 43，651－659．
－Guerrieri，G．，Pietrelli，L．，Biondi，M．（1996）Status and reproductive habitat selection of three species of Shrikes，Lanius collurio，L．senator and L．minor in a Mediterranean area．（Proc．of the First Intern．Shrike Symposium）Found．Vert．Zool．6，167－171．
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Isenmann，P．，Debout，G．（2000）Vineyards harbour a relict population of Lesser Grey Shrike （Lanius minor）in Mediterranean France．Journal fur Ornithologie 141 （4），435－440．
－Kristin，A．，Hoi，H．，Valera，F．，Hoi，C．（2007）Philopatry，dispersal patterns and nest－site reuse in Lesser Grey Shrikes（Lanius minor）．Biodivers．Conserv．16，987－995．
－Kristin，A．，Hoi，H．，Valera，F．，Hoi，C．（2007）The importance of breeding density and breeding synchrony for paternity assurance strategies in the lesser grey shrike．Folia Zoologica 57 （3），240－ 250.
－Kristin，A．，Hoi，H．，Valera，F．，Hoi，H．（2000）Breeding biology and breeding success of the Lesser Grey Shrike（Lanius minor）in a stable and dense population．Ibis 142 （2），305－311．
－Lepley，M．，Ranc，S．，Isenmann，P．，Bara，T．，Ponel，P．，Guillemain，M．（2004）Diet and gregarious breeding in lesser Grey Shrike（Lanius minor）in Mediterranean France．Revue d＇Ecologie（La Terre et la Vie） 59 （4），591－602．Pons P．，Lambert B．，Rigolot E．，Prodon，R．（2003）The effects of grassland management using fire on habitat occupancy and conservation of birds at a mosaic landscape． Biodiversity and Conservation 12，1843－1860．
－Ristow，D．，Wink C．，Wink M．（1986）Assessment of Mediterranean Autumn Migration by Prey Analysis of Eleonora＇s Falcon．Proc．1st Conf．on Birds wintering in the Mediterranean Region， Aulla Feb．1984．Supplemento alle Ricerche di Biologia della Selvaggina 10（1），285－295．
－Tucker，G．M．\＆Heath M．F．，（1994）Birds in Europe：Their conservation status．Cambridge，UK．： BirdLife International（BirdLife Conservation Series No 3）
－Valera，F．，Kristin，A．，Hoi，H．（2001）Why does the lesser grey shrike（Lanius minor）seldom store food？Determinants of impaling in an uncommon storing species．Behaviour 138 （11－12），1421－ 1436.
－Wirtitsch，M．，Hoi，H．，Valera，F．，Kristin，A．（2001）Habitat composition and use in the lesser grey shrike（Lanius minor）．Folia Zoologica 50 （2），137－150
 $\Delta ı \alpha \chi \varepsilon i p ı \neq \eta ~ к \alpha \lambda \alpha \mu t \omega \dot{v} \omega v \lambda i \mu v \eta \varsigma$ I $\sigma \mu \alpha \rho i \delta \alpha \varsigma)$ ，
 Bıotwvi $\delta \alpha \varsigma$ ，l $\sigma \mu \alpha \rho i \delta \alpha \varsigma$ ），Boskidis et al．， 2010 （J．，Envir．，Scien．，Health，45，11，1421－1440，Changes of water quality and SWAT modelling of Vosvozis river basin），
 Өрákп¢），
－Economou et al．， 2007 （Medit．，Mar．，Scien．，8，1，91－166，The freshwater ichthyofauna of Greece），

－Papastergiadou，Babalonas， 1993 （Willd．，23，137－142，Aquatic flora of N．Greece）Drosos， 1992 （Willd，22，97－117，Floristic study of lake Mitriko etc），
－Drosos， 1992 （Willd，22，97－117，Floristic study of lake Mitriko etc），

 ОППЕО 97
 Екסóбとıц̧ OППЕӨ 97.
 A日ク̆va．
－Zagas，T．D．，P．P．Ganatsas，T．K．Tsitsoni and Marianthi Tsakaldimi．2004．Thinning effect on stand structure of holm oak stand in northern Greece．In：
－Arianoutsou，M．and V．P．Papanastasis（eds），Proceedings of the 10 th MEDECOS Conference，April 25－May 1，2004．Rhodes，Greece．Millpress，Rotterdam．

 117.
－Grisebach，A．1841．Reise durch Rumelien und Brussa in jahre 1839，1．2 Gottingen．
－Mattfeld，J．1927．Aus wald und macchie in Griechenland．Dendrol．Ges．38：106－151．
 Apvaiac．Өعббба入ovikn．
 1：50．00 AӨ ω ç kaı Ieptooóc．AӨńva．

 Про́үраццц Перıßа́入入оv，Үтотро́үрацца $\Delta \rho \alpha ́ \sigma \eta ~ 3.3 . ~$

8．OMADA MEAETH乏

Tп λ ．／Fax： 2310902321 ／ 2310330630
$\Sigma \phi \rho \alpha ү i \delta \alpha-$ Үлоүрафп́

「IA TON EMETXO

Móoxos 耳ounaそı＇́tņ $\Delta a \sigma o \lambda$ о́yos $\mu \varepsilon$ Á β ．

E＾ETXOHKE

Orooahovikn ．．．14．／．．．4／．．．20．22
O ПPOÏइTAMENOE
TMHMATOI $\triangle A \Sigma Q N ~ \& ~ I E A B A A M O N T O \Sigma ~$

OEתPHOHIKE
Өعбоалоvikn． 14 （04l．20．．32
O \triangle IEYOYNTHE TH乏
TEXNIKHE YHHPEEIAS

Гعш́pүıos Maгpanáそ̧̧ Hodııкós Mnxavikós $\mu \mathrm{E}$ A＇β ．

חAPAPTHMAI

\section*{

[^0]: Cephalanthera longifolia／Mapóv
 Colchicum doerfleri／Парóv
 Convallaria majalis／Mapóv
 Corydalis integra／$\Sigma \pi \dot{\alpha} v \iota_{o}$
 Cyclamen persicum／П α oóv
 Cystoseira spp／Mapóv
 Dianthus petraeus ssp．orbelicus／Пapóv
 Digitalis leucophaea／ミnávio
 Erysimum drenowskii／Mapóv
 Fritillaria euboeica／Пòú $\Sigma \pi \alpha \dot{v} v o$
 Fritillaria graeca／П α óv
 Helichrysum sibthorpii／Moגú इnávio
 Heracleum humile／Mapóv
 Hypericum athoum／$\Sigma \pi$ ávio
 Isatis tinctoria ssp．athoa／Endंvio
 Limodorum abortivum／Maןóv
 Linum leucanthum £úvŋษั६ऽ
 Linum olympicum ssp．athoum／Пo入ú $\Sigma \pi \alpha \dot{\alpha} v t o$
 Neotinea maculata／П $\alpha \rho o ́ v$
 Neottia nidus－avis／Mapóv
 Ophioglossum vulgatum／Парóv
 Osmunda regalis／Пapóv
 Oxytropis purpurea／$\Sigma \pi \dot{\alpha} v i o$
 Platanthera bifolia／Mapóv
 Platanthera chlorantha／П α рóv
 Poa thessala इúvnves，
 Polygonum icaricum／Enávio
 Saxifraga juniperifolia ssp．sancta／ITapóv
 Silene echinosperma／Пapóv
 Silene multicaulis ssp．genistifolia／Mapóv
 Sorbus chamaemespilus／Endंvto

[^1]:

[^2]:

