IEPA KOINOTHTA AГIOY OPOYE $A \Theta \Omega$

EPГO：
 «EPГA EПE＝EPTA乏IA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~$ ミTO AГION OPOミ»

MEAETH ПEPIBAИAONTIKRN EПIITISEERN EPISN EПEEEPIAEIA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ А Y M A T \Omega N ~ I . ~ M . ~ А Г . ~ П A Y А O Y ~$

ANADOXOE MENETHE

EYミTPATIO \sum KAPAГERPIIOY
ПАПАФН 82， 54453 ӨE
email：skarageo＠gmail．com

IEPA KOINOTHTA AIIOY OPOY乏 $A \Theta \Omega$

EPГO：
 «ЕРГА ЕПЕЕЕPГA乏IA KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ \Sigma T O ~$ AIION OPO乏»

MEAETH ПEPIBAMONTIKSN EПIITTQEERN EPISN EПIEEEPГAEIAE KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~ A Г I O Y ~ П A Y A O Y ~$

МН TEXNIKH ПEPI＾HЧН

ANALOXOE MEAETHE
EY ZTPATIOE KAPATERPTIOY
ПАПАФН 82， 54453 ӨЕЕミAへONIKH
email：skarageo＠gmail．com

IOYNIOE 2021

MINAKA乏 ПEPIEXOMENRN

2. MH TEXNIKH IIEPIAHYH 3
2.1. ПЕРІГРАФН ЕРГОУ. 3
 3
2.1.2 Періүраий вруюv алодв்тєиоџร 3
 3
2.1.4 Перıүрачй івітоируіас 5
2.2. AПOETALEIL - EYNTETAIMENEE 6
2.3. ПEPIBAAAONTIKEE ETIITTQSELL. 7
2.4. METPA KAI \triangle PAEEIE CIA THN ITPOETAEIA TOY IEPIBAAnONTOE 10
2.5. ОФЕАН 10
2.6. ENAAAAKTIKES AYEEIE 10
 11

2. MH TEXNIKH ПEPI^H ΨH

2.1. Періүрачŋ́ غ́pyou

 200μ..

E.E.A.

TAPAMETPOE		ПАРОУЕA ФАЕН	ФAEH EXEAIAEMOY
	кат.	230,00	300,00
	$\mathrm{m}^{3} / \mathrm{d}$	34,50	45,00
акаӨ́а́ртшv	$\mathrm{m}^{3} / \mathrm{d}$	51,75	67,50

	$\mathrm{m}^{3} / \mathrm{h}$	2，16	2，81
Парох＇̆ aıхиウ่¢ Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	7，78	10，11
Elठıкó Punavtikó 甲ортio BOD ${ }_{5}$	gr／kar／d	60，00	60，00
Eıठัıкó Puпavtıкó 甲ортіо TSS	gr／kat	70，00	70，00
Eıठıкȯ Punavtikó 甲ортio TN	gr／kat／d	10，00	10，00
Eıठıкó Punavtıkó 甲optio TP	gr／kar／d	3，00	3，00
Фортіо BOD_{5} бхहరıабนоบ่	kg／d	13，80	18，00
Фортіо TSS оxદठıабиои่	kg／d	16，10	21，00
Фортіо TN охعठıабرоบ่	kg／d	2，30	3，00
Фортіо TP бхеঠıабной	kg／d	0，69	0，90

 ича́биатос，

Tа катабквиаотıка́ отоүхвіа тои ह́pyou перı入ацßávouv：

 киклороріас，

 ठıктบ̇ou．

Фáon 「＇：Enavenix ω ơn opuyuát ω v av ω vàv

Фáon E' : Eукатáotaon H/M عॄопतıouoủ

2.1.4 Пєрıура甲й лєıтоирүіац

 $\beta а Ө \mu і б а)$.

סІаперато́тпта UVT 50\％／cm．

	ミuvtetaypėveç E［さA 87	
	X	X
Apx＇̇－A． 9	524542，70	4445369，13
A． 8	524525，49	4445360，21
A． 6	524526，84	4445332，60
A． 5	524517，97	4445314，58
A． 4	524509，69	4445297，76
A． 3	524498，70	4445288，93
A． 2	524459，98	4445273，93
A． 1	524429，32	4445262，06
Eiбобоя ПрокаөiZnon¢－А． 0	524408，44	4445238，20

 524402,48 ка। $Y=4445231,70$ ．

	ミuvtetayuėveç ETEA 87	
	X	Y
＇Ȩoठos anó EE＾	524399，17	4445236，87
ミnucio రiá̇eans	524391，95	4445240，34

2. avtıotox
3. KOKKINH ENAEIEH avtiotoIxघi oع APNHTIKH EחIITT $\Omega \Sigma H$
EPIO ：«EPIA ETE＝EPTAEIAI KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S E N ~ I T O ~ A I I O N ~ O P O \Sigma * ~$

ФAㄷ EPROY	ПEPIBANAONTIKO ETOIXEIO	EMIMT®EEIE			BAPYTHTA				DIAPKEIA		ANAETPEUIMH		
		칠	W	8	否		年		$\sum_{\substack{\text { n }}}^{\text {z }}$		－		之
			$\sqrt{ }$			$\sqrt{ }$				\checkmark	$\sqrt{ }$		
	Морфолоүıка́ каі тополоүıка характтрıотька		$\sqrt{ }$				$\sqrt{ }$			\checkmark			$\sqrt{ }$
	характпріөтіка			$\sqrt{ }$									
	Фưıкó пعрıßà入入ov		$\sqrt{ }$				$\sqrt{ }$			\checkmark			$\sqrt{ }$
				\checkmark									
		$\sqrt{ }$			$\sqrt{ }$					$\sqrt{ }$			
			\checkmark					\checkmark		\checkmark			\checkmark
				$\sqrt{ }$									
	Поıо்тПта тои аह̇ра	$\sqrt{ }$				$\sqrt{ }$				\checkmark		$\sqrt{ }$	
		\checkmark					\checkmark			\checkmark		$\sqrt{ }$	
	Н入єкроиауүๆтıка́ пеঠia			\checkmark									
	＇Үбата			$\sqrt{ }$									
		$\sqrt{ }$				$\sqrt{ }$				$\sqrt{ }$		$\sqrt{ }$	

[^0]EPIO ：«EPTA ETE＝EPГAIIAI KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K S I N ~ A Y M A T S 2 N ~ \Sigma T O ~ A I I O N ~ O P O \Sigma » ~$

ФAㄷ EPTOY	ПEPIBANAONTIKO ETOIXEIO	EMIMTSEEIE			BAPYTHTA				DIAPKEIA		ANAETPEUIMH		
		$\frac{\text {－}}{\text { 2 }}$	W	장	$\frac{5}{3}$ $\frac{2}{3}$	客	¢	息 $\frac{5}{5}$ $\frac{1}{2}$	$\sum_{i}^{\text {2 }}$	ПPOERPINH	80	W	$\frac{1}{4}$
			\checkmark					\checkmark	\checkmark			$\sqrt{ }$	
	Морфолоүıка́ каı топо入оүıка́ характпрıотıка́												
	характпріотіка́			\checkmark									
	Фuৰıко̇ перıßà $\lambda \lambda$ 人v	$\sqrt{ }$			\checkmark				\checkmark				
	AvӨр	$\sqrt{ }$			\checkmark				\checkmark				
		\checkmark			\checkmark				$\sqrt{ }$				
				$\sqrt{ }$									
		$\sqrt{ }$			$\sqrt{ }$				\checkmark				
	Поıо́тПта тои аह̇pa	\checkmark						$\sqrt{ }$	\checkmark				$\sqrt{ }$
	Єópußо̧ каı ठ̄оvท̇бعı¢，	\checkmark					$\sqrt{ }$		\checkmark				$\sqrt{ }$
	Нлєкроцаүvŋтıка̇ пєठіа			\checkmark									
	Үסата	\checkmark			$\sqrt{ }$				\checkmark				
		\checkmark				$\sqrt{ }$				$\sqrt{ }$		\checkmark	

[^1]

入еाтоupyia тоия，

Tह่̇ $o c$, ह́x

2．5．O甲ع́ฝク

 періßà入lov．

 ноváס̄a ठıú入ıoŋร．

тПs סXeтוкís KYA

Enumтஸ்oยic Tou غ̇pyou otnv пepıoxn் Natura

＊$\Delta \varepsilon v$ Өa घппр

 Өعoou入ovikn ．．．．14！041．．．．2022

 Tax．$\Delta / v \neq \eta:$ Пanáqๆ 82, ©
Tŋ $\lambda .: 2310902321$
Email：skarageo＠gmail．com Tax．$\Delta / v \neq \eta:$ Пanáqๆ 82, ©
Tŋ $\lambda .: 2310902321$
Email：skarageo＠gmail．com
ミфраүіठа－Үпоүра甲и́
－「IA TON EへETXO

QERPHOHKE Oeaonknvikn． 1410412022. （3）MLYOYNTHE THE KAPAГERPГIOY A．EYミTPATIOE
AIПАМM．XHMIKOZ MHXANIKOE A．П．Q． MEAOE T．E．E．APIOMOE MHTPMOY 87022 ПAПAФH \＆R KCTOYMПA 54453 ӨEE／NIKH IHA 2310．302．321

IEPA KOINOTHTA
AIIOY OPOYE
$A \ominus \Omega$

EРГО：
 «EPTA EПE＝EPTAइIA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ \Sigma T O ~$ AIION OPOE»

MEЛETH ПEPIBAMAONTIKSN EПIITISEERN

ANAAOXOE MEAETHE
EYミTPATIOE KAPAГERPГIOY ПАПАФН 82， 54453 ӨЕГకAへONIKH email：skarageo＠gmail．com

IOYNIOE 2021

MINAKAE חEPIEXOMENתN

1．ELEAГ $\Omega \Gamma H$9
1．1．Ttiaozeproy ．． 9
1．2．EILOE KAI METEGOE EPROY ．． 9
1．3．ГЕ Ω PAФIKH ӨELH KAI AIOIKHTIKH YПII Ω ГH EPIOY ．． 9
1．3．1 Өச́on 10
1．3．2 பюикпипај vткјатй． 11
 11
 11
1．3．3．2 Euvtetaүu仑́vȩ окоти́Sov EEA 12
 12
1．4．Katatazh toy eproy 12
1．5．ФOPEAE EPTOY． 13
1．6．ПEPIBAAAONTIKOE MEAETHTHE EPIOY 13
2．MH TEXNIKH ПEPIAHYH 14
3．EYNOITIKH IEPILPAФH T ΩN EPГ Ω N 15
3．1．BASIKA ETOLXEIA EPROY． 15
 15
 15
 15
3．2．BAEIKA ETOLXEIA KATAZKEYHI KAI AEITOYPIIAE． 16
3．2．1 Пергүрачй גвाтоирүіаद 17
3．3．AПATTOYMENE ПOLOTHTE Π IPSTQN YA Ω N，NEPOY，ENEPTEIAL KAL AПOBAHT Ω N 18
 18
 18
4．$\Sigma T O X O \Sigma ~ K A I ~ \Sigma K O I I M O T H T A ~ Y A O H O I H \Sigma H \Sigma ~ T O Y ~ E P Г O Y ~-~ E Y P Y T E P E \Sigma ~ \Sigma Y \Sigma X E T I \Sigma E I \Sigma ~$ 20
4．1．ETOXOE KAI ミKOПIIMOTHTA 20
 20
 Épyov 20
 20
4．2．IzTOPIKH EEEAEH TRN EPIRN． 21
4．3．OIKONOMIKA 2 TOIXEIA T Ω N EPI Ω N 21
4．3．1 Eктіцпоп ошvодィко́ тройтоіоүьбиои́． 21
 21
4．3．3 Тро́тос хрпиатодо́тиоть． 21
4．4．इYEXETILH TOY EPIOY ME AAAA EPIA 22
5．इYMBATOTHTA TOY EPГOY ME OE $\Sigma M O Ө E T H M E N E \Sigma ~ X \Omega P I K E \Sigma ~ K A I ~ П O A E O A O M I K E \Sigma ~$ AEEMEYミEIL THะ ПEPIOXH乏 23
5．1．ӨELH TOY EPTOY 23
5．1．1 Oріа оькабцஸ́v 23
 23
 23
 23
5．1．4．1 Ö̆ко́ ठіктьо 23
 23
 23
5．1．4．4 AкохÉtevoा 23
5．1．4．5 Ү8рвиテп 24
 24
 24
5．2．1 Провле́чєгя 24
5．2．2 Өвоцико́ каӨвотळ́c． 24
 25
 25
6．ANAAYTIKH IIEPIГРАФН ГXEAIAГMOY TOY EPГОY 26
6．1．ANAAYTTKH IIEPITPAФH TEXNIK ΩN－TE Ω METPIK Ω ETOLXEI Ω N 26
 26
 26
 26
 28
6．3．EIIMEPOYミ EPTA 29
6．3．1 Kпрıака́ ф́pүа 29
 30
 30
 30
 30
 31
 34
 34
 35
 35
6．4．ФAटH KATAEKEYHE TQN NE Ω N EPI ΩN 35
 35
 36
6．4．3 Үтобтприктикеร вүкатабтдбеı丂 катабквиі̆ร． 36
6．4．4 Avaүкаіа vдıкд́ катабжсий＇s 37
 37
6．4．6 Misová̧̧ovta vגıкá． 38
 38
6．4．8 Ектоилє́ц Oори́ßоv каи סоvท்авюv． 38
 39
6．5．ФAEH AEITOYPIIAE． 39
 39
 40
 40
6．5．4 Exров́c бєєрєळ́v алоß 40
 41
 41
 41
6．6．ПAYZH AEITOYPIIAE－AПOKATAZTALH 41
 41
6．6．2 Kаөаірвоп $\mu о ́ v ц \omega v ~ к а т а б к в и ண і v, ~$ 42
 42
6．7．＇EKTAKTE YYNOHKE K KAI KINAYNOI IIA TO IEPIBAAAON 42
 42
 42
 43
 43
6．8．EIIAPALH TOY EPIOY LE KOTTE PEMATQN 43
7．ENAAAAKTIKE AYEEIL 44
7．1．ПAPOYЕIA乏H BI 44
7．1．1 МПбеvкŋ் $\lambda \dot{v} \sigma$ 44
 44
 45
7．1．3．1 「Еviкd́ 45
 46
 52
7．1．3．4 $\quad \Sigma \dot{0} \tau \eta \mu \alpha \varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma ~ \mu \varepsilon \mu \varepsilon \mu \beta \dot{1 v \varepsilon \varsigma(M B R-M e m b r a n e ~ B i o ~ R e a c t o r) ~}$ 54
7．1．3．5 Перьттрефо́иеуот Вюод．оүкоі дїокот 56
7．1．4 Фиакак аиатйита． 59
 60
 62
 63
7．1．4．4 Tехиптоі Yүроßиттолои 64
 68
 70
 71
7．1．5．1 Teviká 71
 71
 72
 73
 73
 73
7．2．1．2 $\quad \Omega \varsigma \pi \rho \circ \varsigma$ тㅣ μ ह́Єю 74
 ． 78
 81
 81
8．YФILTAMENH KATALTALH IEPIBAAAONTOE 82
8．1 ПEPIOXH MEAETHL 82
 82
8．1．2 इпиєгако́ єрүо 83
8．1．3 Katrүopia \＆́pyou． 83
 83
8．1．5 Yүрототเкй лерเохй 83
 83
8．2．KАIMATOAOIIKA KAI BIOKAIMATIKA XAPAKTHPIETIKA 83
8．3．МОРФОАОITKA KAI TOПЮООITKA XAPAKTHPILTIKA 85
8．3．1 Катаурафи́ тотіод аvа甲ора́с 85
8．3．2 Еиролапо́ б́и 85
 86
8．3．4 ミпиаитко́тига－трюго́тұга тотіоь 86
8．4．ГЕЯАОГIKA，TEKTONIKA KAI EДAФOAOITK А XAPAKTHPIZTIKA 87
 87
8．4．2 Едафоіоүиќ ұарактиритикд́ 89
8．4．3 Тектоvıкх́ характпріттка́ 90
8．5．ФYミIKO HEPIBAムAON 91
8．5．1 ГЕиıка́ тогyéa 91
 91
 94
 94
 100
 101
 102
 102
 102
 102
 103
8．6．ANOPQПOTENE IIEPIBAA $A O N$ 103
 103
 103
 103
 103
 104
 104
 104
 104
 104
 105
8．7．KOIN®NIKO KAI OIKONOMIKO IIEPIBAAAON 105
8．7．1 Аұиоүрачгкך் кати́бтаоך 105
 106
8．7．2．1 Параүсуикоі тодеіс 106
8．7．2．2 En＜̊ 106
8．7．3 इтобвіа алабфо́диюю． 106
 106
8．8．TEXNIKEE YHOSOME 106
8．8．1 Үтодоиц́s иєтацоро́v 106
 107
8．8．3 Аіктих ט́брвиотя 107
 107
 107
 107
8．10．ATMOEDAIPIKO ПEPIBAAAON－ПOIOTHTA AEPA 107
8．10．1 Kípıeऽ лпри́¢ ри́ланv 108
 108
 108
8．11．AKOYETIKO IIEPIBAAAON KAI \triangle ONHZEEE 108
8．11．1 IT 108
 108
 109
8．12．HAEKTPOMAINHTIKA IIEALA 109
 109
 109
8．13．＇Y $\triangle A T A$ 109
8．13．1 Exedia סuaxsiplons 109
8．13．1．1 Пароубіаоп про队і̀цчешу． 109
 109
 109
8．13．2 Enчфаveiand́ údata 110
 110
 110
 110
 110
 110
 110
 111
 111
 111
8．14．KINAYNOI TIA THN ANEPSIINH YTEIA，THN חOATTILTIKH KAHPONOMIA H／KAI TO IIEPIBAAAON，KYPI Ω AOI Ω ATYXHMATQN KAI KATAZTPOФQN 111
8．15．TALEIL EEEAIEH乏 TOY IIEPIBAAAONTOE XQPIL TO EPIO 112
 112
 112
9．EKTIMHLH KAI AミIOAOГHLH HEPIBAAAONTIK Ω N EIHIIT $\Omega \Sigma E \Omega N$ 113
9．1．ME＠OAOAOIIKE AILAITHEEIL 113
9．2．EIIIITQEEL EXETIKA ME TA KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPILTIKA 114
 114
 өериохсритко́тиас． 114
 114
9．2．3．1 Фа́ті катабквй́！ 114
9．2．3．2 Фáon 入stroupriac 115
9．3．EПIITR乏EIE ETA MOPФOAOГIKA KAI TOПЮАOГIKA XAPAKTHPILTIKA． 115
 115
 115
 115
 116
 116
 116
9．4．1 Макробкотике́s таратррйкег． 116
 116
 116
 116
 116
 117
 117
 117
9．5．EПIITREELE $\Sigma T O$ ФYEIKO IIEPIBAAAON 117
9．5．1 Eктіцךणך тоv हпиттळав αv 117
9．5．2 Проптатвдо́ μ крг дгрюожєя 117
 117
 118
 119
 119
 119
 119
 119
 119
 119
9．6．EIMITRエEIL ETO ANGPSIOIENE HEPIBAAAON 119
 119
9．6．1．1 Мєтаßo入éç $\sigma \mathbb{}$ 119
 120
 120
9．6．2．1 Ектіцךणा епитйбгюv 120
 120
 120
 120
 121
9．6．3．3 Etठ̈แฑ゙ вктчцךणワ 121
9．7．EIIIITREEIL ETO KOINQNIKO－OIKONOMIKO HEPIBAAAON 121
 121
 121
 121
 121
 121
 121
9．8．EIIITREEIL LTIL TEXNIKEL YПOAOME 121
9．8．1 Eпитぁぁбас． 121
9．8．2 Eто́pквза 122
9．9．इY XXETILH ME TIL AN Θ PQחOFENEIL HIELEIL STO IEPIBAAAON 122
9．9．1 ПiӨสvómта вviбरиоクร 122
 122
9．10．EIIITREEIL ETHN ПOЮTHTA TOY AEPA 122
9．10．1 Eпатん̈のडS 122
 123
 123
9．11．EாmITREEE AПO ӨOPYBO H AONHLEE 124
 124
9．11．2 Епитшюшая 124
9．12．EIIITREELE EXETIKEL ME HAEKTPOMAINHTIKA IIEAIA 125
9．12．1 Eпитшбхцร 125
9．12．2 ПіӨаио́рта 125
9．13．Enim 125
 125
 125
 125
 125
 125
 125
 126
 126
 126
 126
 126
 126

／KAI TO חEPIBAAAON，KYPI Ω AOI Ω ATYXHMATQN KAI KATALTPOФ Ω N 127
9．15．इYNOYH EIIITRSEESN $2 E$ IINAKE 127
10．ANTIMET Ω IILH IEPIBAAAONTIK ΩN EПIIT $\Omega \Sigma E \Omega N$ 131
10．1．MEӨOSOAOTIKE A AIATTHEELE KAI IPOSӨETA METPA 131
 XAPAKTHPIETIKA 133
 XAPAKTHPIETIKA 133
 XAPAKTHPIETIKA 134
 135
10．6．METPA AПOKATALTALHE KAI ANTIMETQIIILHL EПIITTQEESN $\Sigma T O$ AN＠PQПOIENEE ПEPIBAAAON 135
 136
 137
 IEPIBAAAON 137
10．10．METPA AПOKATALTALHE KAI ANTIMETQПILH亡 EПIITREESN ETHN ПOIOTHTA TOY AEPA 137
10．11．METPA AПOKATALTALHE KAI ANTIMETQIILH亡 EIIITTQEE Ω N AПO＠OPYBO H $\triangle O$ ONHEEİ 138
10．12．METPA AПOKATALTALH亡 KAI ANTIMETQIILH亡 EIIITTQLE Ω N 区XETIK Ω N ME HAEKTPOMAINHTTKA IIEAIA 139
10．13．METPA AПOKATALTALHL KAI ANTIMETQПILH亡 EПIITT $\Omega \Sigma E \Omega N$ LTA Y $\triangle A T A$ 139
10．14．METPA AПOKATALTALHE KAL ANTIMETQПILH亡 ПEPIBAAAONTIK ΩN EIIITTQLE ΩN ПOY AПOPPEOYN AПO THN EYTA＠EIA TOY EPIOY Σ E KIN $\triangle Y N O Y \Sigma ~ \Sigma O B A P \Omega N ~ A T Y X H M A T \Omega N ~ H ~ K A T A \Sigma T P O \Phi \Omega N ~$ 140
10．15．АПOTEAEEMATIKOTHTA METPQN 140
11．IEPIBAAAONTIKH $\triangle I A X E I P I \Sigma H ~ K A I ~ П A P A K O A O Y \Theta H \Sigma H . ~$ 169
11．1．ПEPIBAMAONTIKH AIAXEIPILH 169
11．2．ПЕРIBAAAONTIKH ПАРАКОАОУӨНЕН 169
 169
 169
 169
 169
 170
 170
 170
 171
 171
 171
 171
 172
 172
 172
 172
11．2．4 Паракоіоь்Өпоп Өори́ßov． 172
 172
 172
 172
 172
11．2．5 Паракоіои்Өпо обиळ́ン 172
 173
 173
 173
 173
11．3．Σ XEAIO ANTIMETSIIILL EKTAKTQN ПEPILTATIKQN 173
11．3．1 Eloxywin＇ 173
 173
11．3．3 Eveрүотоіךоण тои इ̌eסiov． 174
 175
 176
12. K $\Omega A I K O \Pi O I H \Sigma H ~ A \Pi O T E A E \Sigma M A T \Omega N ~ K A I ~ I P O T A \Sigma E \Omega N ~ T I A ~ T H N ~ E Г K P I \Sigma H ~$ IEPIBAAAONTIK Ω O OPSN 183
12.1. ©EMA - ONOMAEIA EPIOY H \triangle PASTHPIOTHTAL 183
12.2. EחINNYMIA ФOPEA H \triangle PASTHPIOTHTAL. 183
 183
 183
 183
12.2.2.2 Euvtetaүuغ́ves оuколéס́ov EEA 184
 184
12.2.3 Перирари' Еррои. 184
 тери Pállонтос. 186
 186
12.2.5.1 A\&рıа ажо́ß $\quad \eta \tau \alpha$ 186
12.2.5.2 Yүра́ $\alpha \pi \dot{\beta} \beta \lambda . \eta \tau \alpha$. 187
 187
 188
 188
 188
 192
 196
 196
13. ПPOГQETA ГTOIXEIA 197
13.1. EEELIIKEYMENEE MEAETEL 197
13.2. ПРОВАHMATA EKIIONHEHZ 197
14. ФЛТОГРАФIКН TEKMHPI $\Omega \Sigma H$ 198
15. XAPTE - EXEAIA 199
15.1. XAPTHE IIPOZANATOAIEMOY 199
15.2. XAPTHE IEPIOXHE MEAETHE 199
15.3. XAPTHE ENAMAAKTIK 2 N AYEERSN 199
15.4. ГEQAOITKOE XAPTHट 199
15.5. XAPTHट XPHEESN KAI KAAYYHE THE 199
15.6. EXEAIA TOY EPIOY H THE \triangle PALTHPIOTHTAट 199
15.7. XAPTEEEIIITTQEEQN 199
15.8. XAPTHE ПPOTPAMMATOE ПAPAKONOYӨHटHะ 199
16. IIAPAPTHMA 208
16.1. YTIEIONO $О Г І К О I ~ Y П О А О Г І \Sigma M O I ~ T H \Sigma ~ Е . Е . ~ \Lambda ~$ 209
16.2. ПTYXIO ME $\triangle E T H T H$ 210
16.3. EIAIKH OIKO 211

1．ЕIइAГЛГН

 EПЕЕЕРГ

 $\lambda u \mu a ̀ t \omega v$ tnc İpác Movņ் Ayiou Пaú̉ou．
 каІ $\sigma u ́ \mu \varphi \omega v a \mu \varepsilon$ то vó но N4014／2011，TףV KYA 1958／13／1／12 тПV KYA 170225 （135B／27／1／2014） kai tov N1650／1986．

1．1．TítAos épyou

 IEPA乏 MONH亡 AГIOY ПAY＾OY»．

Ta протधıvó $\mu \varepsilon v a$ épүa пері入ацßảvouv：

 єп६६६рүабіас $\lambda u \mu a \dot{т} \omega v$

1.3.1 Өモ்ण

Eıkỏva 1.1: Xáptņ пробavatoגıбиoú

1.3.3.1 £uvtetavमéves Baputikoú avavoú пpooavavís лu

	इuvterayuėvȩ, EГ之A 87	
	X	X
Apx'̇-A. 9	524542,70	4445369,13
A. 8	524525,49	4445360,21
A. 6	524526,84	4445332,60
A. 5	524517,97	4445314,58
A. 4	524509,69	4445297,76
A. 3	524498,70	4445288,93
A. 2	524459,98	4445273,93
A. 1	524429,32	4445262,06
Eiooठoc, ПрокаӨiZnons-A. 0	524408,44	4445238,20

 524402，48 ка। $Y=4445231,70$ ．

	ミuvtetaypėvec ETEA 87	
	X	Y
＇Ȩoठ̃o̧ anó EE＾	524399，17	4445236，87
ミпиعio రıáӨzaņ	524391，95	4445240，34

1．4．Katáта̄ך тоu غ́pyou

 катата́ббоита। σ ：
－ 12 Oиáбॄ६ ка৷
－ 2 Kатпүоріє؟：

> - 1^{n} катпүоріа (A) $\mu \varepsilon$ ठѝo uпокатпүорієц (A1 каı A2) каı
> - 2^{η} катпүоріа (B)

EIAOE EPTOY＇H DPAETHPIOTHTA乏	$\underset{\text { A1 }}{\text { YחOKATHIOPIA }}$	YחOKATHIOPIA	$\underset{\mathrm{B}}{\text { KATHIOPIA }}$	חAPATHPHEEIE
a／a： 19 Еүкатабта́бвı， घп६६६pyaciac aotikळ́v $\lambda u \mu a ́ t w v$ （по்גع $\omega \mathrm{v}$ ка। оікІбนஸ்v）$\mu \varepsilon$ ठıáधとan uүрळ̈v $\sigma \varepsilon$ впічаvеıако́ 	$\Pi \geq 100.000$ І．к．	$\Pi<100.000$ І．к．		П：Movád̄६ऽ Iซoōúva П λ ПӨuбนои்（МіП） a）£uرпарабúpovта। $\mu \varepsilon \pi \eta v$ $\lambda u \mu a ́ t \omega v$（EEN）： －о кеутрікоі апохєтвитікоі aүшүoi єктós oxeठiou поฝєобо $п \dot{\eta} \sigma \varepsilon \omega \mathrm{v}$ ，

тп Өá入aøöa				тоирıбткळ்v घүкатабта́бєшv, к.д.п., бuцпараби̇роитаı апо̀ TIC avtiotorixe браотпріттптея ү) Гіа то єбштеріко́ ठіктио

 1^{η} Kатпүорі́а каı Yтокатпүорі́а A2.

KatátaEn katá ETAKOA 2008 каI NACE Rev. 2

1.5. Фopźaৎ épyou

$\Delta / v o \eta \quad: \quad$ Папáчn 82, Өєбба入оvikn, Т.К. 54453

e-mail : skarageo@gmail.com

2. MH TEXNIKH ПEPI^HயH

3. £YNOПTIKH ПЕРІГРАФН TתN EPГЛN

3.1. Baоıкá отоıхعía غ́pүou

 200 μ.

E.E.A.

TAPAMETPOE		ПАРОУЕA ФАЕH	ФAEH EXEAIAEMOY
	кат.	230,00	300,00
	$\mathrm{m}^{3} / \mathrm{d}$	34,50	45,00
акаӨд́pтшv	$\mathrm{m}^{3} / \mathrm{d}$	51,75	67,50

	$\mathrm{m}^{3} / \mathrm{h}$	2，16	2，81
	$\mathrm{m}^{3} / \mathrm{h}$	7，78	10，11
Eıठıкó Punavtikó 甲optio BOD_{5}	gr／Kar／d	60，00	60，00
Eıбıко́ Puпavtiкó 甲ортіо TSS	$\mathrm{gr} / \mathrm{kat}$	70，00	70，00
Eıठıкó Punavtikó 甲ортіо TN	gr／kat／d	10，00	10，00
Eıठıкó Puпavtikó 甲ортio TP	gr／kat／d	3，00	3，00
	kg／d	13，80	18，00
Фортіо TSS бхعঠıađนой	kg／d	16，10	21，00
Фортіо TN оXहסıабной	kg／d	2，30	3，00
Фортіо TP охहঠıабнои่	kg／d	0，69	0，90

 uфа́бдатос．

Tа катабквиаотıка́ отоıхвіа тои ह́pyou перı入aןßávouv：

 кик久ороріац，

 бัктบ่ou．

3.2.1 Перıүрафі் גеıтоирүіая

 ßı๐ठібк ω v перıтт

 ठıаперато́тŋта UVT 50\％／cm．

aпоßАர்тшv

－Катабкєบє́ц апо́ đкиро́б̄єца $75 \mathrm{~m}^{3}$ ．

Xprion evépyeıas

 49 kWh аитітоіха．
Xoñon xпинкळंv

3．3．2 Побо́тптеৎ апоßлク்тшv

Kんठัıко́ç E．K．А．：19．08．05

Yypá aпо́ß入nta

A д́pıa aпóB入nta

 ठІєủӨuvoŋ avé $\omega \omega \mathrm{V})$ ．

 тіৎ атноофаıрікє́ц оuvӨற்кєऽ．

 вүкатव́oтабŋ．

 عivaı ol ако́лоuӨ६ऽ：

Перıүра甲и்	Xpóvos Aहıтоupyias （h／غ̇тос）							
		CO	NOx	$\mathbf{S O}_{2}$	VOC	PM10	PM2．5	CO_{2}
$\begin{gathered} \text { H/Z } \\ \text { (IOXúc } 18 \\ \text { kVA) } \end{gathered}$	20	1，00	2，65	0，36	0，21	0，20	0，19	258，66

4．Σ TOXO乏 KAI ミKOПIMOTHTA Y＾OПOIH乏H亡 TOY EPГOY－ EYPYTEPE Σ Y $\Sigma X E T I \Sigma E I \Sigma$

4．1．इто́хоя каı бкопиио́тпта

 1108.

 $\mu \varepsilon ̇ \sigma a ~ т о u ~ 180 u ~ a ळ ் v a . ~$

 тпऽ апохદ̇тعữऽ "६про́".

 عрүато́onıтшv.

 плаотıкои่ аүшүои่ бто паракєінєvo ре́на.

4.3.1 Ектіцпоף бuvoגıкои่ проӥпоגоүıбцои่

 бع 551.779,03 Eupळं.

4.3.3 Тро́поৎ хрпиатобо́тпопя

 проүра́циата.

 Opos.

5．โYMBATOTHTA TOY EPГOY ME OE乏MOOETHMENE X PPIKE乏 KAI ПONEOAOMIKE乏 $\triangle E \Sigma M E Y \Sigma E I \Sigma$ TH乏 ПEPIOXH乏

5．1．Oع́oŋ tou દ́pyou

 параквінцvou рغ́дитос，

5．1．1＇Opıa oıкıоцஸ்v

5．1．2＇Opıa проотатєuó $\mu \varepsilon v \omega v$ перıохต̆v

5．1．4．1 Обіко́ ঠіктио

 хшнато́ठроро．

5．1．4．2 Qa\áooies ouvkoivøviakés मeta甲opés

 Iepioбoú каІ Tpuпntís．

5．1．4．3 Діктиа теХVікі́с Үподоип́с Апорріниата

5．1．4．4 Апохह́тधиन

 єп६६६pүaбiaç 入uна́т $\omega \mathrm{v}$ ．

5.1.4.5 Yסовиоп

tou غ́pyou

 ипобัоиळ்v.

5.2.1 ПроßАє́шєıя

 4% avá ठعкаєтіа.

5.2.2 Өєбрико́ каӨєотம்乌

 ГХООАП, ПЕРПО К.т.Л.).

6．ANAЛYTIKH ПЕРІГРАФН ГXEDIA乏MOY TOY EPГOY

 סıáӨとonc．
 524402，48 каI $Y=4445231,70$ ．

 عvepyoú हпıழáveıac $2500 \mathrm{~m}^{2}$ ．

 лица́ттv．

 ठıаперато́тŋта UVT 50\％／cm．

 u甲а́бнатос，

Пivaкас̧ 6．1．Парохモ́ц $\lambda \cup \mu a ́ т \omega v$

ПAPAMETPOE		ПАРОYЕA ФАЕН	ФAEH EXEAIAEMOY
	Kat．	230，00	300，00
	$\mathrm{m}^{3} / \mathrm{d}$	34，50	45，00
акаӨápтшv	m ${ }^{3} / \mathrm{d}$	51，75	67，50
	$\mathrm{m}^{3} / \mathrm{h}$	2，16	2，81

	$\mathrm{m}^{3} / \mathrm{h}$	7，78	10，11
Eıठıкó Puпavtiкó 甲ортіо BOD_{5}	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	60，00	60，00
EIठıко̇ Puпavtıкo่ ¢ортіо TSS	$\mathrm{gr} / \mathrm{Kat}$	70，00	70，00
Eıठıкó Punavtikȯ 甲ортio TN	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	10，00	10，00
Eıठ̈ıкó Puпavtikó 甲ортio TP	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	3，00	3，00
Фортіо BOD_{5} бхеరıабนой	kg／d	13，80	18，00
	kg／d	16，10	21，00
Фортіо TN охعঠıабนои่	kg／d	2，30	3，00
Фортіо TP охદঠıабной	kg／d	0，69	0，90

Пара́нетроя	KYA 5673／400／97	KYA 145116 －Пiv． 2
Апоб́̇ктПऽ	（ $\mu \eta$ عиаїయӨŋтоऽ， апоठ̄غ்ктПऽ）	
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{l})$	≤ 25	≤ 25
COD（mg／l）	≤ 125	≤ 125
Alıpoúneva orepeà（mg／l）	≤ 35	≤ 35
Eschericia Coli（E．coli） （EC／100ml）	＊	

 тоu Ay．＇Opouç（દíठoç ठıáӨをoņ D8）．

 50 Hz ．

 єп६६६pyaciac．

 ка入 $\omega \delta_{1 \omega} \sigma \varepsilon \omega \mathrm{~V}$ ．

－Eछんтеріко́s Фんтібцо́s

－इùotnua үعiшons

6．3．Enıuغ́pou̧ ह́pүa

6．3．1 Kтıpıaкá èpya

 $\mu \eta$ Хavootàбıo.
 2,70 .

 m.

 плர்рпя vitponoinon.

 $\varepsilon \vee т \dot{\partial} \mu \omega \mathrm{v}$.

 єпічáveıac,

 $\lambda u ́ \mu a t a ~ Ө a ~ \varepsilon i v a ı ~ a п o ̀ ~ a v o \xi \varepsilon i ठ \omega т о ~ x a ́ \lambda u ß a . ~$

－பíккоu̧ anó по入uпропu

－Eॄ૬

－Pou入દ ${ }^{\text {áv }}$
－Poठ̇̇̇ฝع̧
－Дакти́入ıoı аб甲алદia̧

 Titley 2014).

 $8 \mathrm{~m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$.

 прокаӨiそ̧попs

6.3.4.4 Anohúnavan

 ठıаперато́тทта UVT 50\%/cm.

 парако入ои̇Өпоп каı $\lambda \varepsilon ı т о и р ү і а ~ н \varepsilon ~ п р \omega т о ́ к о \lambda \lambda а ~ \varepsilon п ı к о ı v \omega v i a c, ~ C A N, ~ E t h e r n e t, ~ U S B, ~ S e r i a l ~(M o d b u s, ~$ TCP/IP, CANopen).

ката入außáveтаı

Ta véa غ́pya перıגацßávouv:

 киклофоріас,

 ठіктบ̇ou.
Фáon 「': Enavenix ω on opuyuátwv avovcỏv

 єкпоvŋӨвi.

 IKAO.

6.4.4 Avayкаía uגıкá катабкєиற่ৎ

- Kaтабкєบモ́ऽ aпó đкuро́ठ̄єца $75 \mathrm{~m}^{3}$.

6．4．6 ПגعováそovTa uגıкá

 uпо入оүіZоvтаı वє періпоu $332 \mathrm{~m}^{3}$ ．

 عiठ̄ouç عpyaøia．

 ठıદúӨuvỡ avé $\mu \omega \mathrm{V}$ ）．

－ 1 Мп६тоViह́pa
－ 1 МпХаیіко́с єкока甲єац，

Mnxávๆua	LWa dBA	Leq/LWa	Eúvodo				$\Delta ı$ ápıııa			dB(A)
			Res.Laeq dBA	Dist. Ratio	Equiv. On-time	Equiv. On-time	Active dur.	Corr. On-time	PNi	
$\begin{aligned} & \text { Eкокафє́a̧ } \\ & 200 \mathrm{~kW} \end{aligned}$	109	Lwa	61.00	4.00	0.32	0.32	8	21.6\%	0.02	54
Фортпүо்$\mu п \varepsilon т о v i \varepsilon ̇ p a ~$	106	Lwa	58.00	4.00	0.32	0.32	8	21.6\%	0.01	51
Avatpenó μ हvo 25Tv 120kw	108	Lwa	60.00	4.00	0.32	0.32	8	21.6\%	0.02	53
Хроиıкй періобоц: 8h										
Combined (Leq): 59 dBA										

 $\mathrm{dB}(\mathrm{A})$ бع anóoтaon 200 m anó то عруoтáधıo.

6.5. Фáoŋ גहıтоupyiaৎ

 парои́бая $\mu \varepsilon \lambda$ غ́tᄁ̧.

Xprion evépyeias

	E.E.A. Ispúc Movtic Ariou Hoúdou						
A/A		Tequigne ou 2arouppia	Eүpareorin μ ivi Iनgéş/reg.	Аторроро́ргуи Iбxöç/reg.		Xpỏvaç גatovpyias	кแะสvอ̈..สำ exépraas
	İparpagif	Tat	kW	kW	kW	h/d	$\mathrm{kWh} / \mathrm{d}$
1	Btod. BaPluibov	1	0,55	0,44	0,44	12	5,3
2	Kıvŋгіррас жерибтрофர்ร Broठiontur	1	1,10	0,88	0.88	24	21,1
3	Avtì α ripioms ßrodiokoiv	1	0,55	0,44	0,44	2	0,9
4		1	0,66	0,53	0,53	12	6,3
5	Avтоцапиоцо̧́	1	0,50	0,50	0,50	24	12,0
6	Фxomouós	1	0,25	0,25	0,25	12	3,0
	EYNOAO					100T	49

Xprion xпuıкळ́v

K ω бıко́ç E.K.A.: 19.08.05

aঠ̌عıоסотпи

 عivaı ol ако̇入оuӨと६：

Періүраяй	Xpóvoç גeıtoupyias， （h／غ்тоৎ）							
		co	NOx	$\mathbf{S O}_{2}$	VOC	PM10	PM2．5	CO_{2}
$\begin{aligned} & H / Z \\ & \text { (I洔c } 18 \\ & \text { kVA) } \end{aligned}$	20	1，00	2，65	0，36	0，21	0，20	0，19	258，66

6．6．Паи́бך גहıтоируіая－aпокатáбтабך

6.6.2 KaӨaipeơך μ óvı $\mu \omega \mathrm{v}$ катаवкєยఱ่v.

 проц аvaкu่к $\lambda \omega \sigma\rceil$.

 anó Tŋv Iعpá Moví.

 п $\lambda \dot{\rho} \rho \omega \varsigma$.

6.7.1.2 Eкठíh ω on пupкаviás

 апагтвіта।.

 $\varepsilon \wedge \varepsilon ү \chi o ́ \mu \varepsilon v o$.

 є६оп入ıб

 عпо́

7．ENAMAAKTIKE $\operatorname{AY\Sigma EI\Sigma ~}$

－η aпо́oтаoŋ anó та u甲ıஏтáueva ктipıa
－η ठонй тои обıкой ঠıкти̇ои

 фúonc，k k п）

7．1．3．1 ГعปIкá

1．ミuotinuata Evepyoủ I λ úos，
i．इuнßатıкó бúбтпиа

3．$\Sigma u ́ \sigma T \eta \mu a \mu \varepsilon \mu ß p a v \dot{v}$（MBR－Membrane－Bio reactor）
4．Перıттрефо́иєvoı ßıо入оүıкоі ठібко।
（7）Фuaाká इuotŕuata

3．ミuotíuata Eпı甲aveıaки่ऽ Pon่я

i．Үүроßıо்топоו впıчаvвıакйऽ pońs（FWS）
ii．Үүроßıо́топоו катако́ри甲пя poウ́я（SFS）

7．1．3．2 इúotnua evepvoú IAúos

ミuußatikó đúotnua evepyoú ıגủos

 кávovtaç an入oúoтepo то бúotпиа．

 aпо́ то бúбтпиа．

Anopákpuvón BOD_{5} (\%)	Opyavikì фо́ртї́n $\left(\mathrm{KgBOD}_{5} / \mathrm{kg}\right.$ ıגúoç $\eta \mu$ ह̇pa)	$\begin{gathered} \text { Оукорєтрікй } \\ \text { фо́ртіоŋ } \\ \left(\text { KgBOD }_{5} / \mathrm{m}^{3}\right. \\ \eta \mu \varepsilon \dot{\rho a}) \end{gathered}$	Aváuıкто uypó MLSS (mg/lt)	Xpóvos Парарогท்s (hr)	Avaкuкגочоріа ıגúos	Xpóvoç Параногท்¢ ı λ úos ($п \mu \varepsilon \dot{\rho} \varepsilon \varsigma$)
85-95	0.2-0.4	0.3-0.6	1500-3000	4-8	0.25-0.50	5-15

 хацплои் фортіои.

 BOD_{5} (85-95\%).

 ı̀u̇oc．

 тágとんц тои 10\％）．

ミúgTnua паратвाанغ̇vou aعpıouoủ

 عпाтєuxӨzi каı апоviтропоі市ๆ．

 паратвтаиغ்vou aعрıбนоu่．

Aпоцáкриуơn BOD_{5}（\％）	Opyaviкท่ фо́ртї́ （KgBOD $5 / \mathrm{kg}$ 		$\begin{aligned} & \text { Aváцıкто } \\ & \text { UYpó } \\ & \text { MLSS } \\ & \text { (mg/It) } \end{aligned}$	Xpóvoç Параноvท่я （hr）	Avaкик入очоріа ıגủoç	Xpóvos Парарогท่я idủos （ $п \mu \varepsilon \dot{\rho} \rho \varepsilon$ ）
85－95	0．05－0．15	0．16－0．4	3000－6000	18－36	0．95－1．50	20－30

 ض́ нгбаіася к入інакас．

\checkmark Nitponoinon $\lambda u \mu a ́ t \omega v$.

 тоu $\mu \varepsilon ү$ व̀خou Xpóvou aعpıбノoủ．

 паратвтане́vои аहрıюнои́．

 каı aпоца́криvoŋ тои аद̆ف்тои．

 тךऽ vitponoinonc．

 ı入úos，

 прєціац отоv пиӨんદ̇va．

 ı λ úos．

$\Theta c=300 / T$ $\eta \mu \varepsilon \rho$.

 náxuvon．
 عva入入acoóuहvตv \erroupyí̀iv．

Апора́криvón BOD 5 （\％）		$\begin{aligned} & \text { Оүкоиєтрікй } \\ & \text { фо́ртıоŋ } \\ & \text { 9KgBOD }_{5} / \mathrm{m}^{3} \\ & \eta \mu \dot{\varepsilon} \rho a) \end{aligned}$	Aváцıкто uypo MLSS （ $\mathrm{mg} / \mathrm{It}$ ）	Xpóvoş Параиоvìs （hr）	Avaкиклочоріа ıAủos	Xpóvos Параиогท่я ıגủos （прغ்рعৎ）
85－95	0．05－0．30	0．08－0．24	1500－5000	12－50	－	－

\checkmark Мıкрท́ anarтoú $\mu \varepsilon v \eta ~ \varepsilon ̇ к т а o ŋ . ~$

 єпаvакиклороріац каı то аvтлıота́бıо впаvакиклочоріая，
 аитонатоповітв．
甲ортішv．

7．1．3．3 玉úornua almpoúnevou Bıo\ovikoú ¢ilu（MBBR－Moving Bed Bio Reactor）

 воорілл.

 avє $\boldsymbol{\text { п }}$

 (Rusten et al., "Upgrading to nitrogen removal with KMT moving bed biofilm process", Water Science

 Өгриокрабіа ото вйроц， $10-20^{\circ} \mathrm{C}$ ．

Anopákpuvön BOD_{5}（\％）	Opyaviкí甲óprión （KgBOD ${ }_{5} / \mathrm{kg}$ ı λ u̇oç $\eta \mu$ ह̇pa）		$\begin{gathered} \text { Avápıктo } \\ \text { uypó } \\ \text { MLSS } \\ \text { (mg/It) } \end{gathered}$	Xpóvos Парацогท่ऽ （hr）	Avaкиклочоріа ıגủos	Xpóvos Параиогท்’ ıAúoç （ $п \mu \varepsilon \rho \varepsilon \varepsilon$ ）
85－97	0，05－0，3	－	2－10．000	0．25－1．5	0．95－1．50	20－30

\checkmark Хацплй параүшүウ் ı λ v̇os．

 ठıax ω рıб

 ı入úoş عivaı ta кáт $\omega \theta$ ו：

 $\mu \varepsilon ̇ у \varepsilon Ө$ ос．

 $\mu \varepsilon$ avt λ ıобтáのіо．

Парáнетро̧，	Tıй	－ııрүacia nou anaıteitaı
Өоло́тпта	＜ 1 NTU	
Ano\úuaovn	＞LRV 5	
BOD	$<5 \mathrm{mg} / \mathrm{l}$	
А $\mu \mu \omega$ viaka $\left[\mathrm{NH}_{4}\right]$	＜ $1 \mathrm{mg} / \mathrm{l}$	
Одıко̇ àそんто	$<5 \mathrm{mg} / \mathrm{l}$	$\mu \varepsilon \mu ß p a v \omega ่ v$
Оגıко́s фш்бчороऽ	$<1 \mathrm{mg} / \mathrm{l}$	

Anopáкриvön BOD_{5} (\%)	Opyavikí фо́ртїп (KgBOD ${ }_{5} / \mathrm{kg}$ เ λ u̇oç $\eta \mu$ ह̇pa)		Avápıкто uypó MLSS ($\mathrm{mg} / \mathrm{lt}$)	Xpóvos Парацо⿱宀่я (hr)	Avaкиклочоріа ıגủos	Xpóvos Параиоvì iAúos ($\eta \mu \varepsilon \dot{\rho} \varepsilon \varsigma)$
95-99	0,02-0,06	0,2-0,4	5-15.000	6-30	3-5	20-50

Tクऽ عvepyoú ı λ úos，

 हvто́ $\mu \omega \mathrm{v}$ ．

 m^{2} عпı甲áveıaç．

 нккрп்.

Enin¢ठо Enє弓¢pyaoiac		
$\triangle \varepsilon u \tau \varepsilon \rho о \beta a ́ \theta \mu ı o ~$	$\triangle \varepsilon \cup т \varepsilon \rho о \beta \dot{\theta} \theta \mu І о \boldsymbol{\mu}$ таито́хроvп vाтропоіпоп	$\Delta \varepsilon \cup т \varepsilon \rho о \beta \dot{\theta} \theta \mu \circ \frac{\mu \varepsilon}{}$ viтропоіпоп ов

Үбраилıк் Фо́рт।оп $\left(m^{3} / m^{2} d\right)$	0．08－0．16	0．03－0．08	0．04－0．1
Oруаviкл் ¢о́ртібп			
－Kg SBOD ${ }_{5} / m^{3}$ d	0．003－0．01	0．002－0．007	0．0005－0．001
－Kg $\mathrm{TBOD}_{5} / \mathrm{m}^{3} d$	0．01－0．017	0．007－0．015	0．001－0．003
Мغ́уוатп Oруаиікウ் чо́ртіоп бто прळ̈то бтд்бוо			
－Kg SBOD $5 / m^{3} d$	0．02－0．03	0．02－0．03	
－Kg TBOD ${ }_{5} / m^{3} d$	0．04－0．06	0．04－0．06	
Фо́ртіоп анرんviac（ Kg SBODs／m $/ \mathrm{m}^{3}$ d）		0．0007－0．0015	0．001－0．002
	0．7－1．5	1．5－4	1．2－2．9
	15－30	7－15	7－15
		＜2	1－2

\checkmark Ап入о́тпта 入єाтоuppiac．

\checkmark Y $¥ \eta \lambda$ ń anouákpuvon opyaviкоú фортiou．

 орүаvікои่ фортіои．

 ठїк $\omega \mathrm{v}$ ．
＊Про́ßスпиа обнஸ்v．
 oxहס̈ıaбนంu่．

7．1．4 Фuōкá ouotìuata

7.1.4.1 ミиотńиата Bрабвіас Eрариоуп́s

 $\mu п о р о u ̉ v ~ v a ~ к а т а т а х Ө о u ́ v ~ \sigma \varepsilon ~ т р \varepsilon ı \varsigma ~ к u ̉ p ı ६ \varsigma ~ к а т \eta ү о р і є \varsigma, ~$

 єфариоүп்я.

 ßacikoús тúnouc:

 тоछॄкоப่.

	ミvatíuata Bpaďiaç eqa．puoүís		
	Арঠвvб吅	$\Delta t \eta \dot{\square} \\| \sigma \eta$ S	
TеגVıкй в¢ариожи́s	$\mu \varepsilon ́ \theta o \delta o t$	Karđuovioúóç ท́ emıq๙veıakéç $\mu \varepsilon ́ \theta o \delta o l$	
	0．60－2．00	1．70－6．00	
（ $\sigma \rho, / I 0^{3} m^{3} d$ ）	170－550	56－200	
Фитікй $\beta \lambda \dot{\alpha} \sigma \tau \eta \sigma \eta$	Алоитвíta	Алоитеí\％a	

 ß 人áotnonc．

 ка入入ıв́рүвıа¢，

Ta кúpıa $\mu \varepsilon ı о \varepsilon \varepsilon к т \dot{\mu} \mu a t a ~ a p o p o u ́ v ~ t \eta v: ~$

 бıако́пттвтаı үıа 6－20 пиц்рєऽ．

Пара́нетроя，	Фópтїп （Kg／orp．ท म）	Ba日uós anóōooņs (\%)	Паратпрウ̇беıя
BOD ${ }_{5}$	4．50－18．0	86－100	
	0．33－4．10	10－93	Е६̆apтáтaı aпó： －To عпіпहठо провпєछॄрүабіая －Tqv ava入oyia BOD／N －Tov kùkגo גहוтоupyias －To uб́pau入ıкó 甲ортіо
ФНШ甲ópos	0．11－1．34	29－99	є६арта́таı апо́ то μ п́кос тпऽ бІабронйя

Ко入оßактпрıвıо́ท	2－6 甲орغ่ऽ	H anopáкрuvõ бхєтіदєтаı：

 ßраб̄вiac є甲ариоүท่я．

7．1．4．3 £иоти́иата Eniqaveiakíc Poris

غ̇хદ1:

 kal:

7.1.4.4 TEXVпtoi Yуровіо́топо!

 (фuтá tou үह́vouç Typha).

 фибікої иүроßıт́топоі.

 Өрептіка́ каі фитофа́риака.

Mnxaviouoi anouákpuvơns twv pún ωv oe Texvntoúc uypoßiótonous

 T $\omega \mathrm{V}$ рún $\omega \mathrm{V}$.

 avoگ̆кદ่ऽ бuvӨŋ்кєৎ.

 апहえعuӨعрळ́vहтаı Іо́vта a $\mu \mu \omega \mathrm{viou}\left(\mathrm{NH}_{4}{ }^{+}\right)$.

 єпıтиүхávยтаı бє μ ккро́тєро ßаӨно́.

Yypoßıóтопоו धпіраvеіакйs pońs (FWS)

 ß入áotnonc.

 отер ω v.

Yypoßıótonol katakópupns pońs (SWS)

\checkmark ^óy тоu бхहסıaन

 uүроßıо́топшv．
 орүаviкой фортіои

	Movãorç		Evírıua SFS
	$\eta \mu \varepsilon ¢^{\prime} \varepsilon_{\zeta}$	5－14	5－14
Bátoç vepoú	m	0．1－0．5	0．3－0．8
Opүovıкí ¢о́ртітт	kgBOD／бrp．d	8	8
	$\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}$	0．01－0．06	0．01－0．06
	$\sigma \tau \rho / \mathrm{m}^{3}$ ． d	0．02－0．14	0．02－0．14
	－	2：1－10：1	<1
Eえeryoç коuvovalóv	－	Aлоитеíaı	$\triangle \varepsilon v$ arauteitou
$\beta \lambda \alpha \alpha_{\sigma} \tau \eta \sigma \mid \varsigma$	yr	3－5	1－2

 aı

1．Aعрóßıa（ $\mu \eta$ aعpı̧̧́ $\mu \varepsilon v a)$ ，
2．аعро́ßıa（аعрıそ̧ő $\mu \varepsilon v a)$ ，ка।

 $\lambda \varepsilon$ лтоupүウ்oouv $\mu \varepsilon$ uчп入á орүаviкá фортіа．

 tóvouc．
 घпıплह̇ovta 甲uтд́．

Пара́рвтроı				
	B^{\prime} Báधuıo аєро́ßıо	B＇$^{\prime}$ Bá $\theta \mu ı o$ aعрıそ̆ддиєvo	Аеро́ßıая Апона́криvапя （xwpis аврıоцо́）	इиотர்иата $\mu \varepsilon$ читд் Lemnaceae
Toлıкג́ крıtipıa $\sigma_{\chi \varepsilon \delta ı а \sigma \mu о и ́ ~}^{\prime}$				
Anaitnon Провпе६६руаоіая	Eoxápoon í KäiZ̆́n	Eoxápoon í KaөiZnom	$B^{\prime} \beta$ à̇ ${ }^{\text {a }}$	Ekpon் anó єпанротеріъоибєя，入iuves，
$\begin{aligned} & B O D_{5} \text { घIOÓठOU } \\ & (\mathrm{mg} / \mathrm{lt}) \end{aligned}$	130－180	130－180	30	40
Opyaviкí фо́ртоп（Kg BOD $5 /$／णा（ ${ }^{\text {d }}$ ）	4．5－9．0	16．8－33．6	1．12－4．50	2．24－3．36
Bó̇os vepoú（m）	0．5－1．0	1．0－1．22	0．6－1．0	1．22－1．83

xpóvos параноvĭs（d）	10－36	4－8	6－18	20－25
YбраиАıко́ 甲орті○ （ $m^{3} / m^{2} d$ ）	$\begin{gathered} 0.019- \\ 0.056 \end{gathered}$	0．094－0．28	0．037－0．15	0．056－0．084
Өериократі́a лица́т（ $\omega v\left({ }^{\circ} C\right)$	＞10	＞10	＞10	＞7
Про́үраниа оичкоиибі́द	Enoxiakń $\dot{\varepsilon} \omega \varsigma$ हтர்ゥa	$\Delta \dot{\circ} 0$ 甲орદ்ऽ To $\mu \dot{\mathrm{I} v a} \mathrm{\varepsilon} \omega \varsigma$, ouvex ω ç	$\Delta \dot{u} 0$ 甲орغ̧́ то ouvexต́c，	μ пviaia
Avauevóuevn поо́тпта вкроѓя				
$\begin{aligned} & \text { BODs } \varepsilon ו \sigma \dot{\partial} \sigma o u \\ & (\mathrm{mg} / \mathrm{lt}) \end{aligned}$	＜20	＜15	＜10	＜30
SS（mg／t）	<20	<15	<10	＜30
TN（mg／t）	＜15	<15	＜ 5	＜15
TP（mg／t）	＜6	＜1－6	＜2－5	＜6

\checkmark То хацпло் ко́отоৎ катабквиர்ऽ．

※ ПіӨavó про́ß入пиа обн由́v каı عvтó $\mu \omega \mathrm{v}$ ．

 тои апо́ß入птои отп $\lambda i \mu v \eta$ ．

Ta плєоvєктท่ $\mu a t a ~ T \omega v ~ т \varepsilon \chi v \eta т \omega ் v ~ \lambda ı \mu v \omega ่ v ~ \varepsilon i v a l: ~$

\checkmark То хацп入ó 入єıтоирүіко́ ко́бтоऽ，

7．1．5．1 ГЕИाк

 апоర̄́̇ктє¢）

 каı 甲 $\omega \sigma$ о́рои．

Enavaxpnoıuonoinon yıa ápठ̄عuan

 пробıаүра甲ய்v тпऽ KYA 5673/400/1997.

 про́бßаoŋ.

 $\mu \varepsilon \mu \varepsilon \mu ß \rho a ́ v \varepsilon \varsigma)$ каı anoגú $\mu a v o \eta$.

 апоррочптікой ßо́Өрои．

 каӨ⿳亠二口я：

－Eivaı пробßáवııク aпо́ охர்цата каı проошпıко́，$\mu \varepsilon ̇ \sigma \omega ~ v \varepsilon о a v o ı x Ө \varepsilon i \sigma a c ̧ ~ о б ̄ о u ́ ~$

 норфолоүіа．

votiooúutiká the I．Movñc（ENAA，OEEH 1）．

 апо́ тоuऽ X Х

ミuußatiká ouotńuata evepvoú i入úoc \＆пapatetauévou aعpiouoú

 عпıßápuvon.

 отаठіं $\omega \mathrm{V}$ عп६६६pyaбiac

 عпıßápuvon.

 auद̆ảvouv touç kivठ̄úvouç ox入ṅбઘ

ミúornua aı ω poúusvou Bıoגoyıkoú pi $\lambda \mu$ (MBBR-Moving Bed Bio Reactor)

 Reactor), λ óy ω :

 ยпıß́puvon.

－тпऽ $\sigma u v \grave{\theta}$－

¿úornua $\varepsilon п \varepsilon \xi \varepsilon p y a o i a c ~ \mu \varepsilon \mu \varepsilon \mu$ Bpávec（MBR－Membrane Bio Reactor）

 ло́үш：

 عva入入актіка́ биотŋ்цата．

 عпıßàpuvō．

－$\varepsilon \mu \varphi a ́ v i \sigma \eta \varsigma ~ п \rho о \beta \lambda п \mu a ́ т \omega v ~ о \sigma \mu \dot{v}$ ，вvто́ $\omega \omega$ v．

 tous.

 TOUC.

TExvnTE่s Niuves otaOeponoinons

 Touc.

- uчף
- $\varepsilon \mu \varphi a ́ v i \sigma \eta \varsigma ~ п р о \beta \lambda п \mu a ́ т \omega v ~ o \sigma \mu \omega ் v, ~ \varepsilon v т о ́ \mu \omega v . ~$

 отŋ้ перıохウ่．
 то хро́vo）
 нıкро́ßıa тшv $\lambda u \mu a ́ t \omega v$ ．

 $\varepsilon \mu п \lambda о и т เ ซ \mu о ́ ¢ ~ и п о ́ ү \varepsilon ו O u ~ \cup ठ ̄ р о ф о р \varepsilon ́ a) . ~$

 گんグட，к．入．п．）．

 عvغ̇pүદiac）．

 غ́pyou．Ol кupıȯтepȩ anó autés عivaı：

 ठuvatótクтєৎ ع $\lambda \varepsilon \dot{Y X O U ~}$

 браотпріо́тŋтея．
 $\lambda \varepsilon \kappa a ́ v \eta$ ．
 uठ́àт ω v

 uппребієя

 E1ß／221／65．

oтo параквіuعvo рघ́ua.

 пะрıாтஸ்бદı,

8．YФİTAMENH KATA乏TA乏H חEPIBAMMONTO乏

 $\mu \varepsilon$ T $\eta \vee$ YA 5980／16－10－1965－ФЕК 714／B／29－10－1965．

 غ்ктабп каı фибікй $\beta \lambda$ áoтпоп．

 aкó\ouӨŋ $\boldsymbol{\varepsilon ı к o ́ v a . ~}$

8.1.2 इпиعıaкó દ̇рүо

8.1.3 Katnүopia غ̇pyou

8.1.4 Проотатєuóиєvๆ пєрıохŋ்

8.1.5 Үүротопик门் перıохй

 tou $A \theta \omega$.

8.2. КДıнато৯оуıка́ каı 乃ıокДıнатıка́ характпрıотıка́

 Нпеוр $\omega т$ тіко்-Мєбєирюпаїко́.

 avغ̇рхモтаı $\sigma \varepsilon 16-17^{\circ} \mathrm{C}$ ．

$\begin{array}{\|l\|} \hline \text { Пعріобося } \\ 1978-2004 \\ \hline \end{array}$	Xарактпріотıкळ்v			
Mrivas	Өериокрабіа （ ${ }^{\circ} \mathrm{C}$ ）	＇Үчоऽ Bpoxńs	ミxモтıкグ uypaơia aย́pos	$\begin{aligned} & \text { Ȩ́áтиıon } \\ & \text { (mm) } \end{aligned}$
Iavouápios，	2，6	47	85	21
ФЕßpouápıos	3，4	55	83	21
Ма́ртіо，	6，5	50	80	34
Апрілıоя	11，0	51	73	51
Máıos，	16，2	50	71	59
Ioúvios，	20，9	41	66	76
Ioúdios，	22，9	54	65	84
Aúyouotos，	22，3	38	67	SO
¿єпте்иßрı¢，	18，6	31	72	63
Октӹßрıя，	13，3	56	80	40

Noદ́यßpıos，	7，6	84	85	20
$\Delta \varepsilon к \varepsilon ่ \mu ß р і о \varsigma ~$	4，7	90	86	23
Mėoŋn（o入ıkท̇）	12，5	649	76	568

8．3．Морфолоүıка́ каı топıоћоүıка́ характпрıотıка́

8．3．1 Катаүра甲й топiou ava甲opác，

8．3．2 Eupwnaïкฑ் бú μ ßaoŋ топiou

 проотатви่єтаı апо́ autó.

 tou $A \theta \omega$.

8．4．1 ГЕшлоүıка́ характпріотıка́

Rh：Máça चns Pṓóras．

Пavoviaç Pa：Zöon חlókoou，Al：Ziovn

Pk：Zovi Пapvaooou－－「kiovas，
P：Zoum Пliveou，

I：lonoç לovn．

 O＾OKAINO）

 IOYPAEIKO）

 TPIAAIKO）

12．Мвта入入віа．

8．4．2 ЕбаяоМоүıка́ характтріотıка́

 бто＇Аүıо＇Орос（I．Г．M．E．1978，Nта́甲ク̧̧ к．á 1999）．

IZпиатоуEvn่ петрळ́иата

＇Eठа甲os

 Маүнатікท்ऽ бعıрás Хортіа́тŋ．
ej：A入入оиßıака́ рıпіठıа ठıачоретıкп̆я п入ıкіая，

 орос 'A ${ }^{\prime}$.

 1:50.000)

8.4.3 Тектоуıка́ Xарактпроотıка́

 oxદ̇ఠๆ:

$$
A=\mathbf{a} \cdot \mathbf{g}
$$

'Onou: \quad g: єпıтáxuvon ßapúтŋтаৎ каı

8．5．Фuбıкó перıß்́MIov

8．5．1 「eviká otoryeia

X $\lambda \omega$ piog

AпЕı入oúuzva kaı проотateuóuzva عiön

 （Мпацпа入ف̀vaç 1998）．

\mathbf{a} / \mathbf{a}		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii			V	
4	Asperula aristata ssp．thessala		X		
5	Astragalus thracicus ssp．monochorum		X		
6	Atropa belladona	r			$\mathrm{A} \Delta$
7	Aubrieta erubescens			R	

8	Beta nana		X	R	
9	Campanula lavrensis		X		
10	Centaurea pannosa		X		A
11	Centaurea peucedanifolia	A			A
12	Cephalanthera longifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		A \triangle
15	Fritillaria euboeica		X	R	
16	Fritillaria graeca		X		A \triangle
17	Helichrysum sibthorpii			V	
18	Hypericum athoum		X		
19	Isatis tinctoria ssp. athoa		x		A \triangle
20	Limodorum abortivum	B			A
21	Linum leucanthum		X		
22	Linum olympicum ssp. athoum		X		
23	Neotinea maculata	B			
24	Neottia nidus-avis	B			
25	Polygonum icaricum		X		A
26	Silene echinosperma		X		
27	Silene multicaulis ssp. genistifolia		X		
28	Silene orphanidis	A		V	
29	Viola athois		X		A \triangle

 Провбрıко் ठıа́таүна 67/80.
2. Evōnиıко́, Naı: x.
 عiठ̄os [(V)], A5: ¿návio عiōoc (R).
4. Апаvт к.à. (1998)

Пaviס́g

 oтףv aváka $\mu \boldsymbol{\eta}$ тоu عiठ̄ouc.

 пропүоúpغvๆ пара́урачо.

EIIIKA XAPAKTHPI XEPEONHEO AOS

- Өaرvต่ve¢ $\mu \varepsilon$ Laurus nobilis 5230

- Фpúyava Sarcopoterium spinosum 5420
- Aбßєбтои́xoı a入пıкоі $\lambda \varepsilon ı \mu \omega ் v \varepsilon \varsigma ~ 6170 ~$

- E E
- Δ áon o ξ lás $\mu \varepsilon$ Quercus frainetto 92805 B B A A

- $\quad \Delta a ́ o \eta \eta \varepsilon$ Quercus brochyphylla ơףท Kрíтп 9310
- $\Delta a ́ \sigma \eta \mu \varepsilon$ Quercus ilexl 934025 A B A B
- Δ áon $\mu \varepsilon$ Quercus macrolepis 9350
 Pinus mugo kaı Pinus leucodermis 7 B C B B

(avapopá oтпv паракàть 入íта):

Eiön Bláotnons

Abies borisii-regis (Макєठоvıкó ह̇лато)
Abies cephalonica
Acinos alpinus nomismophyllus

Aethionema orbiculatum
Allium quttatum sardoum
Allium moschatum
Allium chamaespathum
Alyssoides utriculata

Anthemis sibthorpii
Anthyllis montana jacquinii
Anthyllis vulneraria pulchella
Arabis brvoides
Arctostaphylos uva－ursi（Арктоотáрилос）
Arenaria biflora
Asperula aristata nestia
Asperula suberosa
Astragalus thracicus monachorum
Atropa bella－dorma
Aubrieta erubescens
Aurinia corymbosa
Beta nana
Berberis cretica（Bepßepis η кр $\boldsymbol{\eta}$ тікウ́）
Bromus cappadocicus cappadocicus
Buxus sempervirens（Пu૬̆óc）
Calamintha hirta
Campanula albanica sancta
Campanula chalcidica
Campanula lavrensis
Campanula orphanidea
Centaurea athoa athoa
Centaurea chalcidicaea
Centaurea huliakii
Centaurea pannosa
Centaurea peucedanifolia
Cephalaria flava flava
Cephalanthera Iongifolia
Cephalanthera damasonium
Cerastium banaticum speciosum

Colchicum doerfleri
Convallaria maialis
Coronilla varia
Corydalis integra
Crepis athoa
Cruciata glabra
Cruciata pedemontana
Cyclamen graecum graecum
Cyclamen persicum
Danthonia alpina
Delphinium fissum
Dianthus gracilis gracilis
Dianthus pinifolius pinifolius
Dianthus stefanoffii
Digitalis leucophaea
Erysimum calycinum
Erysimum drenowskii
Euphorbia amygdaloides amygdaloides
Euphorbia deflexa
Festucopsis sancta
Fritillaria euboeica
Fritillaria graeca
Fumana procumbens（Фounáva η ह́pnoưa）
Gagea bohemica
Gagea pusilla
Gagea villosa
Galium asparaqifolium
Galium demissum
Galium incanum incanum
Galium insularae
Galium pycnotrichum
Genista lydia（Гعviota Tクऽ＾uठ̄iac）
Geocarvum capillifolium
Globularia bisnagarica
Helianthemum nitidum（HㅅávӨを $\mu \mathrm{O}$ ）
Helichrysum sibthorpii

Heracleum sphondylium ternatum
Hypericum athoum
Hypericum cerastoides
Hypericum montbretii
Hypericum rumeliacum rumeliacum
Hypericum vesiculosum
Isatis tinctoria athoa
Juniperus communis hemisphaerica（Bouvóк\＆ठ̄ро то пиıб甲аıрıко்）
Juniperus foetidissima（Bouvokunápıббо）
Linum elegans
Linum olvmpicum athoum
Matthiola fruticulosa valesiaca
Melica nutans
Neotinea maculata
Neottia nidus－avis Onosma paradoxum
Ophioglossum vulgatum
Orobanche purpurea
Qrthilia secunda
Paeonia peregrina
Platanthera bifolia
Platanthera chlorantha
Phyllitis scolopendrium
Pimpinella tragium polyclada
Pinus brutia（Tpaxघia пعúkn）
Pinus nigra pallasiana（Avaтоגıó μ aupónєuко）
Poa compressa
Poa hybrida
Poa thessala
Polygala nicaeensis mediterranea
Potentilla speciosa
Pterocephalus perrenis perrenis
Rhamnus saxatilis prunifolius（Pá $\mu v o \varsigma$ о п пpouvóqu λ hoc）
Polygonum icaricum
Rosa villosa（AvpıotoıavtaФu入入ıá η трıхळтர்）
Satureia parnassica athoa
Saxifraga juniperifolia sancta
Saxifraga sempervivum
Scorzonera cana
Sedum cepaea
Sedum grisebachii grisebachii
Sedum reflexum
Sideritis perfoliata athoa
Silene compacta
Silene flavescens thessalonica
Silene multicaulis genistifolia
Silene orphanidis
Silene vulgaris prostrata

Sorbus aucuparia aucuparia（Aypıooopßıá）
Sorbus chamaemespilus（Xaцаıцغ̇onı入oc）
Sorbus umbellata（Мıкрர் aonиоборбঠı́）
Stachvs leucoglossa
Taxus baccata（＇ITquoc）
Tephroseris integrifolia aucher
Teucrium divaricatum athoum
Thymus praecox iankae
Thymus thracicus
Vaccinium mvitillus（Baккivıo o μ úpтı入入ос）
Veronica barrelieri
Valeriana alliarifolia
Veronica chamaedrys chamaedrys
Veronica officinalis
Vicia cracca stenophylla
Viola arvensis
Viola athois
Viola delphinantha
Viola orphanidis orphanidis
Viola reichenbachiana
Viola sieheana
Eiōn Onגaotıкஸ்v
Canis lupus（＾úkoc）
Sus scrofa（Aypioyoúpouvo）
Mustela nivalis
Felis silvestris
Capreolus capreolus
Eiōn Auøıßicuv

Bombina variegata

Triturus karelinii

Triturus alpestris

Eiōn عのпยт由்v

Podarcis muralis
Lacerta viridis
Testudo graeca
Testudo hermanni

Eiōn opviOonaviöas

Accipiter brevipes（ $\Sigma a i ̈ v i)$
Accipiter nisus nisus（Тбıxлоүध́рако）
Apus melba melba（ Σ кєтІарvác）
Aquila chrysaetos chrysaetos（Xpuøaعтóc）
Bubo bubo bubo（Mпоú甲oc）
Buteo buteo buteo（Гعракiva）
Caprimulqus europaeus（Гuठ̄oßuZ̆áx̃pa）
Ciconia nigra（Maupone入apyóc）
Circaetus gallicus（Фוס̄aहтóc）
Columba livia livia（Aүpıопєріотєро）
Corvus corax corax（Ко́ракас）
Delichon urbica urbica（ Σ пıтохモえī́ovo）

Erithacus rubecula rubecula（Kokkivoגainnc）
Falco eleonorae（Maupoпहтрітпऽ）
Fringilla coelebs coelebs（Enivoc）
Garrulus glandarius atricapillus（Kiaøa $\mu a u p o \kappa \varepsilon \dot{\varepsilon} \varphi \lambda \eta$ ）
Hieraaetus fasciatus（ $\sum \mathrm{m} _$Z，
Lullula arborea arborea（ $\Delta \varepsilon v \tau \rho о \sigma т a p \grave{\theta} \Theta \mathrm{pa}$ ）
Phalacrocorax aristotelis（ $Ө \mathrm{a} \lambda а \sigma \sigma о к о ́ p a к а \varsigma) ~(~) ~$
Tetrao urogallus（Aүpıoкoupvóc）

92／43／EOK

1410 Мعбоүદוакá a入inをठ̄a（Juncetalia maritimi）－OXI

2220 Oivec $\mu \varepsilon$ Euphorbia terracina－OXI

92A0 Σ тоદ́ৎ $\mu \varepsilon$ Salix alba kaı Populus alba－OXI

 m．

 ६и入ока́рßouva．

 kדтá touc Ntá甲n K.q. (2001).

8.5.3.1 Xарактп́pas tnc ह́ктаопп tou ह́pvou

 пaviठ̄aç η x $\lambda \omega$ рiठ̄ac,

8.6.1.1 Y甲וणтánevec xoriaeic vns

 uпа́pxouv тонвіс параүшүıко்тๆтас,

 Xалкıб̈ıкп̆ऽ.

8.6.2.1 Характпріотіка́ по́лєшv каו оוкібны́v

 'Opouc eivaı hovaxoi.

 Movì.

8.6.2.2 Пооотатعиóuعva тип́йата

 10-1965.

 غ́Xouv.

8.6.3 Поגıтотикп் кגпроvориа́

¿то Ayıov 'Opoç oǹ

 $\mu \varepsilon ் \sigma a ~ т о и ~ 180 u ~ a ø ் v a . ~$

8.6.3.1 Apxalolovikoi xஸ́pol - ZÚves

 Ayiou 「हрабipou，tou Ayiou Nıko久áou，tou Ayiou 「pnyopiou tou Өro久óyou kaı twv Ayiwv
 onoi $\omega \mathrm{v}$ ，tou Ayiou Tpúp ω vos，orouc kn่поus，tou Ayiou $\Delta \eta \mu \eta$ трiou orov apoavà，ths

 714／B／29－10－1965．

8．7．Коıv曰vıко́ каı оוкоvонıко́ перıßáגлоv

8．7．1 Апроүрачикй ката́отаоп

 Ayiou＇Opouc．

 TIৎ Iદpȩ́ Movȩ́,

8.7.2.1 Параушуикоі тоиві'

$\Delta \varepsilon v$ uпápxouv параүшүıкоі тонвіс,

$\Delta \varepsilon v$ uпápxouv параүшүıкоі тонвіс,

8.8.1 Үпобоиц்я нєтафорஸ்у

 $\Delta \varepsilon v$ unápxouv ठikтua $\Delta E H$.

Ta ठ̈iктua úठр

 тПv ठठaßi ω on T $\omega \mathrm{v} \mu$ оvaxढ̈v.

Характпрıодо́я púnavans		$\begin{gathered} \text { Kanvóc } \\ (24 \omega \rho \varepsilon G \\ \left.T H E \check{C}, \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	$\mu \mathrm{g} / \mathrm{m}^{3}$)	O_{3} (ω plaies тן $\mu \dot{\varepsilon} \varsigma, \mu \mathrm{g} / \mathrm{m}^{3}$)	
Хаиク入á	<15	<250	<200	<180	<200

Mह̇трıa	$>15 \leq 20$	$>250 \leq 275$	$>200 \leq 250$	$>180 \leq 250$	$>200 \leq 350$
Yчף入á	$>20 \leq 25$	$>275 \leq 300$	$>250 \leq 300$	$>250 \leq 360$	$>350 \leq 500$
По入ú uчク入á	>25	>300	>300	>360	>500

8．10．1 Kủpıє̧ пワүモ̧̇ pu̇ncv

8．11．Акочотıко́ перıßáגМоv каı боvฑ்бвıя

 латрєитוкє́，к．ג．п．）．

перıßа́入лоитоя

 піvака тои ápӨрои 2 пар． 5 тои П．Δ ．1180／81（ФЕК－293 А＇）．

a／a	Перıохঢ்（хрウ்णワ үワ¢）	Avต்тато ópıo Өopúßou oe dBA
1		70
2	вıоипхаviкó	65
3	 	55
4		50

5 Катокієऽ пои ßрібкоитаı бє єпаюท่

 Өо́pußo．

8．12．НАєктронаүvптıка́ пеठі́a

 $\eta \lambda \varepsilon к т р о \mu a ү v \eta т$ ткп̧́ актıvoßo入iac．$\Delta \varepsilon v$ uпápXouv ठїктua $\Delta E H$ ．

uпóßa日pou

8．13．＇Үбата

¿то Aүıo＇Opos סॄv anavtoủv потa

 $\lambda \dot{\prime} \mu$ ата．

8．13．2 Enı甲aveıaká úठ̄ata

8．13．2．1 Періура甲ர́ ибооурафікои́ бікти́ои

 апобт раүүіद६ı тпр перıохウ่．

－Yס́peuon
－Apס̄عưп

 oтŋ२ катаvà $\lambda \omega$ ón μ óvo．
$\Delta \varepsilon v$ uпápxモı púnavon anó проїóvта фитопроотабias，

8．13．3 Ynóyعıa úठ̄ata

 перıохウ่я．

－Yбןعuon
－＇Apঠ̄zuon

 катаvà $\lambda \omega$ on μ óvo．
$\Delta \varepsilon v$ uпápXeı púnavon anó проїóvта фитопробтабіая，

катабтрофผ́v

a．Дıакопп் Н入єктрікой Рعйиатоऽ

ү．Eпıßapпиغ̇va aпóß入пта
 аүшүой пара́каишпऽ тпऽ вуката́тта⿱пп（By pass）．

 актіvоßо入ігц．

9．EKTIMH乏H KAI AЕIO＾OГH乏H ПEPIBAMへONTIK』N EПIПT $\Omega \Sigma E \Omega N$

9．1．МєӨобоАоүıкє́ц апаıтர்бєıऽ

 عпıாтढ்øを $\omega \mathrm{v}$ ．

 घпıாт由்øع $\omega \mathrm{v}$ ：

 оиర̈દ்тદро૬．

 unápxouv．

ミто тعлعитаіо uпокєфа́

 ＇Epyou：
－Фáon Kataóкยиŋ́c，
－Фáon＾eıtoupyia̧

характпрібтіка́

9．2．3 Екпорпв́ç аєріои тои Өєриокппiou

9．2．3．1 Фव́णп катабкहиÍs

 ако入ойӨ ω с：

Eiöos pu̇nou	$\mathbf{C O}_{2}$
$\mathbf{g} / \mathrm{HP}-\mathrm{hr}$	587,3

	CO_{2}	
	Kg/d	tn/y
$\begin{aligned} & \text { Екбкафє்̇ац 200kW } \\ & (286.5 \mathrm{HP}) \end{aligned}$	1346.1	40
Фортŋүо̇--ппетоviદ̇ра 100 kw (134.5 HP)	632	19
Avatpenóuعvo 120kw (161 HP)	756	23

 $\dot{\varepsilon} p \gamma \omega \mathrm{v}$.

9.2.3.2 фáon 入हוтоupvias

	$49 \mathrm{kWh} / \eta \mu \varepsilon \dot{\varepsilon} \mathrm{pa}$
П入єктропараүшүท่	$0.855 \mathrm{~kg} / \mathrm{kWh}$
	$41.90 \mathrm{~kg} / \mathrm{d}=0.042 \mathrm{tn} / \mathrm{d} \dot{\mathrm{n}} 15.3 \mathrm{tn} / \mathrm{y}$

9.3. Епıптஸ்бвıৎ бта норчолоүıкá каı топıодоуıка́ характпрıотıка́

9.3.1 Ектірŋоך каи аछ̆одо́үпоŋ

9.3.2 TопıЛоүıке́ৎ $\mu \varepsilon т а ß о \lambda \varepsilon ̇ \varsigma ~$

 Toniou（N．3827／2010 ФEK 30／A／2010）．इTПV घupútepク nepıox

Характпрібтіка́

9．4．1 Макробкопикє̇ழ параттрウ்бєıৎ

9．4．1．1 Alloiwon，ката́типоп हпו甲áveıac пहтршиáтшv

 μ нкра́ $\mu \varepsilon у \varepsilon ̇ \theta \eta$ ．

9.5.2 Проотатвио́иєvєৎ перıохе̇я,

Xл \quad ріба

Пavióa

 $\mu \varepsilon т а к ı v \dot{\sigma} \sigma \varepsilon \omega \mathrm{~T}$ T $\omega \mathrm{V}$ そ $\omega \omega \mathrm{V}$

Eiōn Bגáotnons

Eiön Onגaotik ω v

 вүката́бта⿱㇒㠯．

Eiön Auшißıa kaı Eiön عрпधтஸ்v

Enınт由́geic tou épyou ornv nepıoxй Natura

Mع тПV катабквиท่ тоu غ́pyou：

 аркєт山்v onuavтıкढ̈v taxa.

 т $\omega \mathrm{V}$ то́п $\omega \mathrm{v}$ Нотокіас, клп.

9.6.1.1 Metaßoléc otis xoriagic vis

о́пшя проаvaрغ́рӨпкє（то по入u่ $100 \mathrm{~m}^{2}$ ）．

9．6．1．2 Enıाтш́णहוя

 uүıモıvخ่ร．

 тпV проотабіа тои перıß́̀ $\lambda \lambda$ оитос，

 проотатє⿱⺌兀寸
 перıохй．

9．6．3 ПоАтпотикท่ кАпроvориа่

9．6．3．1 Eпиாтшंवहルя

 вүката́бтаоп．

9．6．3．3 Eıठікウ́ Eктіunon

9．7．3 Ożozıц モpyaơias

9．7．5 Поюо́тпта そюท่я

 ornv I．M．Ayiou Пaú λ ou．

9．8．1 Enırтய்ণعıя

9.8.2 Eпа́ркєıа

9.9.1 ПıӨavótŋтта عvioxuōŋৎ

O á $\mu \varepsilon \sigma a$ عппр

 каı גоוпท̆я ठраотпріо́тптая.

9.9.2 $\Delta \eta \mu ю u \rho Y i a ~ v \varepsilon ̇ \omega v ~ m e ́ \sigma \varepsilon \omega v ~$

9.10. Епıптஸ́бعıऽ отпи поо́тпта тои ає́ра

 $100 \mathrm{mg} / \mathrm{m}^{3}$, пои каӨоріदદтаı апо́ то ápӨро 2 парау. ठ тои П.ム. 1180/81 (ФЕК 293/А/6-10-1981).

 ठєкáठєऽ ppm）．

 ßıо入оүıкп่ऽ єпє६६рүасіас，

 autokiv \ddagger Tんv．

 293／A／6－10－1981）．

 גеाтоupyia тоия，
 aпо́oтaon

$L_{P}=L_{N}-10 \log _{10}\left(4 \cdot \pi \cdot r^{2}\right)$
ónou：

 غ่хоч $\mu \varepsilon \mu \varepsilon i \omega \sigma \eta$ autoù кaтà $6 \mathrm{~dB}(\mathrm{~A})$ ．

9．11．2 Eпıாтக்テ்ィя

9．12．1 Eпиттம்णே！я

9．12．2 ПıӨavót！тта

$\Delta \varepsilon \mathrm{v}$ uпápXouv $\eta \lambda \varepsilon к т \rho о \mu а ү v \eta т і к а ́ ~ п \varepsilon ঠ ̈ i a . ~$

9．13．Епıптஸ்бعıऽ ота и́бата

9．13．2．3 Eктіипоп 山етаßо৯白

 à $\boldsymbol{\varepsilon \sigma a}$ каı $\mu \varepsilon \lambda$ Могтіка́．

Фáon катаवквuńs

 عivaı поגú μ ıкрд́ ($2-2,5 \mu$ ц่т $\rho a)$.

\$áon λ हוтоupvias

 ठiappoóv.

9.13.3.4 Eктіunon 山हтаßо1áv

 $\lambda u \mu \dot{т} \omega \mathrm{v}$ бृ autá.

9.14. Епıптஸ́бعı̧ пои aпоррع́ouv aпó кıvסúvous yıa тпи avӨрஸ́пıvク גо́үш атчХпна́тшv каı катаотрофळ́v

Фáon kataokeun่s

Фáon λ हıitoupvias

[^2]

©AEH EPROY	IEPIBAMAONTIKO ETOIXEIO	EnIMTREEIE			BAPYTHTA				AIAPKEIA		ANAETPEYIMH		
		$\frac{\mathrm{K}}{2}$	W్ㅐㅄ	징	$\begin{aligned} & \text { 工 } \\ & \frac{5}{5} \\ & 7 \end{aligned}$	$\frac{\leq}{\frac{5}{5}}$	否		$\sum_{i=1}^{\sum_{\sum}^{\prime}}$	들 M M O	증	W ¢ y 2 岂	\％
			\checkmark			\checkmark				$\sqrt{ }$	\checkmark		
	Морфолоүıка́ каı тополоүіка่ характпрıөтıк่		\checkmark				$\sqrt{ }$			$\sqrt{ }$			\checkmark
	характпріоттка			$\sqrt{ }$									
			\checkmark				\checkmark			\checkmark			\checkmark
				\checkmark									
		\checkmark			\checkmark					\checkmark			
			\checkmark					$\sqrt{ }$		$\sqrt{ }$			\checkmark
				\checkmark									
	Поıótпта тоu aह́pa	$\sqrt{ }$				\checkmark				\checkmark		$\sqrt{ }$	
		\checkmark					\checkmark			$\sqrt{ }$		$\sqrt{ }$	

EPTO ：«EPTA ETE＝EPTAEIAL KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S Z N ~ \Sigma T O ~ A T I O N ~ O P O \Sigma » ~$

ФAEH EPTOY	ПEPIBAMAONTIKO ETOIXEIO	EMIITREEIE			BAPYTHTA				DIAPKEIA		ANAETPEUIMH		
		$\frac{3}{2}$	W్W	층	甹	$\stackrel{ভ}{⿺ 𠃊}$			$\sum_{\sum_{2}^{1}}^{\text {를 }}$	工 를 긍 O	突	W	$\frac{1}{2}$
				\checkmark									
	＇Yסата			\checkmark									
		\checkmark				\checkmark				\checkmark		$\sqrt{ }$	
			\checkmark					\checkmark	\checkmark			\checkmark	
	Морфолоүıка̇ каı топоגоүıка่ характпрıөтіка่												
	Характпріотіка́			$\sqrt{ }$									
	Фuđıко́ перıßà̀入ov	$\sqrt{ }$			\checkmark				\checkmark				
	AvӨponoyevés пepißà M／	\checkmark			\checkmark				\checkmark				
		\checkmark			\checkmark				\checkmark				
	TEXVIKغ̇¢，unoōouદ̇¢，			\checkmark									
		\checkmark			\checkmark				\checkmark				
	Поıо́тŋта тои аह̇ра	\checkmark						\checkmark	\checkmark				\checkmark
		\checkmark					\checkmark		\checkmark				$\sqrt{ }$
	Н入єкроиаүvๆтіка̇ пеठia			\checkmark									

EPГO : «EPГA EПE=EPГAГIAइ KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K S N ~ A Y M A T S N ~ \Sigma T O ~ A I I O N ~ O P O \Sigma » ~$

10．1．МвӨодо৯оүıкв́ц апаıтர்бєıৎ каı про́бӨєта нє́тра

「evikėc катeuӨúvgeis

 ото П．$\Delta .1180 / 81$（ФЕК 293／А／81）каІ عІठІко்тєра то ápӨро 2 autoú：

 тои періßà Моитоऽ．

 ако்入ouӨa：

 єкбкафஸ்v．

 пєрıßá̀入оитос．

 та проß入єпо́ $\mu \varepsilon v a$ oтıц：
－YA A5／2375／78（ФEK 689／B／78）
－YA 56206／1613／86（ФEK 570B／86）
－YA 69001／1921／88（ФEK 751／B／88）

- YA 765/91 (ФЕК 81/B/91)

 (EK 801ß/74), KYA 5673/400/1997, KYA 145116/2011 каӨळ்̧ каı ото П. $\Delta .1180 / 81$.

 apxŕs.

 праүнатопоппөві.

 тПऽ бко́vク६:

Фáon λ हıtoupvias

入áठıа клп．）отףv перıххウ่ тоu દ̇pyou．

клıнатıка́ каı ßıокдıнатıка́ характпрıотıка́

ФáのП катабкЕиர́s

 о入ок入njpшō тои غ́pүou．

Фáōn $\lambda \varepsilon і т о u \rho v i a s ~$

норфоАоүıка́ каı топиолоүıка́ характпрıотıка́

фáбп катабквиѓs

фáon deוtoupvias

Фóon катабквut́s

ЕКбка甲ウ＇ऽ	

Фáon λ हוtoupvias

甲ибוкó перıßádAov

Фáon катабкहиग̆́s

 $\beta \lambda a ́ ß \eta ~ \sigma \varepsilon ~ a u t \eta ŋ ̀ v ~$

 aпó TПV $\mu \varepsilon \lambda \varepsilon ̇ т \eta$.

 OTףV KYA 71560／3053，ФEK 665／B／85．
 Фáon λ हitoupvias

avӨрんпоүعvغ́s перıßáג入ov

Фáon катабкеuís

 тои ह́pyou.

Фáon \eitouovias

Фáon катабкеuís

 перıßं̀ λ 人ov धivaı:

 ठıа́ркєıа T ωv हрүабі ω v.

Фáon \eitoupvias

Фа́ळп катабквий́s

Фáon 入eltoupvias

 $\lambda \eta \varphi$ Oúv $\mu \varepsilon ่ т \rho \mathrm{avT} \mu \varepsilon т \omega ் п ı \sigma \eta \varsigma . ~$

Фáのп катабкहUй́s

 браотпріо́тптац

Фáon \eitoupvias

отๆи поо́тпта тои аغ́ра

фáon катабкहиís

 $\mathrm{mg} / \mathrm{m}^{3}$ ，пои каӨоріद६таı апо́ то ápӨро 2 параү．ठ тои П．А．1180／81（ФЕК 293／А／6－10－1981）．

АтНоораıрıк＇púnavon	 عivaı $a \mu \varepsilon \lambda \eta T \varepsilon ่ \varepsilon \varsigma$ ．

Фáon גeוtoupvios

 ßıо入оүккウ่я єпє६єрүабіас，

Өо́риßo ர் סоvர்бєıя

Фáon катабкеий＇s

 о́пшц тропопоıウ่Өŋкє $\mu \varepsilon$ т $\eta \vee$ KYA apıӨر．Н．П．9272／471／2－03－2007（ФЕК 286／B＇）．
 та проßגєпо́нцva aпо́ то ПА 1180／1981（ФЕК 293／A／81）．
 17252／1992（ФЕК 395B／29－06－1992）ópıa Өopúßou．

Өópußoç anó тПv кivŋoŋ охпиáт ω к каІ та катабквบаoтाка́ ह́pүa	

Фáon AEItoupvias

оХєтıкळ́v $\mu \varepsilon$ ПАєктронаүvПтıка́ пєठía

$\Delta \varepsilon v$ unápXouv П入єктроиаүvŋтіка́ пєठ̄ia．

ப́סата

Фáon катабкहийs

 бוарроє́，．

фáon \عוтоupvías

фáon катаокहи⿱宀́s

Фáon＾eitoupvias

Фáon катабкEuम́s

Фраотпрıо́тпта－парв́यßабך	
Єópußoç anó Tŋv kivŋō охпиа́тшv каІ та катабкєบаoтıкá ह́pya	
Атнобфаıрıкп่ púnavon	

Катабквиท் ориүцátшv 	
єкбка甲ウ่ऽ	
Фибıко́ перıßà入入оV	

Фáon λ हוтoupvias

Драбтпрıótпта－ парغ்иßаवп	
Xprion үn¢	
ouvtinjpañs	 періохŋ่я．
Еүкатáctaon غ̇pyou	 ठєvठ̄рофúтєữ
AıбӨŋтıкй unoßáӨиібп топіои	 катабкєиш்v anó бкиро́ฮ̄६ца．
Гра μ ह́я нєтачора́я П入єктрıкর่ऽ عvغ́pүعıa̧	

Ефікто́тпта иغ்тр $\omega \mathbf{y}$

 tou．
 tov uneủӨuvo tnc Movics．

 Tou．

фáon катаокеиர́s

Фраотпрıо́тпта－парв́ β абп	
Өópußos anó тŋv kivŋon oxпиáт ω v каІ та катабкєиаотіка́ ह́pya	 пєрıорıণ $\mu \dot{v}$ Өopüßou．
Атноб甲аıрıкй púnavon	
	 отаӨцои่．
Kатабквиர் ориүнȧtwv	
єкбкачウ்я	

фóon \eıtoupvias

பрабтппо́́тптапарє́ β абп	
Xpṙan үn¢	
ouvtnipnons	 періохйя.
Еүксто́бтабך غ̇pүou	 ठєvठ̄рофи்тєữ
	 катабкєиผ்v anó đкиро́ठєца.
Граниغ́я, нєта甲ора́я 	

 145116/2011

 anó трітоис.

 287 B'/07).

B. Фáoп катабкहиர́s

 отєүacuદ̇vouç Xépouc.

 тоua入દ̇тع̧.

A

 та ако́入оиӨа：

 ह入áxıтто ठuvató

Yyoá кal oteped́ aпóß入nta

[^3]
 ठıaта́दॄઘı, пعрі Өорúßou

Фáon λ Eitoupvias

 фaivó $\mu \varepsilon v a ~ п \lambda \eta \mu \mu u p \omega ் v ~$

 проßлпцаттшv．

इuүкєкрıц̇va va yiveтal：

 тПऽ вүката́oта⿱亠巾

 ठ̄ı avtippúnavons．

 Eup \quad пaïкоú Koıvoßou入iou kaı тou ¿u

Yypá Апо́B入nta

 үוa Tiç aváүкє̧，тоu غ́pyou．

 5673／400／1997（ B^{\prime} 192）ón

 тпऽ пєрıохウ่я

 аठॄєоठотпи (B^{\prime} 1909) каı ото N. 4042/2012 (A' 24), о́n $\omega \varsigma ~ \varepsilon к а ́ \sigma т о т \varepsilon ~ ı б X u ́ o u v . ~$

ミтерعá Апо́ß入nта

 (ФЕК 24/A'/2012).

 NoноӨعбiac. Еіठікд்тяра:

 41624/2057/E103/10 (ФЕК 1625 B') ónமఢ וסxúouv.

 óп ω, Ібхи̇єા.
 (ФEK $81 \mathrm{~A}^{\prime}$).

 13588/725/28.3.06 (ФЕК 383 B'), 24944/1159/30.6.06 (ФЕК 791 B'), 8668/2.3.07 (ФЕК 287 B') ка।

 Ioxúouv.
 oTnV KYA 114218/1997 (DEK 1016 B'/17-11-1997).

 Еүкиклі ω v．

 Періßа́Моитоц

 о入ок入ńp ω on тоиद．

Фáon oxeठiaouoú

 xpóvo．
 12，пар． 2 тпऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каı β ）ота єпıкіvठ̄uva aпóß入пта
 $287 \mathrm{~B}^{\prime} / 07$ ）．

фáon катаоквuís - Opvavштікéc anaitriozis

 epyaoíc，

АЕ̇pıદऽ عкпоuпغ́s

 та ако́久оиӨа：

 ع入áxıロто ठ̄uvató

Yypá kal oteped́ anóß入nta

Oópußos - ठovṅóis

 ठıaтáद̧ઘı, пعрі Өopúßou

Фáón \eitoupvías

 фaıvó $\mu \varepsilon v a ~ п \lambda п \mu \mu u р \omega ் v ~$

 апоррı $\mu \mu \dot{т} \omega \mathrm{~V}$ T $\omega \mathrm{v}$ паракві $\mu \varepsilon v \omega \mathrm{v}$ перıохढ̈v.

Aغ́pıa Aпóß入nto

 проßлпиаттшv.

 тクऽ £үката́бта⿱㇒冋я

 avtippúnavons．

Yyoá Aпо́ß $\lambda_{n t a}$

 праүнатопоıвітаı $\mu \varepsilon$ ßáon та ако́入оиӨа：

 тทऽ пะрюохণ่я

 (B^{\prime} 1909) каı ото N. 4042/2012 ($A^{\prime} 24$), о́n $\omega \varsigma$ عка́бтотє ıбXúouv.

 єка́ототє Іохи́ouv.

 (BOD5<1200mg/l, COD<4600mg/l, перІєкткк்тпта бє u入ıк் отعрєd <0,45\%к.ß.).

ミтерعá Aпóß入nта

 （ФЕК 24／A＇／2012）．

 Nouо日عбiaç．ЕІбıко்тєра：

 41624／2057／E103／10（ФЕК 1625 B＇）ònமఢ וסxúouv．

 （ФEK 81 A＇）．

 1312 B＇）ón ω ¢ וסXủモ．
 13588／725／28．3．06（ФЕК 383 B＇），24944／1159／30．6．06（ФЕК 791 B＇），8668／2．3．07（ФЕК 287 B＇）каІ

 Үпоирүıкє́я Апофа́бєı̧ 13588／725／06（ФЕК 383 В＇）каı Н．П．24944／1159／06（ФЕК 791 В＇）ónமऽ，

IOXủouv．
 OTŋV KYA 114218／1997（ФЕК 1016 B＇／17－11－1997）．

 Еүкик入i ω v．

 Перıßа́入入оттоц，

 о入оклウ்р ω on тоис．

Maúon 入eitoupvias

 N．2939／2001（ФЕК A＇179）каı ото N．4042／2012（ФЕК A＇24），ón $\omega \varsigma$ દка́oтотє ıбxúouv．

EPTO : «EPTA ETEEEPTAILAL KAI $\triangle I A O E E H \Sigma ~ A I T I K S N ~ A Y M A T S N ~ I T O ~ A / T O N ~ O P O \Sigma » ~$

EPTO ：«EPTA ETEEEPTASIAI KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ \Sigma T O ~ A T I O N ~ O P O \Sigma " ~$

	IVN							
	30หId ${ }^{\text {a }}$		$>$	$>$				$>$
	IXO							
采咅百	HNIdひ3OdU		$>$	$>$				
	HWINOW							$>$
$\stackrel{\text { 区 }}{\underset{y}{\mid}}$	valhvaw							$>$
	HVHWVX			$>$				
	VIdıW		$>$					
	HVHmA							
点	IXO	7			$>$	$>$	$>$	
	303I							$>$
	IVN		$>$	$>$				
						－		
								3VL dNOLIEV H3V（ ${ }^{2}$

©AEH EPROY	ПEPIBAANONTIKO ETOIXEIO	enintseeis			BAPYTHTA				АIAPKEIA		ANAETPEYIMH			ПAPATHPHEEIE
		$\frac{1}{2}$	W్甘	층	$\begin{aligned} & \frac{x}{5} \\ & \frac{1}{3} \end{aligned}$	$\frac{\Sigma}{\stackrel{L}{\mid 15}}$			$\sum_{\sum_{2}^{2}}^{\text {플 }}$	들 M M O	칭	$\begin{aligned} & \text { W } \\ & \text { Gy } \\ & \text { 를 } \end{aligned}$	$\frac{\mathrm{Z}}{2}$	
														тактікウ்̧ бuvtípクons عछоп入॥биоن்
	Морфолоүіка́ каі топоגоүіка́ характпріттіка́													МЕ та μ غ்тра пои протвіvоита। перюорі६єта। браотіка́ η опттк่ óx $\lambda \eta$ on．
	вбочолоүіка́ характпрібтіка்			$\sqrt{ }$										
		$\sqrt{ }$			$\sqrt{ }$				\checkmark					
		\checkmark			$\sqrt{ }$				\checkmark					
	 	\checkmark			$\sqrt{ }$				\checkmark					
				\checkmark										
	 	$\sqrt{ }$			$\sqrt{ }$				$\sqrt{ }$					
	Поıо்тŋта тоu aย̇pa	$\sqrt{ }$						$\sqrt{ }$	\checkmark				$\sqrt{ }$	Eni入oүท் aعроотєүต்v ठє६аuॄvळ்v каı ६छоплıव
		$\sqrt{ }$					$\sqrt{ }$		\checkmark				$\sqrt{ }$	П入єктропараүшүо́ Zદủyos．
	Н入єкроиаүvๆтіка́ п¢ठia			\checkmark										

EPIO：«EPГA EПE＝EPГALIAI KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K S 2 N ~ A Y M A T I Z N ~ \Sigma T O ~ A / I O N ~ O P O \Sigma » ~$

	IVN		
	30MIdヨW		$>$
	IXO		
	HNIdUSOdU		$>$
	HWINOW	$>$	
$\frac{\text { 区 }}{\stackrel{E}{5}}$	VヨLHVヨWV		
	HVHWVX		
	VIdIEW		$>$
	HVHhd	$>$	
	IXO		
	303I		
	IVN	$>$	$>$
		号	

	：	
		Tax．$\Delta / \mathrm{vo} \mathrm{\eta}$ ：Пaná¢n 82，Өعбoo入入ovikn，T．K．54453，
		T 7 入．： 2310902321

Email：skarageo＠gmail．com

ミ甲раүіб̈а－Үпоүра甲г่

Orooaiovikn 14／041 20.22
ГIA TON E $\triangle E \Gamma X O$
O EПIB $\triangle E \Pi \Omega N$ TA MEAETH

EAETXOHKE
O ПPOİITAMENOE
TMHMATOE $\triangle A E O N \& ~ ח E / I B A M O N T O E ~$

OEתPHOHKE

日eбoaдovikn．14．0420．22 O AIEYOYNTHE THE
TRXNIKHE YIHPPESHE

Téipyıos Matpanázns
Holutauy Minxavisós $\mu \varepsilon \mathrm{A}^{\prime} \beta$ ．

11. ПЕРIBAMONTIKH $\triangle I A X E I P I \Sigma H ~ K A I ~ П A P A K O \wedge O Y O H \Sigma H ~$

11.1.ПерıßаААоитıкѓ бıахєірıбп

 Plan (EMP) عival:

 avaӨع $\omega \rho \dot{\sigma} \sigma \varepsilon \omega \mathrm{v}$

 $\lambda a \mu ß a ́ v o u v ~ \chi \omega ́ p a ~$

11.2.ПгрıßaגМоvтıкŋ́ парако入ои́ӨŋбП

- 'OpIa xஸ́pou EEA
- Opia ктıpíwv Movñ́s

	Пара́иктроऽ	Mé̇oठō	ATfairijoess EPA үıa бохеіа oukhoyís	Mt日oठos đuvtípnons ठєıура́тшン	Xpóvos mapauovís	
					Ȩaywүи	Avákuoun
Eivoठog／ tȨoסัO	BOD－5	MCAWW Method 405.1	One $500-\mathrm{mL}$ amber glss jar with TeflonTM－lined cap	Store at $4^{\circ} \mathrm{C}$	48 hours	5 days
	COD	MCAWW Method 410.4	One $500-\mathrm{ml}$ amber glss jar with Teflon ${ }^{\text {TM }}$－lined cap	$\mathrm{H}_{2} \mathrm{SO}_{4}$ ；store at $4^{\circ} \mathrm{C}$	NA	28 days
	TSS	MCAWW Method 160.2	One $500-\mathrm{mL}$ ．polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	7 days
	O\＆G	MCAWW Method 413.2	One 1－L amber glass jar with Teflon ${ }^{7 M}$ ． lined cap	HCl ；store at $4^{\circ} \mathrm{C}$	28 days	40 days
	Chloride and sulfate	MCAWW Method 300	One $250-\mathrm{mL}$ ，polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	28 days
	Micobiolog． parameters		$120-\mathrm{mL}$ ．sterilized borosilicate glass bottle	Store at $4^{\circ} \mathrm{C}$	1 hr	48 hours
	DO	MCAMW Method 360.1	Orie $250-\mathrm{mL}$ polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours
	pH	MCAWM Method 150.1	One $250-\mathrm{mL}$ polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours

 غंद๐ठัం.

ПAPAMETPO乏	EIEOAOE	EEOAOE	IAYE	$\triangle E I T M A$	ПAPATHPHEEİ
Пapox'́		$+$			
BOD_{5}	\#	\#		M.H	
COD	\#	\#		M.H	
SS	\#	\#		M.H	
А $\mu \mu \omega$ viaкá, viтри́ठпп, vitpiká	\#	\#		M.H	
TP	\#	\#		M.H	

\# : Пєрıобıка́ (п.х. 1-2/ $\mu \eta$ vıaiшс)

* : इпораб̈ıќ

- $\Omega \varsigma$ аvштє่рш піvaкая

ПAPAMETPOE	
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{lt})$	<25
COD ($\mathrm{mg} / \mathrm{lt}$)	< 125
Aı ω ¢oủheva oteped, SS ($\mathrm{mg} / \mathrm{lt}$)	≤ 35

－＇Opıa ктірі́шv Movís

－＇Үпарदп ס̈аррош́v

11．2．4 Паракоגои்Өпо耳 Өори́ßou

－Opia x＇́pou EEA
－Opia ктipiav Movís

－AuẼnцદ̇vos Өópußos

11．2．5 Парако入ои́Өпоワ ооцผ்v

 ६६๐п入ıбノои่．

 Еvо́тпте६：

－$\Delta \varepsilon \xi а \mu \varepsilon v \dot{~ п р о к а ө i \zeta п о п ऽ ~}$
KaOapiouós－Euvtrínon

－ОофрПтіко́я غ்̀єүХоऽ

－Käпигріvá

－Opia xஸ́pou EEA
－Opia ктıpiav Movís

11．3．1 Eıоаүшу＇்

 aпоठ́ $k т \eta$.

 періохи் каו та vepá．

11．3．3 Evepyonoinon tou ミxモס̌iou

a．Дıакопй Н入єктрікои่ Рعúцатоऽ，

－ －

乃．Екठəウ̀ $\lambda \omega$ ö пиркаүіа́द
Екסŋ̀̀ん
－Aן $\grave{\lambda \varepsilon ı a ~}$
－YпєрӨغ́puavoп

ү．Eпıßapпиغ́va anóß入пта

 аүшүои́ пара́канчпऽ тпऽ вуката́бтабпऽ（By pass）．

－ lıappoń or aүшүó 2
 $\varepsilon ф \varepsilon$ рікои่ є६оп入ıбиой．

 vuxtepivés ஸ்pȩ, apүiє̧, к.入.п.)

 апоß пп́т $^{2} \mathrm{v}$.

A．Ектроти́ tnऽ тарохи́s عוбóōou

 бъаөє́бıиєऽ

Naı OXI

B．Xрŋ́oŋ ßutioøóp ωv

 к．А．т．

Г．Мદ́бa єктव́ктоu aváyкクラ

А．Пробw

 т $\mu \eta \mu a ́ t \omega v$ tŋ̧ हүкатáotaoņ

апоß入ウ่тшv

ГIA THN EГKPİH ПEPIBAANONTIKתN OP Ω N

 бıаиغ่трои Ф200.

 2703/B75-10-12).
 1931B/27-12-2004).
 3-2007).

KatátaEn катá ミTAKOD 2008 каı NACE Rev. 2
37.00 Eп६६६pyacia $\lambda \cup \mu a ́ т \omega v$

Kんठัıкȯ¢ опиعiou	ミuvtetaypėvec EIEA 87	
	X	X
Apx＇்－A． 9	524542，70	4445369，13
A． 8	524525，49	4445360，21
A． 6	524526，84	4445332，60
A． 5	524517，97	4445314，58
A． 4	524509，69	4445297，76
A． 3	524498，70	4445288，93
A． 2	524459，98	4445273，93
A． 1	524429，32	4445262，06
Eiбoбоя，ПрокаӨiگППпऽ－А． 0	524408，44	4445238，20

12．2．2．2 £uИTETOYमÉVES OIKOПह́סOU EEA

 524402，48 ка। $Y=4445231,70$.

Kんठठıко́¢ опицiou	इuvtetayużve¢ EГГ 87	
	X	Y
＇Ȩ̧ōoc anó EE＾	524399，17	4445236，87
	524391，95	4445240，34

12．2．3 Пєріүрафі̀＇Epyou

Aпохетвutiká діктиа

- Aпо入ủ

ПAPAMETPOE		ПАРОYЕА ФАЕН	ФAEH EXEAIAEMOY
	кат.	230,00	300,00
	$\mathrm{m}^{3} / \mathrm{d}$	34,50	45,00
акаӨа́pтшv	$\mathrm{m}^{3} / \mathrm{d}$	51,75	67,50
	$\mathrm{m}^{3} / \mathrm{h}$	2,16	2,81
	$\mathrm{m}^{3} / \mathrm{h}$	7,78	10,11
	gr/kar/d	60,00	60,00
Eİ̈ı̇̇ Puпavtıkó ¢ортіо TSS	gr/Kat	70,00	70,00
Eıбıкó Puпavtıkó ¢ортіо TN	gr/kat/d	10,00	10,00
Elठıкȯ Puпavtıкó 甲ортio TP	gr/kar/d	3,00	3,00
Фортіо BOD_{5} бхहठıабนои่	kg/d	13,80	18,00
	kg/d	16,10	21,00
Фортіо TN ох£	kg/d	2,30	3,00
Фортіо TP охбठІабиои่	kg/d	0,69	0,90

Кшठıко่с Е.К.А.: 19.08.05

Пєріпои 7 - 9 m³/غ́тоя

 145116/2011.

12.2.5.1 АЕ́р/a апо́ß人пта

 Kоіvotitit ω v.

12．2．5．2 Y уро́ апо́ßૌлто

＾ацßávovtaç unóuף ：

ПAPAMETPOE	£YTKENTP 2 EH
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{lt})$	≤ 25
COD（ $\mathrm{mg} / \mathrm{lt}$ ）	≤ 125
Alw	≤ 35
О入ıка́ ко入оßактпрıовıठ̈ń	
pH	5，5－8，5

 Пара́ртпиа 1 тПऽ KYA 5673／400／97．

Kaтà Tŋ 甲áon Kataøкعuņ̃：
－KYA 9272／471／07，ФЕК 286／B／2．03．07：«Tpononoinon tou àp θ pou 8 Tク̧ un＇api $\theta \mu$ ．

 81／1051／EOK ка।
Katá Tn 甲áon＾عाтoupviac：

 ноváסac，

Eпıாтம்சॄढv

 12，пар． 2 тпऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каІ ß）ота धпикivठ̈uva aпóß入пта
 $287 \mathrm{~B}^{\prime} / 07$ ）．

 x ω роuc.

 ако்入ouӨa：

 ع\áxıтто ठ̄uvató

Yyoá каı отعoعá anóßAnta

 апорріщиатт ω v．

Oópußoc－ठоvìのعıs

 бıата́दॄıя，пعрі́ Өори́ßou
 ع入áxıттоv va тпроúvтaı та ако́入ouӨa：

 єпо́ $\boldsymbol{\varepsilon v \eta \varsigma ~ п а р а ү р а ́ ф о u ~}$

 koıvウ่ऽ ๆouxias，

12．2．7．3 Katá tᄁ फáon \हाтоupviac：

 фaivó $\mu \varepsilon v a$ п п $\lambda \eta \mu u p \omega ் v$

 проß入пца́тшv．

 ¿uүкекрıи̇̇va va үiveтal：

 тПऽ عүката́бта⿱㇒冋ร

 סuvatí モкпоипர் рún $\omega \mathrm{v}$ ．

Yyoá AnóßAnta

 праүнатопоıітаı $\mu \varepsilon$ ßáoŋ та ако̀лоиӨа：

 4042／2012（A＇24），о́пшЦ عка்бтотє ıбхи்ouv．

 т $\omega \vee$ к ω їк ωV орӨウ่я үع

ミта avt

乏teped́ AпóßАпта

 24／A72012）．

 NoноӨعбiac，Eıठıко்тєра：

 41624／2057／E103／10（ФЕК 1625 B＇）ónшৎ ıбxúouv．

 1312 B＇）ón $\omega \varsigma$ ıбхúعા．
 13588／725／28．3．06（ФЕК 383 В＇），24944／1159／30．6．06（ФЕК 791 В＇），8668／2．3．07（ФЕК 287 B＇）ка।

 єпє६६рүабіац апоß入йт ωv ．

 Yпоирүıкє́，Апофа́бєı̧ 13588／725／06（ФЕК 383 В＇）каı Н．П．24944／1159／06（ФЕК 791 В＇）ónんৎ， 10xúouv．
 KYA 114218／1997（ФЕK 1016 B＇／17－11－1997）．

 $\Delta / v \sigma \varepsilon \omega v$ T ωv бuvap \quad óठi ωv Yпоupүघi ωv ．

 Еүкик入i ωv ．

 Періßа́入入оитоя

 катабквบฝ்v.

13. ПPO¿OETA $\Sigma T O I X E I A$

2. Yүıєıvoגоүıкоі uпо入оүıбцоі

13.2. ПроßАர́ната єкпо́vпоŋя

14. ФЛТОГРАФІКН TЕКМНРI $\Sigma \mathrm{\Sigma}$

15. XAPTE - $\Sigma X E \Delta I A$

15.1.Xápтпя пробаvato丸ıбนои́

15.4.ГєшАоүוко́я Ха́ртпя

\square

 парако入оч்Өŋопs.

16. ПАРАРТНМА

0

16.1. ҮГIEIONOАOГIKOI YПОАОГIEMOI THЕ E.E.A.

IEPA KOINOTHTA
АГIOY OPOY乏
$A \Theta \Omega$

EPГO：＜EPTA EПEEEPTAZIA乏 KAI $\operatorname{\Delta IAOE\Sigma H~A\Sigma TIK\Omega N~}$ AYMATRN $\Sigma T O$ AIION OPO乏»

ANA \triangle OXOE	EYミTPATIOE A．KAPAГEQPГIOY Пaпáqๆ 82，Т．K．54453，OEEEAへONIKH $T \eta \lambda .:$ 2310－902321 \＆6976801783 Email：skarageo＠gmail．com

ПAPAPTHMA A：
 YГIETONOAOГTKOT YITOAOГTIMOI EГКАTAГTAEHE EПEEEPГAEIAEAYMATRN I．M． AГIOY ПA YАOY

חEPIEXOMENA

1．EİAГЛГH 1
2．ПAPAMETPOI $\Sigma X E \Delta I A \Sigma M O Y ~ E E \Lambda$. 1
2.1 Парохغ̧́ каı Фортіа＾ица́тшv 1
2.2 Поо́тпта Екроп்ऽ 1
2.3 ミuvoптікń Пєріүра甲й EE＾ 2
3．$\triangle I A \Sigma T A \Sigma I O \Lambda O T H \Sigma H ~ M O N A \Delta \Omega N$ 3
 3
3．1．1 Гعviкá 3
 4
 5
3．2．1 Eıбаүшүण்－перıүрафர் 5
 6
 10
3.3 เוü入ıのๆ 11
3．3．1 Eıøаүшүท่ 11
 11
3.4 Апоגúnavã！ 12
3．4．1 Eıбаүшүท่ 12
 13
 15

1．EIEAГRГН

 Iepás Mov＇̧̇ Ay．Пaúخou．

2．ПARAMETPOI EXEALAEMOYEEA

2.1 ПароХв́ц ка। Фортіа Аицáтаv

ПAPAMETPO乏		ПАРОҮгА ФAミH	ФAミH EXEAIAEMOY
	кат．	230，00	300，00
	$\mathrm{m}^{3} / \mathrm{d}$	34，50	45，00
	$\mathrm{m}^{3} / \mathrm{d}$	51，75	67，50
	$\mathrm{m}^{3} / \mathrm{h}$	2，16	2，81
Парохй axpuis Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	7，78	10，11
Eıठ̈ıкȯ Punavtıó ¢ортio BOD	gr／кат／d	60，00	60，00
Eıธ̄ıкó Puпavtıк่̇ ¢ортіо TSS	gr／Kот	70，00	70，00
Eıöıkó Puпavtikó ¢ортio TN	gr／kat／d	10，00	10，00
Eıठııк̇ Puпavtıó ¢ортіо TP	gr／kat／d	3，00	3，00
	kg／d	13，80	18，00
	kg／d	16，10	21，00
	kg／d	2，30	3，00
Фортio TP oxeठiafuoủ	kg／d	0，69	0，90

2.2 Поıо́ттта Екроŋ́я

 eival:

ПAPAMETPO乏		OPIA	
BOD $_{5}$	$\mathrm{mg} / \mathrm{tt}$	\leq	25
COD	$\mathrm{mg} / \mathrm{lt}$	\leq	125
Alwpoúuzva otepea (TS)	$\mathrm{mg} / \mathrm{lt}$	\leq	35

ПAPAMETPOE		OPIA	
$B^{\text {BOD }}$	$\mathrm{mg} / \mathrm{lt}$	\leq	15
COD	$\mathrm{mg} / \mathrm{lt}$	\leq	120
Aı ω роúuغva otepeá (TS)	$\mathrm{mg} / \mathrm{lt}$	\leq	15
Колоßактпрiठıa (E.coli)	EC/ 100 ml		

 орі६६таı отоv Піvaка $1 \mathrm{~T} \mathrm{\eta} \mathrm{\varsigma}$ KYA 145.116/2011.

3. AIAETAEIOAOLHEH MONAARN

3.1.1 「Evıкá

 тєрєळ்.

 єп६६६pyaoiac.

 oxદ̇oŋ:
$\mathrm{q}=\mathrm{Q}_{\mathrm{d}, \mathrm{m}} / \mathrm{A}$

ПAPAMETPOE	MONA 4	TIMH
	$\mathrm{m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$	0,6
	$\mathrm{m}^{3} / \mathrm{hr}$	10,11
	m^{2}	16,86

 $45 \mathrm{~m}^{3}$.

ПAPAMETPOE	MONADA	TIMH
Mह̇ץıoтך wpıaia napoxn่ Qd,max	$\mathrm{m}^{3} / \mathrm{hr}$	2,81
	m^{3}	8,44
	m^{3}	33,75
	hr	12,01
	hr	3,33

 аб甲á $\ell \varepsilon ı$ ац ако入ои́Ө $\omega \varsigma$（ATV－Handbuch，Mechanische Abwasserreinigung，1996）：

ПAPAMETPOE	MONA 4	TIMH
BOD_{5}	\％	25
COD	\％	25
	\％	60
O入ıко̇ à̧んто	\％	10
Фஸ்ం¢ороऽ，	\％	9

 $\omega \varsigma \varepsilon \varepsilon_{\eta} \dagger$ ¢：

Піvaкац 2．4．¿úণтаवП $\varepsilon \xi \varepsilon р х о ́ \mu \varepsilon v \omega v$

ПAPAMETPOE	MONA \triangle A	TIMH
BOD5	mg／l	300，00
	kg／d	13，50
COD	mg／l	540，00
	kg／d	24，30
Alwpoú μ vva otepeá SS	mg / l	186，67
	kg／d	8，40
О入ıко́ à̧んто	mg／l	60，00
	kg／d	2，70
Фஸ்б¢оро¢	mg / l	18，20
	kg／d	0，82

3．2．1 Еıбаүшүர்－пергүра甲ர்

 ı̀úos,

 $0.0049 \mathrm{~m}^{3} / \mathrm{m}^{2}$ عпіцáveıac.

 ¢áon, поu кuцaivovtaı anó 90 ह́فऽ $95 \% \omega \varsigma$ проऽ то BOD.

	Enin£ठo Enє̧̧pyaciac		
	АعитвроßáӨرıо	Дєитероßа́ $\theta \mu$ ио $\mu \varepsilon$ таuто́хроv vitponoinon	$\Delta \varepsilon u т \varepsilon \rho о \beta$ á $\theta \mu$ ı $\mu \varepsilon$ vitponoinon бє छєхшрітто́ бта́ठıо
$\left(\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}\right)$	0.08-0.16	0.03-0.08	0.04-0.1
Opyavikń ¢о́ptian			
$\mathrm{Kg} \mathrm{SBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0.003-0.01	0.002-0.007	0.0005-0.001
$\mathrm{Kg} \mathrm{TBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0.01-0.017	0.007-0.015	0.001-0.003
Mह̇ץıơT Opyavik'் фо́ртібп ото пра́то бवáठıo			
$\mathrm{Kg} \mathrm{SBOD} / \mathrm{m}^{2} . \mathrm{d}$	0.02-0.03	0.02-0.03	
Kg TBOD $/ \mathrm{m}^{2} . \mathrm{d}$	0.04-0.06	0.04-0.06	
$\begin{aligned} & \text { Фо́ртіळп а а } \mu \omega \text { viac (} \mathrm{Kg} \\ & \mathrm{NH}^{3} / \mathrm{m}^{2} . \mathrm{d} \text {) } \end{aligned}$		0.0007-0.0015	0.001-0.002
Yסраu入ıко́s Xрóvos параноvís (hr)	0.7-1.5	1.5-4	1.2-2.9
$\mathrm{BOD}_{5} \mathrm{E}$ ¢ Óठou ($^{\text {(mg/t) }}$	15-30	7-15	7-15
A $\mu \mu \omega v i a$ $(\mathrm{mg} / \mathrm{lt})$		<2	1-2

3．2．3 Аıастабıо入óyŋö－Ynoגоүıбиоі

3．2．3．1 Enıßapúvǫı̧ عıoóסou

	（mg／l）	（ Kg / d ）
BOD_{5}	300，00	13，50
COD	540，00	24，30
SS（aı ω рои́нцva oreped）	186，67	8，40
Oגıко́ áそんто（оруаvıко́ N ， $\left.\mathrm{NO}_{3}-\mathrm{N}, \quad \mathrm{NH}_{4}-\mathrm{N}\right)$	60，00	2，70
О＾ıко́¢ Фట்ం甲ороৎ（P）	18，20	0，82
Өгрнокрабіа	$12-20^{\circ} \mathrm{C}$	
pH	7，5	

$B O D_{5}$
COD

$\leq 20 \mathrm{mg} / \mathrm{l}$
$\leq 125 \mathrm{mg} / \mathrm{l}$
$\leq 25 \mathrm{mg} / \mathrm{l}$

$6 \mathrm{~g} /\left(\mathrm{m}^{2} \mathrm{xd}\right)$
$13,50 \times 1000 / 6=2250 \mathrm{~m}^{2}$
$2500 \mathrm{~m}^{2}$
1
1，10 kW

O入ıкウ่ єпı甲ávยıa
$2500 \mathrm{~m}^{2}$
\triangle іánをт

3．2．3．6 \quad Параушуฑ゙ ıヘv́os

 пооб́тๆта aı

 $\mathrm{kg} \cdot \mathrm{SS} / \mathrm{kg} \cdot$ BOD $_{5}$ апоиакрuvóuعvo．
 апоиакриvó $\mu \varepsilon v o$.

Параүшүฑ่ ठєuтєроßäӨцıас ı入úos，

$13,50 \mathrm{~kg} / \mathrm{d}$
$20 \times 45 / 1000=0,90 \mathrm{~kg} / \mathrm{d}$
$0,55 *(13,50-0,90)=6,93 \mathrm{~kg} / \mathrm{d}$
$12,60+6,93=19,53 \mathrm{~kg} / \mathrm{d}$

3.3 पIÚAıテワ

3．3．1 Eıवаүшүர่

 （Andreadakis 2003，Metcalf \＆Eddy 2003，Titley 2014）．

 фо́ртıбп тои фїגтрои θ а عival $<8 \mathrm{~m}^{3} / \mathrm{m}^{2}$－ hr ．

8
$\mathrm{m}^{3} /\left(\mathrm{m}^{2} \mathrm{xh}\right)$

	1,27	
	2	m^{2}
Прокu̇rтоưa عпı¢аvєıакก่ عпıßápuvon	5,06	$\mathrm{m}^{3} /\left(\mathrm{m}^{2} \mathrm{xh}\right)$

 mg / l.

$B O D_{\text {ss }}=0,65 * 1,42 * 0,68 * S S$
ónou:

$B O D_{5, \text { eff }}=B O D_{5, \text { in }}-B O D_{s s}$
ónou:

Mह avтіката́oтаoŋ прокúrाधı:
$B O D_{5, \text { eff }}=13,72 \mathrm{mg} / \mathrm{l}$

3.4 Anolúpavoп

3.4.1 Eıवаүшүท่

 μ пороúv va avanapaxӨoủv kaı va Өz ω роúvтаı практıкá $\omega \varsigma$ п п $\ell a \mu \varepsilon ̇ v a . ~$

 парацє்троиц ：
\Rightarrow Поо́тПта тои vepoú

－Aiwpoúpeva oтepeá

\Rightarrow BaӨرós anoגúuavons

 （Total Coli，TC）пре́пモı va عivaı $\leq 200 \mathrm{TC} / 100 \mathrm{ml} \omega \varsigma$ ठıà
 $10^{7} \mathrm{FC} / 100 \mathrm{ml}$ ．

 Disposal Reuse，1979，p．287）：

Eoxápoon
E ξ á $\mu \mu \omega \sigma$
$\mathrm{Eff}_{\mathrm{ccN}}=10-20 \%$

Віо入оүıки่ ßаӨиіба

$$
\begin{aligned}
& \mathrm{Eff}_{5 F}=10-25 \% \\
& \mathrm{Eff}_{\mathrm{BB}}=90-98 \%
\end{aligned}
$$

Прокаөiそлоп
Віо入оүıкர่ ßаӨиіба

$$
E \mathrm{Eff}_{\mathrm{Pc}}=10 \%
$$

$$
\mathrm{Eff}_{\mathrm{BB}}=90 \%
$$

 проки́птยı anó тоv тúno：

Colifeff $=$ Colifin $_{\text {in }} *\left(1-\right.$ Eff $\left._{\mathrm{PC}}\right) *\left(1-\right.$ Eff $\left._{\mathrm{BB}}\right)$

Colifeff $=10^{7}(1-0.10) *(1-0.90)$

Colifetf $=9 \times 10^{5} / 100 \mathrm{ml}$
入a μ ßávetaı iön $\mu \varepsilon 10^{6} / 100 \mathrm{ml}$.

$$
N / N_{0}=e^{-k i . t}
$$

ónou,

k : oraӨ̨pá

$$
-k^{*} i^{*} t=\ln \left(10^{-5}\right)=-11,51
$$

$$
i^{*} \mathrm{t}=9,21 \mathrm{mWsec} / \mathrm{cm}^{2}
$$

 TWv $\lambda a \mu \pi T n \dot{\rho} \omega \mathrm{v}$

16．2．ITYXIO MEАETHTH

EAAHNIKH AHMOKPATIA

YHOIPTELO YHOAOMSN
METAФOPQN \＆A！KTY $2 N$
ГEN．ГPAMMATELA YHOAOMתN
「EN．A／NさH TEXNIKHE YHO工THPIEH2
$\Delta / \mathrm{N} 2 H \mathrm{MHTP} \Omega \Omega \mathrm{N}$
TMHMA MHTP $\Omega O Y$ MEAETHT ΩN

ПTYXIOME

ПА 138／2009／N．3316／2005

AP．MHTP』OY：

A．Ф．M．：

A．O．Y．：

EПתNYMO：

ONOMA：
ONOMA ПIATPOL：

EIAIKOTHTA：
EAPA NOMOE：

ЕПАГГ．ЕАРА：

KATOIKIA：

19558
119767005
ГT＇©E ${ }^{\prime}$ IAONIKH

КАРАГЕЛРГIOY

EYETPATIOL
ANAPEAL

XHMIKOE MHX．
©EL／NIKHI

ПАПАФН 82 ЄЕЕ／NIKH TK 54453
ПАПАФН 82 ＠ЕГ／NIKH TK 54453

KATHTOPIE $\operatorname{MEAET\Omega N}$

«．KATHIOPIA YП＇API Θ ．	18	TAEH	A
ß．KATHГOPIA YI＇API®．	27	TAEH	A
$10 \chi 0 ์ \varepsilon 1 \alpha \pi 0$	22／02／2016	E ω c，	2／2026

16.3. ЕIАIКН ОІКОЛОГІКН АЕІОЛОГНЕН

\bigcirc

EIDIKH OIKO＾OГIKH AミIO＾OГHZH

EPIRN EПEEEPTAEIA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \Lambda Y M A T \Omega N ~ I . ~ M . ~ A Г I O Y ~ П A Y \Lambda O Y ~$

ANADOXOE
EYETPATIOE KAPAIEתPIIOY
ПАПАФН 82， 54453 ӨЕโさAへONIKH
email：skarageo＠gmail．com
 EİAIתГH－ПEPIOXH ME \wedge ETH乏． 3
1．YФIミTAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBA＾＾ONTO乏 5
1．1 KATATPAФH KAI ANAAY乏H TQN इTOIXEI Ω N ФY乏IKOY ПEPIBAAMONTO乏 ミTHN ПEPIOXH MEAETH乏 5
 5
 5
 7
 10
 ПEPIOXH MEAETH乏 33
1．3 AЛАE ГXETIKE ПАHPOФOPIE乏 ПOY AФOPOYN ГTHN ПEPIOXH MEЛETH乏 33
1.4 ФЛТОГРАФІКН ТЕКМНРІ $\Omega \mathrm{H}$ 33
1．5 KATAIPAФH TH乏 KATA乏TA乏H乏 TOY ФYミIKOY ПEPIBA＾MONTO乏 ミTHN ПEPIOXH TOY $\triangle I K T Y O Y ~$ NATURA 2000 34
 34
 35
1．5．3 Kúptȩ̧ тие̧́ α vaфора́ৎ 41
 41
 42
 46
2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O \wedge O T H \Sigma H ~ T \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N ~$ 46
3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma ~ T \Omega N ~ \Pi I \Theta A N \Omega N ~ E \Pi I I T T \Omega \Sigma E \Omega N$ 48
4．ANTILTA＠MIETIKA METPA 52
 4014／2011 52
 52
 53
 54
5．ПРОГРАММА ПАРАКОЛОҮӨНГНГ 55
6．$\Sigma Ү N O \Psi H ~ \Sigma Y M П E P A \Sigma M A T \Omega N$ 59
7．BIBAIOTPAФIKEL ПHIEE 61
8．OMA $\triangle A$ MEAETH Σ 65
ПAPAPTHMAI 66

EİAГОГН - ПEPIOXH MEЛETH乏

 єлє\}єрүабíac)

 ката́бтабף.
 524402,48 к $\alpha \mathrm{L} Y=4445231,70$.

Eukóva 1. Пepıoxŋ́ Me入étŋ̧̧, ópı α זepıoxท́c Natura 2000 GR1270003 (EZA)

1．YФI乏TAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBA＾＾ONTO乏

MEЛETH乏

 Koıvotıkoú Evסıaфépovtoc）（S．C．I．：Special Community Interest）$\mu \varepsilon$ к $\omega \delta$ เкó apı $\theta \mu$＇́ GR1270003．

 kotvotıkó Síktuo Natura 2000.

Гعшүрафıки́ Өє́எŋ：E： $23^{\circ} 87^{\prime} 69^{\prime \prime} \mathrm{N}: 40^{\circ} 08^{\prime} 44^{\prime \prime}$
＇Eктабп：33．567，80ha

1．2．2 Ava入utıкń $\pi \varepsilon \rho เ y \rho \alpha \phi n ́ ~ \tau n \varsigma \pi \varepsilon \rho \iota o x n ́ s \mu \varepsilon \lambda \varepsilon ́ \tau n \varsigma ~$

 (Млацла入а́vас 1998).

Пotoviac Pa: Zóvn Пăuxou, Al: Ziovn

P: Zívn IIivóou,

I: Iónoç ̧̧ovn,

 दुóvis

Etкóv α 2. Гع $\omega t \varepsilon \kappa т о v i к o ́ ~ \sigma x \eta ́ \mu \alpha ~ \tau \omega v ~ E \lambda \lambda \eta v i ́ \delta \omega v ~ \zeta \omega v \omega ́ v ~ k \alpha \tau \alpha ́ ~ M o u v t \rho a ́ k \eta ~(1983) . ~$

 ото о́poç AӨ ω ．

 బroppoņ̃ tou＇AӨ（EL1043），$\mu \varepsilon$ ह́кт $\alpha \sigma \eta ~ 239,44 \mathrm{~km}^{2}$ ．

 tou 24 ẃpou.

X $\cap \Omega P I \triangle A$

4. H そúvŋ $\tau \omega \vee$ opeıvढ́v $\mu \varepsilon \sigma о ү \varepsilon เ \alpha \kappa \omega ́ v ~ K \omega v o ф o ́ \rho \omega v . ~$

 lentiscetum.

 $\eta \mu i \theta \alpha \mu v o t$, ó $\pi \omega \varsigma$ абтоь $\beta i \delta \alpha$ (Sarcopoterium spinosum), үعviot α (Genista acanthoclada), ү $\alpha \lambda \alpha \tau \sigma i \delta \varepsilon \varsigma$
 (Phlomis fruticosa), orapáyyl (Asparagus aphyllus), $\alpha \lambda о \gamma о \theta u ́ \mu \alpha \rho o ~(A n t h y l l i s ~ h e r m a n i a e) k \lambda \pi$.
 (Pistacia lentiscus), ot $\dot{\alpha} \rho к \varepsilon \cup Ө$ ot (Juniperus sp.), т $\alpha \rho \varepsilon i ́ k ı \alpha$ (Erica spp.) к $\lambda \pi$.

 кл„んаткке́ऽ,

 confertae (frainetto)-cerris $\mu \varepsilon \phi \cup \lambda \lambda о \beta \dot{\lambda} \lambda \alpha \delta \dot{\alpha} \sigma \eta \quad \delta p u \omega ̈ v ~ \alpha \pi o ́ ~ Q u e r c u s ~ f r a i n e t t o, ~ Q u e r c u s ~ p u b e s c e n s, ~$

 Év ω on.

 to Carpinetum orientalis.

 canina, Hedera helix, Sorbus aucuparia, Sorbus torminalis, Quercus conferta,Alnus glutinosa ($\sigma \alpha$

 عivaı t α Х $\alpha \mu$ ореiкıа (Erica manipuliflora) каı to поирvápt (Quercus coccifera).

Піvакац 1: Eiठп $\chi \lambda \omega \rho i \delta \alpha \varsigma$

Abies cephalonica / £úv $\eta \vartheta \varepsilon \subset$
Aethionema orbiculatum / $\Sigma \pi \alpha \dot{\alpha}$ vo
Allium chamaespathum / Mapóv
Anthemis sibthorpii / $\Sigma \pi \dot{\alpha} v t o$
Arabis bryoides / Mapóv
Arctostaphylos uva-ursi / П α óv
Asperula aristata ssp. nestia / Mapóv
Asperula aristata ssp. thessala / Mapóv

Astragalus thracicus ssp．monochorum／$\Sigma \pi \alpha \dot{v}$ io
Atropa bella－donna／$\Sigma \pi \alpha ́ v i o$
Aubrieta erubescens／Mapóv
Beta nana／$\Sigma \pi \dot{\alpha} v i o$
Campanula lavrensis／Пapóv
Centaurea pannosa／ח \quad рóv
Cephalanthera damasonium／Mapóv
Cephalanthera longifolia／Mapóv
Colchicum doerfleri／ITaoóv
Convallaria majalis／חapóv
Corydalis integra／$\Sigma \pi \alpha \dot{v} v o$
Cyclamen persicum／П α óv
Cystoseira spp／Пapóv
Dianthus petraeus ssp．orbelicus／Mapóv
Digitalis leucophaea／ミnávıo
Erysimum drenowskii／Mapóv
Fritillaria euboeica／Mòú $\Sigma \pi$ távso
Fritillaria graeca／Mapóv
Helichrysum sibthorpii／Mo入ú ミnávıo
Heracleum humile／Па $\alpha o ́ v$
Hypericum athoum／$\Sigma \pi \dot{\alpha} v \mathrm{v}_{0}$
Isatis tinctoria ssp．athoa／Enávio
Limodorum abortivum／חарóv
Linum leucanthum इúvqษิธ，
Linum olympicum ssp．athoum／Пo入ú इnávio
Neotinea maculata／Mapóv
Neottia nidus－avis／Mapóv
Ophioglossum vulgatum／Парóv
Osmunda regalis／חapóv
Oxytropis purpurea／ $\bar{\pi} \alpha \dot{v} v i o$
Platanthera bifolia／Mapóv

Platanthera chlorantha／Mapóv
Poa thessala इúvクษョ६，
Polygonum icaricum／ミnávio
Saxifraga juniperifolia ssp．sancta／П $\alpha \rho o ́ v$
Silene echinosperma／Парóv
Silene multicaulis ssp．genistifolia／Пapóv
Sorbus chamaemespilus／$\Sigma \pi \alpha \dot{v}$ vo
Stachys leucoglossa／Mapóv
Thymus thracicus／Mapóv
Valeriana alliariifolia／$\Sigma \pi \alpha \dot{v}$ ıo
Viola athois／חodú इnávio

Zerynthia polyxena

 immanuelis－loewii，Centaurea peucedanifolia，Silene orphanidis，Viola delphinantha，Viola athois，
 $\pi \alpha \rho \alpha ́ \rho \tau \eta \mu \alpha$ 3．3．13），$\varepsilon v \omega \dot{u} \tau \alpha$ عiठŋŋ Arctostaphylos uva－ursi，Atropa bella－donna，Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．orbelicus，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus π робтатعúovtaı aró тo $\Pi \Delta 67 / 1981$ ．T α Heracleum humile，Saxifraga juniperifolia ssp．sancta，Ophioglossum vulgatum عival orávıa otףv E入入á $\delta \alpha$ ท́ k α t

 т $\mu \dot{\mu} \mu \alpha$ тทร．

－$\Delta \varepsilon v \delta \rho o \varepsilon t \delta \grave{~ M a t o r r a l s ~} \mu \varepsilon$ Juniperus spp．（Arborescent matorral with Juniperus spp．）－ 5210
－$\Delta \varepsilon v \delta \rho o \varepsilon เ \delta \dot{\eta}$ Matorrals $\mu \varepsilon$ Laurus nobilis－ 5230
－£uøđá δ ec ס́d́фvņ－ 5310

－Фрúyava aró Sarcopoterium spinosum－ 5420

－Аı日̈́veç tn $\operatorname{Avato\lambda tkís~Me\sigma oyeiou~-~} 8140$

－$\Delta \dot{\alpha} \sigma \eta \mu \varepsilon$ Castanea sativa－ 9260
－Eג入nviká סáon o६ıác $\mu \varepsilon$ Abies borisii－regis－9270
－Δ dán o o६áç $\mu \varepsilon$ Quercus frainetto－ 9280
 Xepoovíбou（Securinegion tinctoriae）－92D0
－Δ áon δ puóc tou Alyaiou $\mu \varepsilon$ Quercus brachyphyllo－ 9310
－Δ áon $\mu \varepsilon$ Quercus ilex кaı Quercus rotundifolia－ 9340
－$\Delta \alpha ́ \sigma \eta \eta \varepsilon$ Quercus macrolepis－ 9350

 $\theta \alpha \lambda \alpha \dot{\sigma} \sigma t \alpha \varsigma ~ \beta \lambda \alpha \dot{\sigma} \boldsymbol{\eta} \sigma \eta \varsigma \mu \varepsilon$ Posidonia．
 кatá $\lambda \eta \psi$ ńs touc（\％）عival：

N17－Δ áवŋ $\kappa \omega v$ voфóp ωv（ $10,03 \%$ ）
N18－Aعíфu入入 α סג́an $(20,42 \%)$

 фaivovtat orov 犭áptn tou ПAPAPTHMATOEI．

CORINE 32.7 Чعuסоиаккí．К ω б́ко́с 5350.

 Quercus coccifera，Juniperus oxucedrus，Quercus trojana，Carpinus orientalis，Ostrya carpinifolia， Pistacia terebinthus，Buxus sempervirens，Jasminus fruticans，Fraxinus ornus，Cercis siliquastrum （Coccifero－Carpinetum Honvat）．

 Ostrya carpinifolia，Acer monspessulanus к $\lambda \pi$ ．）．Ot $\theta \alpha \mu v \omega ́ v \varepsilon \varsigma ~ \alpha u t o i ́ ~ \sigma u v \eta ́ \theta \omega \varsigma ~ \varepsilon i ́ v \alpha ı ~ \pi и к v o i ́ ~ к \alpha \iota ~$

 ллоибוо́твроя．

 eupatoria，Acer campestre，Carpinus orientalis，Chrysopogon gryllus，Silene italica，Juniperus oxycedrus，Ballota acetabulosa，Trifolium repens，Fraxinus ornus，Berberis cretica，Ostrya carpinifolia， K．${ }^{\alpha}$ ．

 frainetto.

 $\pi \cup \rho เ ү \varepsilon v ท \dot{~ \pi \varepsilon т \rho \omega ́ \mu \alpha \tau \alpha, ~ \alpha \sigma \beta \varepsilon \sigma т o ́ \lambda ı \theta о \varsigma, ~ \mu \alpha ́ \rho \mu а р о ~ к . \alpha .) . ~}$
$\chi \lambda \omega \rho \iota \delta ı k \dot{n}$ đúvधョon
Eín фutúv rou eпıkpatoúv हivaı ta: Quercus frainetto, Fagus sylvatica, Fagus moesiaca, Carpinus orientalis, Pteridium aquilinum, Coryllus avellana, Poa nemoralis, Quercus petraea, Quercus petraea ssp., Sorbus torminalis, Fagus sylvatica ssp. sylvatica, k. $\dot{\alpha}$.

 ouvń $\theta \omega \varsigma$ ç $70-90 \%$) (Cakiletea maritimae).

 кицатıб
 Tétol α eival ta:
Salsola kali, Cakile maritima, Xanthium strumarium, Euphorbia peplis, Atriplex tatarica, Cynodon dactylon, Atriplex hastata, Polygonum maritimum к.́d.

$X \lambda \omega \rho \iota \delta \iota \kappa \eta \dot{\sigma} \sigma \cup \vartheta \varepsilon \sigma \eta$

Cakile maritima, Salsola kali, Euphorbia peplis, Atriplex prostrata, Matthiola tricuspidata, Xanthium italicum, Xanthium strumarium, Polygonum maritimum, Suaeda spledens, Spergularia salina, Salsola soda, Zygophyllum album, Glaucium flavum, Beta vulgaris ssp. maritima, Anthemis tomentosa, Atriplex recurva, Medicago litoralis, Plantago weldenii, Hordeum marinum, Chenopodium ambrosioides, Chamaesyce peplis, Parapholis incurva, Lotus cytisoides, Anthemis tomentosa, Silene colorata, Medicago littoralis, Echium arenarium, Silene sartorii, Hordeum murinum, Mesembrianthemun nodiflorum, Pseudorlaya pumila.

 α voukoठó $\mu \eta$ Øŋ.

ПANI \triangle A

Opviधoravi $\delta \alpha$

 Handrinos and Akriotis (1996), Birdlife Intenational (2004) ką Mroúбuroupaç (2009), η

 peregrinus (ПEтpitņ), Fringilla coelebs ($\Sigma \pi i v o \varsigma)$), Garrulus glandarius atricapillus (Kioo α

（ $\Delta \varepsilon v t \rho o \sigma t \alpha \rho \eta ́ \theta \rho \alpha$ ），Phalacrocorax aristotelis（ $Ө \alpha \lambda \alpha \sigma \sigma o \kappa o ́ \rho \alpha \kappa \alpha \varsigma), ~ P u f f i n u s ~ y e l k o u a n ~(M u ́ x о \varsigma) ~ к \alpha ı ~$ Tetrao urogallus（Аүріо́коиркос）．

 Eıбıкótepa：

$\Phi=\Phi$ เvór $\omega \rho$ ро
$X=X \varepsilon \mu \omega ́ v a \varsigma$,
$A=A v o t \xi n$
$K=$ Kaлокаipt
2）Katnүopiєc＂Kókкıvou Bßß入iou＂：
K1＝Kıvסuveúouv á $\mu \varepsilon \sigma \alpha$
K2＝Kivסuveúouv
$T P=T \rho \omega \tau \alpha$
$\Sigma=\Sigma \pi$ áví α
AT＝Averapkळ́c $\gamma v \omega \sigma$ т́
A＝Arробסเópıot α
3）K $\alpha \theta \varepsilon \sigma \omega ் \varsigma ̧$ пробт $\alpha \sigma \dot{\alpha} \varsigma$ ：

1． $\mathrm{SPEC}=\mathrm{Ei} \delta \eta \chi \rho \dot{\eta} \zeta$ ovt α проотабíac：

 каӨعотడ́c סıatripnons

EIDIKH OIKO＾OГIKH A $\Xi I O \wedge O Г H \Sigma H ~(E O A) ~ E P \Gamma \Omega N ~ E П E \Xi E P T A \Sigma I A \Sigma ~ K A I ~ \triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \Lambda Y M A T \Omega N ~$ IEPA乏 MONH乏 AГIOY ПAY＾OY

EIAH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovouacia	Eruotnuovikń Ovouacia									
$\wedge \alpha \mu \pi \rho о$ ои́тı	Gavia arctica			＋				II	11	3
ミкоuфоßoutnXtápt	Podiceps cristatus		＋	$+$						
Koккเvoßoutnxtápt	Podiceps grisegena		$+$			A		II	11	
Maupoßoutఇxtápi	Podiceps nigricoiiis		＋			$A \Gamma$		11		
Aрténךऽ	Caionectris diomedea	$+$		＋	＋			11		2
MúXos	Puffinus yeikouan	＋	＋	$+$	＋		＊	11		
Kopuopávos	Phalacrocorax carbo	$+$								
Өа入аббоко́рака¢	Phaiacrocrax aristoteiis	$+$				TP	＊	11		
Kриттотоикviás	Ardeoia raiioides						＊	II		3
＾ıuкотoukviác，	Egretta garzetta	$+$					＊	11		
ミTaxtotoıkviás，	Ardea cinerea	$+$								
Maupore入入руós	Ciconia nigra	＋		$+$	＋		＊	II	II	3
Пе入аруós	Ciconia ciconia	＋					＊	11	11	2
Boußókukvos	Cygnus oior		$+$						11	
Bapßápa	Tadorna tadorna		$+$			TP		II	11	
Прабıvoкย́фа入П	Anas piatyrhynchos	＋	$+$						11	
	Anas querqueduia	＋		＋		$A \Gamma$			11	3
	Pernis apivorus	＋		＋	＋		＊	11	II	
Toi¢tns	Miivus migrans	$+$				K1	＊	11	11	3
Aотропа́pns	Neophron percnopterus	＋				TP	＊	11	11	3
Фıరаєtó¢	Circaetus gallicus	＋		$+$	＋		＊	11	11	3
Ка入ацо́кıрко¢	Circus aeruginosus	＋				TP	＊	II	II	
こтєло́кирко¢	Circus macrourus	$+$						11	11	
Аıßабо́кьркоя	Curcus pygargus	＋		$+$		K1	＊	11	11	
$\Delta u r \lambda o \sigma \alpha{ }^{\text {a }}$ ，	Accipiter gentiiis	＋	＋	＋	＋			11	11	
Tбıх入оүе́рако	Accipiter nisus	＋	＋		＋			11	11	
Eaivt	Accipiter brevipes	＋			＋		＊	11	11	2
Геракіvа	Buteo buteo	＋	＋	＋	＋			II	11	
Xıovoүepakıva	Buteo lagopus		$+$					II	II	
Kpauyaetó¢	Aquiia pomarina	＋				TP	＊	11	11	2
Xpuoaetós	Aquiia chrysaetos	＋	＋	＋	＋	TP	＊	11	11	3
2mıて̧atóç	Hieraaetus fasciatus	＋	＋	＋	＋	TP	＊	II	II	3
¿raupazrós	Hieraaetus pennatus	＋				TP	＊	II	11	3

EIAH		©	X	A	K	K．BIB＾．		79／409	BEP．	BON．
Koıví Ovou＾óia	Eruorquovıки่ Ovo $\mu \alpha \sigma$ i α									
KıpкıvéZ，	Fa／co naumanni	＋		＋		TP	＊	II	1／1I	1
Врахокцркіvеそ̧	Fa／co tinnuncuius	＋	＋	＋	＋			11	II	3
Маирокıркіvе̧\％	Fa／co vespertinus			＋				II	11	
هеvтроүध́рако	Fa／co subbuteo	＋						II	II	
Mauporetpiths	Fa／co eleonorae	$+$				A	＊	II	II	2
Хрибоүе́рако	Fa／co biarmicus		＋			TP	＊	11	11	3
Пetpitns	Fa／co peregrinus	＋				AT	＊	II	11	
Aүpıóкоирко¢	Tetrao urogaiius	＋	＋	＋	＋	Σ		II		
Пธтропе̇рб！ка	Aiectoris graeca	$+$	＋	＋	＋					2
Optúkı	Coturnix coturnix	$+$		＋	＋	Ar			11	3
Nepóкота	Gailinuia chioropus	＋	$+$	＋	＋					
Фаларi δ 人	Fuilica atra		＋						II	
Потацобфuptxtŕs	Charadrius dubius	＋						11	11	
	Charadrius aiexandrinus	＋	＋					II	11	3
K $\alpha \lambda \eta \mu$ div ${ }^{\text {a }}$	Vanellus vane／us		＋						11	2
	Scoiopax rusticoia		＋						11	3
Потацо̇триүүася	Actitis hypoieucos	＋	＋					II	II	3
Etepkopápıo̧	Stercorarius parasiticus			＋						
Маироке́фа入о¢	Larus meianocephaius		＋			TP	＊	11	11	
Navóphapos，	Larus minutus	$+$						II		3
Kабтаvокв́фа入о¢	Larus ridibundus	＋	＋							
＾еттоорацфос	Larus genei		＋			K2	＊	II	11	3
Atyatóy入apos，	Larus audouinii			＋		K2	＊	11	1／11	1
Аопиоо́ү入аро¢	Larus cacchinans	＋	$+$	$+$	$+$					
「ع入оү入ápovo	Gelochelidon ni／otica	＋				K1	＊	II	11	3
Хєццшvoү入ápovo	Sterna sandvicensis		＋			A	＊	II	11	2
Потацоү入ápovo	Sterna hirundo			＋			＊	II	11	
Aуріолері́отеро	Co／umba iivia	$+$	＋	＋	＋					
Фабболерібєро	Co／umba oenas	＋	＋	＋	＋	Σ				
Фáoóa	Co／umba pa／umbus	＋	＋	＋	＋					
Фعкохтои́ра	Streptopelia decaocto	$+$	＋	＋	＋					
Tpuyóve	Streptopelia turtur	＋		＋	＋					3
Koúkos	Cucu／us canorus	＋		＋	＋					

 IEPA乏 MONH乏 AГIOY ПAY＾OY

EIAH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovounaia										
Tutú	Tyto alba	$+$	$+$	$+$	$+$			II		3
「кıúvク¢	Otus scops	＋			$+$			11		2
Mпои́фо̧	Bubo bubo	＋	$+$	$+$	$+$		＊	11		3
Koukoußג̇yıа	Athene noctua	＋	$+$	＋	＋			11		3
Xouxouptotirs	Strix aluco	＋	$+$	$+$	＋			11		
Navóprouфоs	Asio otus	＋	$+$	$+$	＋			11		
「ıరoßúそ，	Caprimulgus europaeus			$+$	＋		＊	11		2
	Apus a pus			$+$	$+$					
ミкعпарvás，	Apus melba	＋		$+$	$+$			11		
A $\lambda_{\text {kuóva }}$	Alcedo atthis	＋	＋				＊	11		3
Ме入ıббофф́үos	Merops a piaster			$+$	$+$			11	11	3
Халкокоироúva	Coracias garrulus			$+$	＋	TP	＊	II	H	2
Tба入алетعıvó¢	Upupa epops			$+$	＋			11		3
	Jynx torquilla			＋				11		3
	Dendrocopos syriacus	$+$					＊	11		
Га入ıávt¢ ${ }^{\text {a }}$	Melanocoryha calandra			$+$			8	II		3
Katoou入tépņ	Galerida cristata	＋	$+$	$+$	＋					3
Δ ¢vтроотарர்Өра	Lululla arborea	＋	$+$				＊			2
¿т $\alpha \rho \eta \dot{\theta} \rho \rho \alpha$	A／auda arvensis		＋	$+$						3
	Riparia riparia	＋		$+$				11		3
Bpazoxe入i（Sovo	Ptyonoprogne rupestris	$+$			＋			11		
Xe入t δ óvt	Hirundo rustics	$+$		$+$	$+$			11		3
Δ evtpoxe入íSovo	Hirundo daurica	＋		＋	$+$			11		
Irutoxe入íovo	Deiichon urbica	＋		$+$	＋			11		3
－＜vtpoke入á δ a	Anthus triviaiis			＋	＋			II		
	Motacilia fiava	＋		$+$	$+$			11		
ミтaxcooovooupá $\delta \alpha$	Motaciiia cinerea	＋		$+$	$+$			11		
＾हuкосоибoup α ర́ α	Motaciiia alba	＋	＋	＋				11		
Nepoко́тбuфа¢	Cinc／us cinc／us	＋	$+$	＋	$+$			11		
Tpuroфpaxiths	Troglodytes troglodytes	＋	＋					11		
Өauvo廿玟ts	Prunella modularis		＋					11		
Xıovo廿自入tns	Prunella collaris	＋	＋	＋	＋			II		
Kouфanరóvi	Cercotrichas galactotes	＋		$+$	$+$			11	11	3

EISH		©	X	A	K	K．BIB＾．	79／409	BEP．	BON．
Kotví Ovouacia									
Kokкıvo入aiun乌	Erithacus rubecula	＋	＋	＋			II	11	
Anరóvi	Luscinia megarhynchos	＋		＋	$+$		II	11	
Kapßouviápŋ̧	Phoenicurus ochruros	＋	＋		$+$		II	II	
Kokkivoúpns	Phoenicurus phoenicurus	＋		＋	$+$		II	11	2
Kaбtavodaipŋs	Saxicola rubetra	＋		＋			11	11	
Maupohaiuns	Saxicola torquata	＋					11	11	
โтахтопетро́к入лऽ	Oenanthe oenanthe	＋		＋			11	II	3
Аवтрокผ่ ${ }^{\text {a }}$	Oenanthe hispanica	＋		＋			II	11	2
Петроко́тбuфа¢	Monticola saxatilis	＋		＋	＋		II	II	
г $\alpha \lambda \alpha$ दुоко́тбифа¢，	Monticola solitarius	＋	＋	＋	$+$		II	11	3
Kótøuфа¢	Turd us merula	＋	＋	$+$	$+$			11	
Toix $\lambda \alpha$	Turd us philomelos	＋	＋	$+$	$+$			11	
Touptod́pa	Turd us viscivorus	＋	＋					11	
Teutanరóvi	Cettia cetti	＋					II	11	
K $\alpha \lambda \alpha \mu$ отр λ ıотй	Locuste／a luscinioides	＋		＋			11	II	
Тотхлолот $\alpha \mu$ I $\delta \alpha$	Acrocephalus	＋		＋			11	11	
	Hippolais pallida	＋		＋	$+$		11	11	3
Аוобтрıтоiба	Hippolais olivetorum	＋		＋	$+$	＊	II	11	2
Kıтрıvootpıtoi α 人	Hippolais icterina	＋					II	11	
Kоккivototpoßá ко̧	Sy／via cantillans			＋			II	11	
Maupororpoßákos	Sy／via melanocephala		＋				II	11	
	Sy／via hortensis	＋		＋	$+$		II	11	3
＾а入отоıроßа́коs	Sy／via curruca	＋		＋	$+$		II	11	
Өациотоцовд́коя	Sy／via communis	＋		＋	$+$		II	II	
	Sy／via borin	＋					11	11	
Maupookoúфп¢	Sy／via atricapiiia	＋	＋				11	11	
Bouvoфu入入обко́ros	Phyloscopus boneiii	＋		＋	$+$		II	11	2
Феvтрофи入入обко́тоऽ	Phyloscopus coïrbita	＋	＋	＋			II	11	
Өаиvофи入лобко́поৎ	Phyloscopus trochiius	＋					II	II	
Xpucoßaбi入iokos	Regu／us reguius	＋		＋			II	11	
Вабı入iokо¢	Regu／us ignicapiiius	＋	＋				11	11	
Muyoxádins	Muscicapa striata	＋		＋	＋		II	11	3
Navouuyoxáфtıs	Ficeduia parva	＋				＊	II	II	

 IEPA乏 MONH乏 AГIOY ПAY＾OY

EIAH		©	X	A	K	K．BIB＾．		79／409	BEP．	BON．
Kotví Ovouaoía										
Mauponuyoxáфtn¢	Ficeduia hypoieuca	＋						11	11	
	Aegithaios caudatus	＋	＋	＋	＋			11		
	Parus pa／ustris	＋	＋	＋	＋			11		
	Parus iugubris	＋	＋	＋	＋			11		
＾офопапабito	Parus cristatus	＋	＋	＋	＋			11		
	Parus ater	＋	＋	＋	＋			11		
	Parus caeruieus	＋	＋	＋	＋			II		
Kа入óүعро¢	Parus major	$+$	＋	$+$	$+$			II		
Kauroosvtpoßát力S	Certhia brachydactyia	＋	＋	＋	$+$			II		
－evtpotoonavákos	Sitta europaea	＋	＋	＋	＋			II		
Врахотоотаváко¢	Sitta neumayer	＋	＋	＋	＋			11		
	Tichodroma muraria		＋			Σ		11		
¿ukoфáyos，	Orioius orioius	$+$		＋	＋			II		
Agtouáxos	Lanius coilurio	$+$		＋	＋		＊	11		3
	Lanius minor	＋		$+$	＋	AT	＊	II		2
	Lanius senator	＋		＋	＋			11		2
	Lanius nubicus	$+$				Σ		II		2
Kioa α	Garrulus giandarius	$+$	＋	＋	$+$					
	Pica pica	＋	＋	＋	＋					
Kóppıa	Corvus moneduia	＋	＋	＋	＋					
Koupoúva	Corvus corone	＋	＋	＋	＋					
Kópaка¢	Corvus corax	＋	＋	＋	$+$					
Wapóv	Sturnus vulgaris	＋	＋	＋	＋					3
Enouppitns	Passer domesticus	$+$	＋	＋	$+$					3
Xwpaфоолоирyitns	Passer hispaniolensis	＋		＋	＋					
Петpootroupyitns	Petronia petronia	＋	＋	＋	＋			11		
	Fringilla montifringilla		＋							
Erivos	Fringilla coe／ebs	＋	＋	＋	＋			II		
ミкарӨáкı	Serinus serinus		＋					11		
Ф ${ }^{\text {¢́pos }}$	Cardueils chioris	＋	＋	＋	＋			11		
K $\alpha 0 \delta$ epiv ${ }^{\text {a }}$	Cardueils cardueils	$+$	＋	＋	＋			II		
＾óuyapo	Cardueils spinus		＋					11		
Фavéto	Cardueilis cannabina	＋	＋					II		2

EIDH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovouacia	Eruotquovikń Ovouacia									
Xovtpouútn¢	Coccothraustes	＋	＋	$+$	$+$			II		
इıp ${ }^{\text {atooix } \lambda \text { ovo }}$	Emberiza cirius	＋	＋					II		
Bouvotaix λ ovo	Emberiza cia	＋		$+$	＋			II		3
B入áxos	Emberiza hortuiana	＋		＋	＋		＊	II		2
	Emberiza caesia	＋		＋	＋		＊	II		
A μ reגoupyós	Emberiza meianocephaia	＋		＋	＋			II		2
Taıфtás	Miliaria calandra	＋		$+$						2
¿úvo入o：	173					29	40	134	81	68

Oалаббоко́ракац（Phalacrocorax aristotelis）

Oıколоүіа

Areı̀ $\bar{\varepsilon} \varsigma$

$\underline{\Sigma \pi \imath \text { 亿aعtóc（Hieraaetus fasciatus）}}$

K $\alpha \vartheta \varepsilon \sigma \tau \dot{\iota} \varsigma \pi \alpha \rho о \cup \sigma i \alpha \varsigma-\pi \lambda \eta \vartheta \vartheta \cup \sigma \mu o ́ \varsigma$

Оьколоріа

Алє८ไर́ऽ

 （ $\lambda \varepsilon เ \tau о u p \gamma i \alpha ~ \lambda \alpha \tau о \mu \varepsilon i \omega v$ ，$\delta t \alpha ́ v o t \xi \eta ~ \delta \rho o ́ \mu \omega v, ~ \varepsilon ү к \alpha \tau \alpha ́ \sigma t \alpha o ŋ ~ к \varepsilon \rho \alpha t \omega ́ v, ~ \alpha v \varepsilon \mu о ү \varepsilon v v \eta \tau \rho เ \omega ́ v ~ к \alpha t ~ \dot{\alpha} \lambda \lambda \omega v$

 ка兀 $\eta \eta \lambda \varepsilon к т \rho о \pi \lambda \eta \xi i \alpha$.

Фıठaยtóc（Circaetus gallicus）

K $\alpha \vartheta \varepsilon \sigma \pi \omega ं \varsigma ~ \pi \alpha \rho o v \sigma i \alpha \varsigma ~-~ \pi \lambda \eta \vartheta \vartheta v \sigma \mu o ́ \varsigma ~$

Оккодоріа

 $\delta \alpha \sigma о к \alpha \dot{\lambda}\langle\boldsymbol{\psi \eta}$.

Xpuoartó (Aquila chrysaetos)

K $\alpha \vartheta \varepsilon \sigma \tau \omega ́ \varsigma ~ \pi \alpha \rho о и \sigma i \alpha \varsigma ~-~ \pi \lambda \eta \vartheta \vartheta v \sigma \mu o ́ \varsigma ~$

 ota סutık α tou Avtid́ $\theta \omega \mathrm{w} \alpha$.

 そعuүápıa (Tucker \& Heath 1994, BirdLife International 2004).

Otкодоріа

Алєиไغ̧́

 пробтатвúбouv ta $\begin{aligned} & \text { Өn } \rho \alpha ́ \mu \alpha t \alpha ́ ~ t o u c . ~\end{aligned}$

 то ε हiठoc．

Пetpitnc（Falco peregrinus）

 $\mu \varepsilon \tau \alpha \xi \cup ́ 100$ к $\alpha \stackrel{250}{ } 25$ そuүápıa（Tucker \＆Heath 1994）．

Оєколоүіа

 $\alpha \varepsilon \rho \alpha$ ．

Aлtılı́s

Bouvootaxtג́pa（Apus melba）

K $\alpha \vartheta \varepsilon \sigma \sigma \dot{\omega} \varsigma \pi \alpha \rho о \cup \sigma i \alpha \varsigma-\pi \lambda \eta \vartheta ้ \nu \sigma \mu \circ \varsigma$

Oиколоүіа

Artetגés

Onג α णтик

 kouv $\alpha \beta$（Martes foina）．תотóбo，$\alpha \xi \iota \pi \rho o ́ \sigma \varepsilon к т \eta ~ \varepsilon i v \alpha ı ~ \eta ~ \alpha \pi о и \sigma i \alpha ~ t o u ~ \lambda u ́ k o u ~(C a n i s ~ l u p u s) . ~ A \pi o ́ ~ \tau \alpha ~$

 （Erinaceus concolor），η vavo $\mu u \gamma \alpha \lambda i \delta \alpha$（Sorex minutus），$\eta$ к $\eta \pi о \mu u \gamma \alpha \lambda i \delta \alpha$（Crosidua suaveolens），$\eta$ олітониүа入iठ α（Crosidua russula），о бкíoupos（Sciurus vulgaris），o orep óфѝos（Spermophilus citelus），о μ ккротифлоло́vtıкац（Spalax leucodon），о траvолоvткко́（Spalax mikrophthalmus），о
 ठaбorovtıós（Sylvaemys sylvaticus），o apou paioç（Microtus arvalis），o ßpaұoпovtıós（Apodemys ystacinus）．

Aло́ т χ Хєเро́лтє α, η птгриүоvuктєрí $\delta \alpha$（Miniopterus schreibersii），$\eta \tau \rho \alpha v o \mu \cup \omega ́ t เ \delta \alpha$（Myotis myotis），

 $\lambda \alpha ф \iota \alpha ́ t \varepsilon \varsigma$（Elaphe quatuorlineata），баiteç（Coluber najadum），$\delta \varepsilon v \delta \rho \circ \gamma \alpha ́ \lambda ı \varepsilon \varsigma$, ，（Coluber gemonensis），

 （Murr．）Barr，ouv．Endothia parasitica（Murr．）Anderson $\kappa \alpha \iota$ ह́X $\varepsilon \iota ~ \varepsilon ү к \alpha \tau \alpha \sigma \tau \alpha \theta \varepsilon i ́ ~ к \alpha \iota ~ \varepsilon \pi \varepsilon \kappa \tau \alpha \theta \varepsilon i ́ o \tau \eta v$

 $\mu u ́ k \eta \tau \alpha$ Phytophthora cinnamomi，лоu $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ \beta \alpha \sigma \iota к о ́ ~ к i ́ v \delta u v o ~ \alpha \lambda \lambda о i ́ \omega \sigma \eta \varsigma ~ \tau о и ~ \xi u ́ \lambda о u . ~ \Sigma u ́ \mu \phi \omega v \alpha \mu \varepsilon$

 vekpŕ opyavikń ú $\eta \eta$ к $\lambda \pi$ ）．

 arudinaceum，Apiospora montagnei，Porpolomyces farinosus，Microthyrium ilicinum к $\alpha \mathrm{t} \pi о \lambda \lambda \omega \dot{\omega}$

 Amanita virosa，Paxillus panuoides（ $\Pi \alpha \dot{\xi} \cup \lambda \lambda$ os o $\pi \eta v i o ́ \mu \circ \phi \circ \varsigma$ ），Suillus collinitus，Mycena atrocyanea

 катаүpaфвí ot ơáviot aбкоцúkпtȩ Mollisia cinerea，Ciboria americana，Lanzia echincephala， Rustroemia firma，R．sydowiana，Sarcoscypha coccinea（ $\Sigma a \rho \kappa о \sigma к u ́ \phi \eta ~ \eta ~ к o ́ к к ı v \eta) ~ к . \alpha . ~ M e t a ६ u ́ ~ \tau \omega v ~$

 Laccaria amethystea（ $\Lambda \alpha к \alpha ́ p ı \alpha \eta ~ \alpha \mu \varepsilon Ө u ́ \sigma \tau ı \eta \eta), ~ S p a e r o b o l u s ~ s t e l l a t u s ~(\Sigma \phi \alpha ı \rho o ́ \mu \pi \alpha \lambda \lambda \alpha ~ \eta ~ \alpha \sigma \tau \varepsilon \rho o \varepsilon i \delta n ́ s), ~$

 Clavariadelphus trucatus（ $К \lambda \alpha \beta \alpha p ı \alpha ́ \delta \varepsilon \lambda \phi \circ \varsigma$ ० үou $\delta 0 \times \varepsilon \rho \circ ́ \mu \circ \rho \phi \circ \varsigma$ ），Hypoxylon fragiforme（Yло́६u入o to

ミTHN ПEPIOXH MEAETH乏

1．3 AMAE इXETIKE乏 ПЛHPOФOPIE乏 ПOY АФОPOYN ГTHN ПEPIOXH MEЛETH乏

1.4 ФЛТОГРАФІКН TEKМHPIЛЕH

1．5 КАТАГРАФН TH乏 KATAミTAEH乏 TOY ФYミIKOY ПEPIBAAAONTOE 玉THN ПEPIOXH TOY AIKTYOY NATURA 2000

1．5．1 Etóxol δ tatńpnons tns oikias π retoxńs Natura 2000

Ató to $\alpha \rho \theta \rho o \quad 8$ тоu N．3937／2001

ع．tn ouvo入ıkń ouvoxń tou סıktúou «Natura 2000»．

 ठıатท́pŋणท́s tou．

 тเç 20 โertt $\varepsilon \mu$ 阝piou 2012.

 х $\alpha \rho \alpha к \pi n \rho t \sigma \tau \varepsilon i ́ n$ oukí $\pi \varepsilon \rho เ$ охń Natura 2000

Túro̧ оккотútou	Kんర́tKó¢	$\pi \varepsilon \rho เ o x \eta{ }^{\prime}$ Natura			Katáotaon 	ミuvo入uń
－Asvßnnosiถín Matorrals $\mu \varepsilon$ Juniperus spp．	5210	1	D			
－NfuKnnoiKń Matorrals $\mu \varepsilon$ Laurus nobilis	5230	1	C	A	C	B
－इuotáoeç סáфuņ	5310	1	C	A	C	B
Funhorhia knurá ts птก́копиขє¢ β р $\alpha \chi \omega ́ \delta \varepsilon เ \varsigma$, $\alpha к \tau \varepsilon ́ \varsigma$	5320	2	A	A	B	A
－Coinvarya Sarrnnoterium spinosum	5420	4	A	C	B	B
－AnRentoízol $\alpha \lambda$ rukoí $\lambda \varepsilon ц \omega ́ v \varepsilon \varsigma$	6170	3	C	B	B	B
－AiAcinesetine Avato入ıки́s Méoүعíou	8140	3	B	B	B	B
－Máron nfuác aாó Luzulo－Fagetum	9110	1	D			
Alnus glutinnca kru Fraxinus excelsior	91 E	1				
－Aármn $\mu \varepsilon$ Castanea sativa	9260	39		A	A	A
$\mu \varepsilon$ Abies borisii－regis	9270	1		C	B	C
－ dáoñ o̧iác $\mu \varepsilon$ Quercus $^{\prime}$	9280	5		B	A	A

α / α		1	2	3	4
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii			V	
4	Asperula aristata ssp. thessala		X		
5	Astragalus thracicus ssp. monochorum		X		
6	Atropa belladona	Γ			A \triangle
7	Aubrieta erubescens			R	
8	Beta nana		X	R	
9	Campanula lavrensis		x		
10	Centaurea pannosa		X		A
11	Centaurea peucedanifolia	A			A

α / α		1			

Eпeधnvíoeic Пivaka 3

2．Evठппико́．$N a \alpha: X$ ．

α / α			
1	Phalacrocorax aristotelis	Өалаббоко́рака¢	H menonví fiver viet to sikine mar $\pi \lambda \eta \theta \cup \sigma \mu$ ои́．
2	I－lieraaetus fasciatus		H meninvń fivai vir Tn fíine uir $\pi \lambda \eta \theta \cup \sigma \mu$ ои́．
3	Puffinus yelkouan	Múxos，	Kpıtŕpıo Bird Life ：B1ii，C3

α / α	Eлtotף		Ei¢ף opıo日żtŋoņ
1	Circoetus gallicus	Фıठątó¢	1\％$\frac{1}{} \lambda \alpha \chi$ ．$\alpha v \alpha \pi . \pi \lambda \eta \theta$ ．E $\lambda \lambda \alpha \dot{\delta} \alpha$ ¢
2	Aquila chrysaetos	Xpuoartós	

α / α			Eión opto日źtワoŋ¢
3	Falco peregrinus	Петрitns	
4	Apus melba	Bouvootaxtápa	

yıа та фиouk $\dot{\text { ev }}$ evtaıtńuата
 $\alpha u \xi \alpha ́ v o v t a l$ ．

 $\mu \varepsilon t \omega \theta \varepsilon i$ кат α то $\pi \rho \circ \beta \lambda \varepsilon \pi t$ ó $\mu \varepsilon ́ \lambda \lambda$ д०V

1．5．3 Kúptєs tıués $\alpha v \alpha \phi$ орác

	Kんбıко́¢	Характпрьтио́¢
$\chi \propto \mu \eta \lambda \dot{\square}$	B01．02	tevuntŕ ditafian af $\delta \varepsilon ́ v \delta \rho \alpha)$
$\chi \alpha \mu \eta \lambda$ ¢	E01．03	
$\chi \alpha \mu \eta \lambda \dot{ }$	A01	ка入入ı ${ }^{\text {¢ }}$ рүєıı α
$\mu \varepsilon ́ \tau \rho ı \alpha$	L09	фwtıá（фưıkń）

2000 －STANDARD DATA FORM

 948 Пиркаүı́́ aró фибıкג́ аitı α

 та סáoŋn kaotaviác.

Пuркауıés

 Eppou.

 $\lambda i \mu v e \varsigma$

 Δ dátaү $^{2} \alpha$ 67/1981)-OXI

 67/1981)-OXI

 -0xi

＞Mauremys rivulata IUCN－LC，Kókкıvo Bıß入io E入入র́סaç－LC，Annexes II of the EU Natural Habitats Directive－OXI
 uұо́нетра

 67／1981）－NAI
 каı סабкка́ ßобкото́тıа．

 Δ tátaү $\mu \alpha$ 67／1981），－NAl

 EKO
＞Platanus orientolis PD67／81 חo入ú kotvó $\sigma \varepsilon$ rotá $\mu \mathrm{I}$ OXI

＞Trapa natans Annex II of Council Directive 92／43／EEC OXI
$>$ Pancratium maritimum Annex II of Council Directive 92／43／EEC OXI
＞Fraxinus angustifolia Annex II of Council Directive 92／43／EEC OXI
$>$ Groenlandia densa Annex II of Council Directive 92／43／EEC OXI
$>$ Lutra Lutro IUCN：NTKókкıvo Bı $\beta \lambda i$ o E $\lambda \lambda \alpha ́ \delta \alpha$ © EN－OXI
 т $о \not$ ท́

$>$ Canis aureus IUCN：LC Kókкıvo Bıß入io E入入á $\delta \alpha$ eç EN NAI otףv repıoxŋ́

 Пара́ртпиа V．Проота⿱宀⿱二小，CITES－OXI

＞Accipiter brevipes 2009／147／EC：Парáptnu人 I，¿úußaon tఇç Bépvnc II，£ú $\mu \beta \alpha \sigma \eta$ tnç Bóvvnç II，

＞Anthus campestris 2009／147／EC：Пара́ptnua I，£úußaon Bépvnç II，KBE－E入入áбaç：LC，IUCN：OXI Eסафо́ßıо عíסоৎ，π ，
＞Aquila pomorina 2009／147／EC：Пapáptnu人 I，£ú β ßaon tnç Bépvnc II，£ú β ßaon tnç Bóvvnç II，
 к $\omega v 0$ фóp ωv OXI

 uүротórоис $\mu \varepsilon \alpha \mu \mu o ́ \lambda$ офоис．OXI
＞Buteo rufinus 2009／147／EC：Пapáptnua I，£úußaon tnç Bépvnc II，£ú $\mu \beta \alpha o n ~ t \eta ̧ ̧ ~ B o ́ v v \eta ̧ ~ I I, ~$

 eкtáoeıç ท́ ßooxótorouç OXI

 $\pi \rho o ́ \sigma \beta \alpha \sigma \eta$ $\sigma \varepsilon$ ع $\lambda \dot{\omega} \delta \eta$ uүроtótouc．OXI

 CITESII／A，KBE－Eג入ג́סac：VU，IUCN：OXI

 E $\lambda \lambda \alpha ́ \delta \alpha c$ ．
 KBE－E入入 α סaç $/ / u$ ，IUCN：OXI

 екта́беıৎ．
＞Falco vespertinus 2009／147／EC：Пapápinu人 I，£úußaon tnc Bépvņ II，£ú $\mu \beta a \sigma \eta$ tnc Bóvvns II，

＞Haliaeetus albicilla 2009／147／EC：Пapáptn $\mu \alpha$ I，£ú μ ßaon Bépvns II，Bonn Convention I／II，CITESI，

 OXI

 актіvoßo久ies.

2. $\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O \wedge O T H \Sigma H ~ T \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N ~$

 $\theta \varepsilon \rho \mu o ́ ß \iota \omega v \pi \varepsilon u ́ k \omega v$.
 $\theta \propto \delta$ іафоропопŋ $Ө$ ои́v.
 афора́ to otá δ เo tทৎ катабкعuńs tou ह́pyou.

3. METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma T \Omega N ~ \Pi I \Theta A N \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N$

 Castanea sativa, Quercus sp., Fagus sp.), a $\lambda \lambda \dot{\alpha}$ unápxouv kaı opıo $\mu \dot{v} v \alpha$ к $\omega v o \phi o ́ p \alpha$ סáon (Pinus

 $\pi \alpha ́ v \omega \omega$ a

 Quercus coccifera.

 Пعрıß่́ $\lambda \lambda$ ovtos (1992), $\pi \varepsilon \rho \iota \lambda \alpha \mu \beta \alpha ́ v o v t \alpha \iota ~ 5 ~ \tau \alpha \xi t ~(C o r y d a l i s ~ i n t e g r a, ~ O s m u n d a ~ r e g a l i s, ~ O x y t r o p i s ~$

 Cephalanthera damasonium, Convallaria majalis, Dianthus petraeus ssp. Orbelicus, Neottia nidusavis, Platanthera bifolia, Platanthera chlorantha, Poa thessala, Sorbus chamaemespilus) $\pi \rho о \sigma \pi \alpha \varepsilon \varepsilon u ́ o v t \alpha \iota ~ \alpha \pi o ́ ~ т о ~ \varepsilon \lambda \lambda \eta v i к o ́ ~ \pi \rho о \varepsilon \delta \rho ı к o ́ ~ \delta ı \alpha ́ t a ү \mu \alpha ~(67 / 1981), ~ з ~ \varepsilon i ́ \delta \eta ~(H e r a c l e u m ~ h u m i l e, ~$ Saxifraga juniperifolia ssp. Sancta, Ophioglossum vulgatum) عivat onávıa ơףv E $\lambda \lambda \alpha \dot{\delta} \delta \alpha$ ń / Ta $\beta \alpha \lambda_{k} \alpha v i k \alpha \dot{\alpha}$ ev $\delta \eta \mu \mathrm{k} \alpha \dot{\alpha}$ (Allium chamaespathum, Arabis bryoides, Asperula aristata ssp. Nestia, Colchicum doerfleri, Erysimum drenowskii, Stachys leucoglossa) каı 1 ta६ıvo μ ккós (Thymus thracicus).

 $\alpha u \tau \omega ் v \delta \varepsilon v$ عivat $\pi \lambda \dot{f} \rho \omega \varsigma ̧$ үv
 тои α व́xเซтоv 420 عíסŋท.

 तávต aró 100 ह́tๆᄁ.

 бє μ ккро́тєро $\alpha \rho t \theta \mu o ́ ~ \varepsilon เ \delta \omega ́ v . ~$

 пиркаүıác عivaı η Fritillaria euboeica (Phitos et al. 1995).

 tnc $\pi \alpha v i \delta \alpha \varsigma$:

 $\tau \omega v$:
 סג́øŋ)

 поu ह́x

 аvaл $\alpha \propto ү \omega ү \iota ท \dot{~ \pi \varepsilon \rho i o \delta o, ~} \mu \varepsilon \tau \alpha \xi \cup ́ ~ A \pi \rho เ \lambda i o u ~ к \alpha t ~ l o u \lambda i o u . ~$
 про́бкроиđŋя

 в́ppov.

4．ANTIETAOMIミTIKA METPA

N．4014／2011

Enirtwon	Mżtp α
そढ̈vns عppaóas	
Пробwpıvó̧ катакериатıбиó¢	 проошрเví $\pi \varepsilon \rho i \phi \rho a \xi \eta$ ．
avaไŋ́tnoņ т тофท́s	

Enirtwon	Méto α
Пробшрıví $\alpha \pi \dot{\lambda} \lambda \varepsilon ı \alpha ~ \pi \bullet \theta \alpha v \omega ் v ~ \theta \varepsilon ́ \sigma \varepsilon \omega v ~$ ф $\omega \lambda \varepsilon$ олоínons	 （то е́рүo віvaı по入ú μ нкро́）
Проowpivń óx入non．	

4．3 A\＆ı๐入óvnon μ н́t $\rho \omega v$ avtiotá $\theta \mu i \sigma n s$

 $\mu \pi о р \varepsilon i \operatorname{v} \alpha \varepsilon \xi \alpha \lambda \varepsilon \mid \phi \tau \varepsilon i)$ ．

 $\pi \lambda \dot{\rho} \rho \omega c$ ．

 ка兀ん́ to X ρ ỏvo ékӨzaņ．

 $\pi \rho о \sigma \boldsymbol{\alpha \tau \varepsilon \cup о ́ \mu \varepsilon v \eta \varsigma ~ \pi \varepsilon р เ о х \emptyset ́ \varsigma . ~}$
 тทv $\alpha \rho \mu o ́ \delta \iota \alpha \alpha \rho \chi$ ท́.

 кат $\dot{\lambda} \lambda \eta \eta \lambda \eta \dot{\alpha} \delta \varepsilon เ \alpha$ апо́ тเৎ̧ $\alpha \rho \mu$ о́

 $\pi \rho о к \lambda \eta$ Өúv ох λ п́бєเৎ.
 $\chi \alpha \mu \eta \lambda \dot{~ \tau \alpha \chi u ́ t \eta \tau \alpha ~ \varepsilon v t o ́ s ~ \tau \omega v ~ \pi \varepsilon p i o \chi \omega ́ v . ~}$

- $N \alpha \mu \eta \vee \delta \eta \mu$ toupyoúvtal « $\lambda \iota \mu$ voú $\lambda \varepsilon \varsigma »$

 $\pi \varepsilon \rho t о \chi \eta ́ ~ \pi \rho t v ~ \alpha \pi o ́ ~ \tau \eta v ~ к \alpha \tau \alpha \sigma \kappa \varepsilon \cup \eta ́ ~(\pi . \chi . ~ к \rho \eta \sigma ф u ́ ү \varepsilon \tau \alpha, ~ ф \omega \lambda t \varepsilon ́ \varsigma ~ \varepsilon \rho \pi \varepsilon \tau \omega ́ \omega) ~$

Apرóбtot форعic u入oroínons

 тотıкоúç форعiç (Iعрд́ Kotvótŋта, $\Delta \alpha \sigma \alpha \rho \chi \varepsilon i o, ~ к . \lambda . \pi.) . ~$

5. ПРОГРАММА ПАРАКОЛОҮОНГНГ

 к α Ooptotoúv.

 192／B－14．3．1997）

 оплтткท́s $\delta \varepsilon \xi \alpha \mu \varepsilon v i ́ s$.
－Пробтабіа тпৎ $\delta \eta \mu$ о́бтас uүعíac．

Перıßа入入огткки́ парако入ои́Өŋøך

 （KYA 5673／400／1997（ФEK 192／B－14．3．1997））．

Eigepxónevo opvavikó بoptio

 $\lambda \nu \mu \alpha \dot{\tau} \tau v$.

 - λ ок入ńp ω oŕ rous.

ПAPAMETPOE	EIEOAOE	EEOAOE	INYE	\triangle EITMA	ПAPATHPHEEİ
$B O D_{5}$	\＃	\＃		M．H	
COD	\＃	\＃		M．H	
SS	\＃	\＃		M．H	
A $\mu \mu \omega v i \alpha \kappa \dot{\alpha}, ~ v \iota t \rho \omega \dot{\delta} \eta$ ， vitpuká	\＃	\＃		M．H	
TP	\＃	\＃		M．H	

\＃：Пєрıобtка́（ $\pi . \chi \cdot 1-2 / \mu \eta v t \alpha i \omega \varsigma)$
＊：$\Sigma \pi о \rho \alpha \delta$ 七к α
M．H ：Méбo $\eta \mu \varepsilon \rho ท ் \sigma เ o ~ \delta \varepsilon i ́ \gamma \mu \alpha$

6．$\Sigma Y N O \Psi H \Sigma Y M \Pi E P A \Sigma M A T \Omega N$

 $\varepsilon \mu \phi \alpha ́ v i o \eta ~ \alpha \rho к \varepsilon \tau \omega ́ v ~ o \eta \mu \alpha v t ı k \omega ́ v ~ t a x a . ~$

 к $\alpha \iota ~ \tau \eta \vee ~ \alpha \pi \omega ́ \lambda \varepsilon เ \alpha ~ \tau \omega \vee ~ т о ́ \pi \omega v ~ \omega о т о к і ́ \alpha \varsigma, ~ к \lambda \pi$ ．

 $\lambda u \mu \alpha ́ \tau \omega v:$

 лерıßдд入入оv．

Me tnv катабквuท́ tou ह́pyou：

7．BIBNIOГРАФIKE乏 ПHГE乏

 Poठórnc．AӨŋ́va．

－EइYE Алоүрафர́ 1991.

－Dimou D，Gikas GD，Tsihrintzis VA：＂Water quantity and quality monitoring of Lissos river，North Greece＂，Proceedings of the Third International Conference on Environmental Management， Engineering，Planning and Economics（CEMEPE 2011）\＆SECOTOX Conference，2011，Skiathos， Greece，p．151－157

－「亡avvóлоu入oç，PYחANइH T ΩN Y $\triangle A T I N \Omega N ~ \Sigma \Omega M A T \Omega N$ AПO THN KYK＾OФOPIA T ΩN OXHMAT ΩN

－＂The AOPII Cost Effectiveness Study Part III：The transport base case Annex B4 Greece，The European Commission，Standard \＆Poor＇s DRI and KULeuven＂
－YПЕХ $\Omega \Delta E$＂Ат
－Taylor，E．C．，Green，R．E．，\＆Perrins，J．（2007）Stone－curlews Burhinus oedicnemus and recreational disturbance：developing a management tool for access．Ibis， 149 （1），37－44．
－Tucker，G．M．\＆Heath M．F．，（1994）Birds in Europe：Their conservation status．Cambridge，UK．： BirdLife International（BirdLife Conservation Series No 3）
－Barros，C．\＆De Juana，．E．（1997）Breeding success of the Stone Curlew Burhinus oedicnemus at La Serena（Badaioz．Spain）．Ardeola 44 （2），199－206．
－Bealey，C．E．，Green，R．E．，Robson，R．，Taylor，C．R．，Winspear，R．（1999）Factors affecting the numbers and breeding success of Stone Curlews Burhinus oedicnemus at Porton Down，Wiltshire． Bird Study 46 （2），145－156．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．
－Giannangeli，L．，De Sanctis，A．，Manginelli，R．，Medina，F．M．（2005）Seasonal variation of the diet of the stone curlew Burhinus oedicnemus distinctus at the Island of La Palma，Canary Islands． Ardea 92 （2），175－184．
－Green，R．E．，Tyler，G．A．，Bowden，C．G．R．（2000）Habitat selection，ranging behaviour and diet of the stone curlew（Burhinus oedicnemus）in southern England Journal of Zoology 250 （2），161－183．
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Thompson，S．，Hazel，A．，Bailey，N．，Bayliss，J．，Lee J．T．（2004）Identifying potential breeding sites for the stone curlew（Burhinus oedicnemus）in the UK．Journal for Nature Conservation 12， 229 － 235.
－Catry T．，Ramos JA．，Catry I．，Allen－Revez M．，Grade N．， 2004 Are salinas a suitable alternative breeding habitat for Little Terns Sterna albifrons？IBIS 146 （2）：247－257 APR 2004
－Fasola M．，（1993）Distribution，population and Habitat Requirements of the Vommon Tern and the Little Tern breeding in the Mediterranean in Aguilar，J．S．，Monbailliu，X．Paterson，A．M．Status and Conservation of Seabirds，Proceedings of the 2nd MEDMARAVIS，SEO，Madrid
－Goutner V．，Charalambidou T．，\＆Albanis A．（1997）Organochlorina Insecticide Residues in Eggs of the Little Term（Sterna albifrons）in the Axios Delta，Greece．Bull．Environmental Contamination and Toxicology 58－61－66
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Joris E．，\＆Stienen E．，（2009）Impact of wind Turbines on Terns in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．
－Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute （VLIZ）．Oostende，Belgium．Viii＋68 p．
－Medeiros R．；Ramos J．，Paiva V．，Almeida A．，Pedro P．，Antunes S．（2007）Signage reduces the impact of human disturbance on
－Little tern nesting success in Portugal，Biological Conservation 135 （2007）99－100
－Mullarney K．，Svensson L，．Zetterstrom D．，\＆Grant P．，（1999）Ta Пou入ıá tņ E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha \varsigma$ ，tņ Kúrpou

－Ruben F．，Krijgsveld K．，Camiel Heunks，Martin Poot \＆Sjoerd Dirksen．（2009）Nocturnal and Diurnal Flight Intensity and Altitude of Seabirds and Migrants in and around an Offshore WindFarm in the Dutch North Sea in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．
－Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute（VLIZ）．Oostende，Belgium．Viii＋68 p．

 EKOE
三áven 2006．$\sigma \varepsilon \lambda .64$
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－BirdLife International（2008）Species factsheets．Downloaded from http：／／www．birdlife．org Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Mullarney K．，Svensson L，．Zetterstrom D．，\＆Grant P．，（1999）Ta Пou入ıá tnৎ E入入ádac，tп̧ Kúrpou каı tns Eupш́rns．

 OpviӨ๐入оүıки́ Etaıpzía．
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．

- De La Montana, E., Rey-Benayas, J.M., Carrascal, L.M. (2006) Response of bird communities to silvicultural thinning of Mediterranean maquis. Journal of Applied Ecology 43, 651-659.
- Guerrieri, G., Pietrelli, L., Biondi, M. (1996) Status and reproductive habitat selection of three species of Shrikes, Lanius collurio, L. senator and L. minor in a Mediterranean area. (Proc. of the First Intern. Shrike Symposium) Found. Vert. Zool. 6, 167-171.
- Handrinos, G., \& Akriotis, T., (1997) The birds of Greece. C. Helm, A \& C Black, London.
- Isenmann, P., Debout, G. (2000) Vineyards harbour a relict population of Lesser Grey Shrike (Lanius minor) in Mediterranean France. Journal fur Ornithologie 141 (4), 435-440.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) Philopatry, dispersal patterns and nest-site reuse in Lesser Grey Shrikes (Lanius minor). Biodivers. Conserv. 16, 987-995.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) The importance of breeding density and breeding synchrony for paternity assurance strategies in the lesser grey shrike. Folia Zoologica 57 (3), 240250.
- Kristin, A., Hoi, H., Valera, F., Hoi, H. (2000) Breeding biology and breeding success of the Lesser Grey Shrike (Lanius minor) in a stable and dense population. Ibis 142 (2), 305-311.
- Lepley, M., Ranc, S., Isenmann, P., Bara, T., Ponel, P., Guillemain, M. (2004) Diet and gregarious breeding in lesser Grey Shrike (Lanius minor) in Mediterranean France. Revue d'Ecologie (La Terre et la Vie) 59 (4), 591-602. Pons P., Lambert B., Rigolot E., Prodon, R. (2003) The effects of grassland management using fire on habitat occupancy and conservation of birds at a mosaic landscape. Biodiversity and Conservation 12, 1843-1860.
- Ristow, D., Wink C., Wink M. (1986) Assessment of Mediterranean Autumn Migration by Prey Analysis of Eleonora's Falcon. Proc. 1st Conf. on Birds wintering in the Mediterranean Region, Aulla Feb. 1984. Supplemento alle Ricerche di Biologia della Selvaggina 10(1), 285-295.
- Tucker, G. M. \& Heath M. F., (1994) Birds in Europe: Their conservation status. Cambridge, UK.: BirdLife International (BirdLife Conservation Series No 3)
- Valera, F., Kristin, A., Hoi, H. (2001) Why does the lesser grey shrike (Lanius minor) seldom store food? Determinants of impaling in an uncommon storing species. Behaviour 138 (11-12), 14211436.
- Wirtitsch, M., Hoi, H., Valera, F., Kristin, A. (2001) Habitat composition and use in the lesser grey shrike (Lanius minor). Folia Zoologica 50 (2), 137-150
 $\Delta t \alpha \chi \varepsilon i \rho t \sigma \eta ~ к \alpha \lambda \alpha \mu t \omega ́ v \omega v \lambda i ́ \mu v \eta \varsigma$ l $\sigma \mu \alpha \rho i \delta \alpha \varsigma)$,
 Btotwviסaç, lquapíסac), Boskidis et al., 2010 (J., Envir., Scien., Health, 45,11, 1421-1440, Changes of water quality and SWAT modelling of Vosvozis river basin),
 Өра́кпся),
- Economou et al., 2007 (Medit., Mar., Scien., 8,1,91-166, The freshwater ichthyofauna of Greece),

- $\Sigma к о и ́ \lambda о \varsigma, ~ 1993 ~(Т \varepsilon Х V ., ~ ' Е к Ө \varepsilon \sigma ., ~ Ү П Е X ~ \Omega \Delta E, ~ \Delta ı \alpha \chi \varepsilon i p t o \eta ~ \lambda i ́ \mu \nu \eta \varsigma ~ l \sigma \mu \alpha \rho i ́ \delta \alpha \varsigma ~ к \lambda \pi), ~$
- Papastergiadou, Babalonas, 1993 (Willd., 23,137-142, Aquatic flora of N.Greece)Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),
- Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),

 ОППЕ० 97
 Екסóбョцц OППЕӨ 97.
 A日ńva．
－Zagas，T．D．，P．P．Ganatsas，T．K．Tsitsoni and Marianthi Tsakaldimi．2004．Thinning effect on stand structure of holm oak stand in northern Greece．In：
－Arianoutsou，M．and V．P．Papanastasis（eds），Proceedings of the 10th MEDECOS Conference，April 25－May 1，2004．Rhodes，Greece．Millpress，Rotterdam．

 117.
－Grisebach，A．1841．Reise durch Rumelien und Brussa in jahre 1839， 1.2 Gottingen．
－Mattfeld，J．1927．Aus wald und macchie in Griechenland．Dendrol．Ges．38：106－151．
 Apvaiac．Өeaбa入ovikn．
 1：50．00 AӨ＇

8．OMADA MEAETH乏

Tax．$\Delta / v \sigma \eta$ ：Пала́фП 82，Өعбба入оvíкп，Т．К．54453，
Tף $\lambda . /$ Fax： 2310902321 ／ 2310330630
$\Sigma \phi \rho \alpha ү і \delta \alpha-$ Үлоүрафи́

Orooalovikn 14／041 20．22
IIA TON EAETXO
O EПIB $\wedge E \Pi \Omega N$ TH MEAETH

[^0]:

[^1]: M．П．E．EPTSN EПE＝EPTAエIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma \Pi I K \Omega N ~ A Y M A T S N ~ I . ~ M . ~ A П I O Y ~ П A Y Я O Y ~-~ M H ~ T E X N I K H ~ П E P I A H \Psi H ~-9-~$

[^2]:
 2. avtiotoixei oع ENDIAME Σ H KATAZTA ΣH - EПIПT $\Omega \Sigma H$
 3. KOKKINH ENAEIEH avtıotoıхघi oع APNHTIKH EחIחT $\Omega \Sigma$ H

[^3]: Oópußoc－סovñóıs

