IEPA KOINOTHTA
AГIOY OPOY乏
$A \Theta \Omega$

EPTO：

«EPTA EПEEEPTA乏IA乏 KAI AIAOE ミTO AГION OPO乏»
 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ А Y M A T \Omega N ~ I . ~ M . ~ O \Sigma I O Y ~ Г P H I O P I O Y ~$

ANAAOXOE MEAETHE

EYミTPATIOE KAPAГESPRIOY ПАПАФН 82， 54453 ӨЕГЕAЛONIKH email：skarageo＠gmail．com

ЕРГО：
 «EPГA EПE＝EPГA乏IA乏 KAI AIAOE $H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ \Sigma T O ~$ AГION OPOE»

MEЛETH ПEPIBAИMONTIKSN EПIITTREERN
EPISN EITEEEPIAEIA KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~ O \Sigma I O Y ~$ ГРНГOPIOY

MH TEXNIKH ПEPINH ΨH

ANALOXOE MEAETHE

EYミTPATIOE KAPATERPTIOY
ПАПАФН 82， 54453 ӨEडऽAへONIKH
email：skarageo＠gmail．com

ПINAKA乏 ПEPIEXOMENRN

2．MH TEXNIKH ПEPIAHYH 3
2．1．ПЕРІРАФН ЕРГОУ． ．． 3
 3
 3
 4
 6
2．2．AПOETALEIL－EYNTETAIMENEL7
2．3．ПEPIBAAAONTIKE E EIIIITR工EIL9
2．4．METPA KAI \triangle PAEEIE IIA THN IIPOETAEIA TOY IEPIBAAAONTOE， 12
2．5．ОФЕАН． 12
2．6．ENAAAAKTIKEE AYEEIL 12
 12

2．MH TEXNIKH ПEPI＾H ΨH

2．1．Перıүрачŋ́ в́рүои

 к入áoņ SN8，．

 （E．E．＾．3）．

 к入àoņ SN8，غүкıß

E.E. Λ.

 трıळ்v on

 отоиц ако்خоuӨоuц пivaкє६:

ПAPAMETPOE		ПAPOYミA ФAEH	ФAEH EXEAIAEMOY
	кат.	280,00	370,00
	$\mathrm{m}^{3} / \mathrm{d}$	42,00	55,50
акаӨápтшv	$\mathrm{m}^{3} / \mathrm{d}$	63,00	83,25
	$\mathrm{m}^{3} / \mathrm{h}$	2,63	3,47
Mapoxń aixuṅ¢ Qo	$\mathrm{m}^{3} / \mathrm{h}$	9,47	12,49
Eıర̈ıкó Puпavtıкó ¢орті́ BOD_{5}	gr/kat/d	60	60
ЕІбıко̇ Puпavтıко́ ¢ортіо TSS	gr/kat	70	70
Eıöıкó Punavtıкó ¢ортio TN	gr/кat/d	10	10
EıЇıко́ Puпavtıкó ¢ортіо TP	gr/кat/d	3	3
	kg/d	16,80	22,20
	kg/d	19,60	25,90
	kg/d	2,80	3,70

	kg／d	0，84	1，11

ПAPAMETPOE		ПAPOYミA ФAEH	ФAEH EXEAIAEMOY
	кат．	84，00	111，00
	$\mathrm{m}^{3} / \mathrm{d}$	12，60	16，65
акаӨápтшv	$\mathrm{m}^{3} / \mathrm{d}$	18，90	24，98
	$\mathrm{m}^{3} / \mathrm{h}$	0，79	1，04
Парохウ் aıхиர்¢ Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	2，84	3，74
Eıठıкȯ Punavtıkó بортіо BOD_{5}	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	60	60
Eıठıко̇ Punavtıkó ¢ортio TSS	gr／kat	70	70
Eıठıкó Puпavtikó 甲ортio TN	$\mathrm{gr} / \mathrm{kat} / \mathrm{d}$	10	10
Eıöıkó Punavtikó poptio TP	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	3	3
	kg／d	5，04	6，66
	kg／d	5，88	7，77
	kg／d	0，84	1，11
Фортіо TP охहరıабนой	kg／d	0，25	0，33

ПAPAMETPOE		ПАРОYЕA ФAEH	ФAEH EXEAIAEMOY
	кат．	112，00	148，00
	$\mathrm{m}^{3} / \mathrm{d}$	16，80	22，20
акаӨа́ртшv	$\mathrm{m}^{3} / \mathrm{d}$	25，20	33，30
	$\mathrm{m}^{3} / \mathrm{h}$	1，05	1，39
	$\mathrm{m}^{3} / \mathrm{h}$	3，78	5，00
Eıర̈ıkó Punavtikó 甲ортio BOD ${ }_{5}$	gr／кat／d	60	60
Eıठıкȯ Punavtikó 甲ортio TSS	gr／kat	70	70
Eıठııó Pumavtikó ¢ортio TN	gr／кaт／d	10	10

Eıбıкó Punavtıкó ¢ортіо TP	gr/kar/d	3	3
Фортіо BOD_{5} о才еరІІабนой	kg/d	6,72	8,88
Фортіо TSS бхеঠıабиои่	kg/d	7,84	10,36
Фортіо TN охеరıабиой	kg/d	1,12	1,48
Фортіо TP бхуঠıабиои่	kg/d	0,34	0,44

Tа катабкєиаотіка́ отоıхвіа тои غ́pyou пері入анßávouv:
Фáon A^{\prime} : X X ω uatoupvikéc epyaoiec E.E. \wedge.
H фáon aut

 $\mu \eta$ Xaviкou่ aعpıఠนou่.

 ঠІаперато́тпта UVT 50\%/cm.

 пєрıохள்ৎ đє EGSA 87 عivaı $\mathrm{X}=521633,60$ каı $\mathrm{Y}=4476569,54$.

	ミuvtetayuėvec, ETEA 87	
	X	Y
Apx'̇	521633,60	4447659,54
	521660,85	4447632,83
Evōıáuعoo 2	521667,14	4447616,68
Ténos - Eioodos ПрокаӨiZnoņ	521677,90	4447608,61

 OTПV E.E.A. 1 हival:

	इuvtetayuėveç EГГA 87	
	X	Y
Apx'̇	521681,62	4447598,62
	521677,90	4447608,61

 521676,32 ка। $Y=4447605,81$.

	¿uvtetaypėvec EİA 87	
	X	Y
＇Ȩoठ̄os anó EEA	521676，23	4447602，05
ミпиعio סıáӨzons	521677，29	4447597，73

	ミuvtetaypėvec Eİ之A 87	
	X	Y
Apxí	521600，16	4447425，74
	521600，61	4447442，12

 521599，67 каІ $Y=4447419,09$ ．

	ミuvterayuėveç ETEA 87	
	X	Y
Apxí	521609，53	4447380，62
Evöıáneoo 1	521615，77	4447379，49
Evঠıáneбo 2	521634，06	4447389，20
Evঠıáuع๐o 3	521669，55	4447395，55
	521675，86	4447390，82

 521676，03 каı $\mathrm{Y}=4447387,31$ ．

	ミuvterayuėvȩ，E［さA 87	
	X	Y
＇EEOరOc anó EEへ	521673，26	4447387，52
ミпurio סiáӨrans	521654，58	4447391，36

1. ПPAミINH ENAEIEH avtıoтoıxघi oع ӨETIKH EПIחTI $\Omega \Sigma H$

2. KOKKINH ENAEIEH avtıтоוхદi $\sigma \varepsilon ~ A P N H T I K H ~ E П I \Pi T T \Omega \Sigma H ~$

EPIO ：«EPTA EПE＝EPTAEIAI KAI $\triangle L A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S Z N ~ I T O ~ A I I O N ~ O P O \Sigma » ~$

ФAH EPROY	ПEPIBAMAONTIKO ETOIXEIO	EMIITSEEİ			BAPYTHTA				AIAPKEIA		ANA工TPE I IMH		
		$\frac{2}{2}$	W	8	否	$\frac{5}{\text { E }}$					－		－
			\checkmark					$\sqrt{ }$	$\sqrt{ }$			\checkmark	
	Морфолоүıка̇ каı тополоүıка̇ характтрıотıка̇		$\sqrt{ }$										
	характпрітткќ			$\sqrt{ }$									
	Фuбıко́ пعрıßà入入ov	$\sqrt{ }$			$\sqrt{ }$				\checkmark				
	AvӨр．ппоүعvغ́¢ перıßà入hov	\checkmark			$\sqrt{ }$				\checkmark				
		\checkmark			\checkmark				\checkmark				
				$\sqrt{ }$									
		$\sqrt{ }$			$\sqrt{ }$				$\sqrt{ }$				
	Поıо́тףта тои аह́pa	$\sqrt{ }$						$\sqrt{ }$	$\sqrt{ }$				$\sqrt{ }$
	Oópußо¢ каı ठ̄оvฑ̇бєı¢，	$\sqrt{ }$					$\sqrt{ }$		\checkmark				$\sqrt{ }$
	Н入єкроиаүvๆтıка́ пеठia			$\sqrt{ }$									
	Үסата	$\sqrt{ }$			$\sqrt{ }$				\checkmark				
		$\sqrt{ }$				$\sqrt{ }$				\checkmark		$\sqrt{ }$	

 $\lambda \varepsilon$ лтоupyia touc．

2．5．O甲ع́ 1η

 перıßà入入ov．

 періßà入入ov．

тПऽ бXEтIKர்ৎ KYA

Enınt由̈のعıc Tou épyou otnv nepıoxń Natura

＊$\Delta \varepsilon v$ Өa а入入ágॄı η норфо入оүіа тпऽ перıохйя．

Tax．$\Delta /$ voŋ：Пaпá甲 82, Өعбба入оviкп，Т．К．54453，
Tク入．： 2310902321
Email：skarageo＠gmail．com

```
\Sigmaфрауіб̈а - Yпоүра甲ர́
```

KAPATERPTIOY A．EYETPATIOE ДIПА Ω M．XHMIKOE MHXANIKOE A．П．O． MEAOE T．E．E．APIOMOE MHTPSOY 87022
 THA 2310.392 .321

Өrooa入ovikn $14 / 041$ 20．22
IIA TON EAETXO

Móoxos なのルாaそútns $\Delta a o o$ óyos $\mu \varepsilon$ A β ．

Өrooa入ovikn 14041 202？
O ПPDİइTAMENOE
TMHMATOE $\triangle A E O M$ \＆DKPIBAMONTOL
 \triangle aoodóyoc $\mu \varepsilon A^{\prime} \beta$

OEתPHOHKE Orogodovisn．14．（04／．2022．

O AIEYOYNTH乏 TH乏 TEXNIKHE YHHPEZTAE

「é́pyıos Matpará̧̧ns Hodıtкós Mnxavisós $\mu \varepsilon$ A＇β ．

IEPA KOINOTHTA AIIOY OPOY乏 $A \Theta \Omega$

ЕРГО：
 «EPГA ЕПE＝EPTA乏IA乏 KAI AIAOE $H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ \Sigma T O ~$ AIION OPOE»

MEЛETH ПEPIBAИAONTIKSN EПI／TTSEERN EPГSN EПTEEEPГAEIAE KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~ O \Sigma I O Y ~$ ГРНГOPIOY

ANAAOXOE MEAETHE
EY ZTPATIO K KAPAIEQPIIOY ПАПАФН 82， 54453 ӨЕこさAAONIKH
email：skarageo＠gmail．com

חINAKAE MEPIEXOMENתN

1．EILAГ $\Omega \Gamma H$ 10
1．1．Titaos eptoy 10
1．2．EIAOL KAI MEIE＠OL EPIOY． 10
1．3．ГЕএГРAФIKH ӨЕटH KAI \triangle IOIKHTIKH YILAГ Ω ГН EPIOY 11
1．3．1 Өヒ́व 11
1．3．2 Аююктакй тпауай． 13
 13
1．3．3．1 EUvtetaү 13
 $\pi \rho \circ$ ，E．E．A． 1 13
 14
1．3．3．4 Euvtetaүuéves E．E．$\Lambda .1$14
 14
 14
1．3．3．7 इขvteraүú̇veg E．E．A． 2. 14
 14
1．3．3．9 Evvtetay μ ivec E．E．A． 3 15
 15
1．4．KATATAEH TOY EPLOY 15
1．5．TOPEAE EPIOY 16
1．6．ПEPIBAAAONTIKOL MEAETHTHZ EPIOY 16
2．MH TEXNIKH IEPIAHYH 17
3．$\Sigma Y N O I T I K H ~ I E P I Г P A Ф H ~ T ~ \Omega N ~ E P Г \Omega N ~$ 18
3．1．BAEIKA ETOIXEIA TOY EPIOY 18
 18
3．1．2 Пертүрачضं врүюv алохв́твиппร． 18
 19
3．2．BAEIKA ETOIXEIA KATALKEYHE KAI AETTOYPTIAE 21
3．2．1 Пертрацр＇גertovpүias． 21
3．3．AПATTOYMENEL ПOSOTHTE $\Pi P \Omega T \Omega N$ Y $\Omega \Omega$ ，NEPOY，ENEPIEIA乏 KAI AПOBAHT Ω N 22
 22
3．3．2 Побо́tитес аловגท̆тоv． 22
 24
4．1．इTOXOE KAI ミKOIIMOTHTA 24
 24
Épyov 24
 24
4．2．IETOPIKH PEEAIEH TRN EPRINN， 25
4．3．OIKONOMIKA ETOIXEIA T TNN EPR Ω N 25
4．3．1 Ектіцпоп ошvоінко́ тройтодоүьбцои́． 25
 25
4．3．3 Тро́лоऽ хрпиатоботтопऽ 25
4．4．इYEXETILH TOY EPTOY ME AAAA EPTA 25
5．इYMBATOTHTA TOY EPГOY ME OE $\Sigma M O \Theta E T H M E N E \Sigma ~ X \Omega P I K E \Sigma ~ K A I ~ H O A E O A O M I K E \Sigma ~$ AEEMEYEEIL THE IEPIOXHZ 27
5．1．©eटH TOY EPTOY 27
5．1．1 Opıа оькабцळ́v 27
 27
 27
 27
5．1．4．1 Ой七о́ діктио 27
 27
 27
 28
5.1.4.5 'Ү8рєитা 28
 28
5.2. IEXYOY 28
5.2.1 Провлக́че! 28
5.2.2 Өєбнко́ каӨєбтळ́ 28
 29
 29
6. ANAAYTIKH ПEPIГPAФH $\Sigma X E \Delta I A \Sigma M O Y ~ T O Y ~ E P Г O Y ~$ 30
6.1. ANAAYTIKH IEPIIPAФH TEXNIK Ω - - IE Ω METPIK Ω N $\Sigma T O I X E I \Omega N$ 30
 30
 30
 30
 34
6.3. EाIMEPOYг EPTA 35
6.3.1 Ктрıака́ в́рүа. 35
 35
 35
 35
 35
6.3.4.2 Ерүа трютоßаөиац влє вруабіас 35
 36
6.3.4.4 Атоди́цаутा 38
 39
 39
6.4. ФAEH KATAEKEYHE TRN NE Ω N EPI Ω N 39
 39
6.4.2 Eтанв́pous техvıка́ épүа 39
 40
6.4.4 Avaүкаіа vдєкд́ катабквиウ่s 41
6.4.5 Eкрое́¢ гүрळ́v ало $\beta \lambda \eta$ үтюv 41
6.4.6 Пגеоvá̧оvта vגıка́. 41
6.4.7 Еклонлб́¢ ає́pıळv ри́лаv 41
 42
 43
6.5. ФALH $\triangle E T T O Y P T A \Sigma$ 43
 43
 43
 44
6.5.4 Екроес бтєрєळ⿱ алоридтшv 44
 44
 44
 44
6.6. ПАҮЕН АЕІТОҮPIIAZ- АПОКАТАЕТАЕН 45
 45
 45
 45
6.7. 'EKTAKTE $\Sigma Y N \Theta H K E \Sigma ~ K A I ~ K I N A Y N O I ~ C I A ~ T O ~ I I E P I B A A A O N ~$ 45
 46
 46
 46
 46
6.8. EIIAPALH TOY EPIOY LE KOTTE PEMATQN 46
7. ENAAAAKTIKE $\operatorname{AYEEI\Sigma }$ 48
7.1. ПAPOYЕIALH BI 2 IMHE AYEHL 48
 48
 48
 49
7．1．3．1 Геvкく 49
7．1．3．2 इйотпиа еveproú thiós 50
 56
 58

кरivncs） 60
7．1．4 Фиотќ бибтіицта． 65
 66
 67
7．1．4．3 Σ こибтí！ 69
7．1．4．4 Техиךтоі Yүрорьо́тотоь 70
7．1．4．5 Evatí！ 74
 76
 77
7．1．5．1 Гहлика́ 77
 77
 77
7．2．AミIOAOFHEH KAI AITIOAOIHEH THE TEAIKHE EIIAOIHE， 79
 79
 79
 82
 85
 88
 88
8．YФIГTAMENH KATALTAГH IEPIBAAAONTO乏， 89
8．1．ПЕРІОХН MEAETHE 89
 89
8．1．2 इпивıкко́ е́рүо 90
8．1．3 Karпүopia épyov． 90
8．1．4 Пробтатвшо́иеท терюхй 90
8．1．5 Үүрототию лєрเохй 90
 90
8，2．KAIMATOАOПIKA KAI BIOKAIMATIKA XAPAKTHPIटTIKA 90
8．3．МОРФОАОІІКА KAI TOHOAOHTKA XAPAKTHPILTIKA 92
8．3．1 Катаурачŋ́ тотіов аvа甲ора́с． 92
8．3．2 Еиролаайй б́и β аот тотіои 92
 93
8．3．4 इпиаутко́тпга－трото́тџга тотіоь 93
8．4．ГЕתАOITKA，TEKTONIKA KAI EДAФOAOIIKA XAPAKTHPILTIKA 94
8．4．1 Гешіочиќ характрротика́． 94
8．4．2 Eдафоіоүика́ харакапрітака́ 96
8．4．3 Тектоуккд характпритикд́ 97
8．5．ФҮЕIKO ПЕРIBAAAON 98
 98
 98
 101
 101
 107
 108
 109
 109
 109
 109
 110
8．6．ANӨP Ω ПOENE Π IEPIBAAAON 110
 110
 110
 110
 110
 110
 111
 111
8．6．3 Подтатикјј кえпрогощд́． 111
 111
 112
8．7．KOIN』NIKO KAI OIKONOMIKO IIEPIBAAAON 112
8．7．1 Апиоүрариюך капи̇бабך 112
 113
8．7．2．1 Парауерикоі тоиеі， 113
 113
8．7．3 Eтогева алабобдроря． 113
 113
8．8．Texnike y yoaomez． 113
8．8．1 Үтодоие்я цвтачоро́v． 113
 113
8．8．3 Аіктиа о́бреротя． 114
8．9．ANӨPQIOIENEIL HIEEEIL STO IEPIBAAAON 114
 114
 114
8．10．ATMOEФAIPIKO ПEPIBAAAON－ПOЮTHTA AEPA 114
 115
 115
 115
8．11．AKOYETIKO IEPIBAAAON KAI $\triangle O N H E E I E$ 115
8．11．1 Птр́宀 Oopóßov 115
 115
 115
8．12．HAEKTPOMAINHTIKA IIEAIA 116
 116
 116
8．13．＇Y $\triangle A T A$ 116
 116
8．13．1．1 Пароиоіаот про队之غччеюv． 116
 116
 116
8．13．2 Eпqбавака́ údata 116
 117
 117
 117
 117
8．13．3 Yло́う̌al ódata． 117
 117
 118
 118
 118
8．14．KINAYNOI CIA THN ANOPSIINH YTEIA，THN HOATILLTIKH KAHPONOMIA H／KAI TO IIEPIBAAAON，KYPIOE AOIS ATYXHMATQN KAI KATAETPO© Ω N 118
8．15．TAEEIL EEEAIEHE TOY IEPIBAAAONTOE X XPIL TO EPIO 119
 119
 119
9．EKTIMHエH KAI AEIOAOГHะH IIEPIBAAAONTIK Ω N EIIIIT $\Omega \Sigma E \Omega$ N 120
9．1．ME＠OAOAOITKE AIIAITHEEIL， 120
9．2．ETIIITQEEIL EXETIKA ME TA KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPILTIKA 121
 121
 Өериохшриакоттас 121
9．2．3 Eкатоилі́s агріор тоь Өериокитіои． 121
9．2．3．1 Фалтा катабквиท！ร 121
9．2．3．2 Фáoा スxtroupyiac 122
9．3．EПIITREELE ETA MOPФOAOITKA KAI TOПЮАОГIKA XAPAKTHPIETIKA 122
 122
 122
 122
 122
 123
 123
9．4．1 Макробкотиввя таратирірася． 123
 123
 123
 123
9．4．2 Поютка́ характиютикд́ вбачф́v 123
 123
 123
 124
9．5．EIIITTREEIL ETO ФYEIKO IEPIBAAAON 124
 124
 124
 124
 125
 125
 125
 126
 126
 126
 126
 126
9．6．EIIITRIEEIL STO ANOPQIIOTENES HEPIBAAMON 126
 126
 126
9．6．1．2 Елиттыбегс， 126
 127
 127
 127
 127
 127
 127
 127
9．7．ETiIITQटEİ 乞TO KOINQNIKO－OIKONOMIKO HEPIBAAAON 128
9．7．1 Мёје 128
 128
9．7．3 ఆб́авя врағіас 128
 128
9．7．5 Поьттра Цюп̆я 128
 128
9．8．EIIITREEELL ETIL TEXNIKE Y YOAOME 128
9．8．1 Елитыхаг． 128
9．8．2 Eти́ркеда 128
9．9．इYEXETILH ME TIL AN＠PSПOFENEIL IIELEIL ETO TIEPIBAAAON 129
9．9．1 It日avótpra eviopvors 129
 129
9．10．EIIITRミEEIL \＆THN ПOIOTHTA TOY AEPA 129
9．10．1 Eлитшюбद̆ 129
 130
 130
9．11．EIIITREELE AПO＠OPYBO H \triangle ONHEELE 130
 130
9．11．2 Елатண்бац． 131
9．12．EIIITTQSEIE EXETIKE ME HAEK TPOMAINHTIKA IEAIA． 131
 131
9．12．2 ПіӨауо́тита 131
9．13．EIIIITREEIL ETA YAATA 131
 131
 131
 131
9．13．2．2 Екилтобвц̧ סia日воцо́тŋтас， 132
9．13．2．3 Ектіцךणा $\mu \varepsilon \tau \alpha ß о \lambda$ ف́v． 132
 132
 132
 132
 132
 132
9．13．3．4 Ектіцךоџ цетаßо久óv． 133
 133
9．14．EПIITREEIL ПOY A ПOPPEOYN AПO KINAYNOYZ ПIA THN AN＠PQIINH YTEIA，THN ПOAITLLTIKH KAHPONOMIA H ／KAI TO IEPIBAAAON，KYPI $\Omega \Sigma$ AOI Ω ATYXHMATQN KAI KATAETPOФ Ω N 133
9．15．इYNOYH EIIITTQSERN SE HINAKE 133
10．ANTIMET Ω IIIL HEPIBAAAONTIK ΩN EIIIIT $\Omega \Sigma E \Omega$ ， 136
10．1．ME＠OAOAOTIKEL AIIAITHLEIL KAI IIPOL＠ETA METPA． 136
10．2．METPA AПOKATALTALHE KAI ANTIMETQIILHL E IIITTQEE Ω N Σ E KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPIETIKA 138
 XAPAKTHPIETIKA 138
 XAPAKTHPILTIKA 139
 140
 140
 141
10．8．METPA AПOKATALTALHE KAI ANTIMET חIILHL EПIITTQEE Ω N Σ ITI TEXNIKE Σ YHOAOME ． 142
 IIEPIBAAAON 142
 142
10．11．METPA AПOKATALTALHE KAI ANTIMETQПIILH EПIITRQE Ω N AПO＠OPYBO H \triangle ONHLEIL． 143
 144
10．13．METPA AПOKATALTALHE KAI ANTIMETQIILLL E EIIITREE ΩN ITA YAATA 144
10．14．METPA AПOKATALTALHL KAI ANTIMETQПILHL ПEPIBAAAONTIK Ω N EПIITREE ΩN ПOY AПOPPEOYN AПO THNEYIIA＠ELA TOY EPIOY EE KINAYNOYE DOBAPQN ATYXHMATQN H KATALIPOФQN ．．． 144
10．15．AПЮTEAEEMATIKOTHTA METP Ω N 145
11．ПEPIBAAAONTIKH AIAXEIPILH KAI ПAPAKOAOY®HГH． 173
11．1．ПEPIBAAAONTIKH $\triangle I A X E I P I \Sigma H$ 173
11．2．ПЕРIBAAAONTIKH ПАРАКОАОҮЄНЕН 173
 173
 173
 173
 173
 173
 174
 174
 175
 175
 175
 175
 175
 176
 176
 176
11．2．4 Паракоіаи்Өпоп Өори́рои． 176
 176
 176
 176
 176
11．2．5 Паракоіоо́ӨПоп обuйv 176
 177
 177
 177
 177
11．3．Σ XEAF ANTIMET $\Omega I I \Sigma H \Sigma ~ E K T A K T \Omega N ~ I E P I L T A T I K ~ \Omega N . ~$ 177
11．3．1 Eiбауаии́ 177
11．3．2 Avtккеіuevo tov Exediov 177
 178
11．3．4 Алекерүотоіроп тои इхгठiov． 179
 180
 IEPIBAAAONTIK』N OP』N 187
12．1．OEMA－ONOMALIA EPIOY H \triangle PAETHPIOTHTAL， 187
12．2．EIIQNYMLA ФOPEA H \triangle PALTHPIOTHTAL． 187
 187
 187
 187
 π poç E．E．A． 1 188
 188
12．2．2．4 इЈvtetaүиévec E．E． 1.1 188
 188
 188
12．2．2．7 इuvteтаүие́vес E．E．A． 2 188
 189
 189
 189
12．2．3 Пергүраий Еррои． 189
 терıркїlоитоц． 193
 193
12．2．5．1 Ае́pıa $\alpha 兀 о ́ \beta \lambda ŋ ұ \tau \alpha . ~$ 193
 193
 194
 194
 195
 195
 198
12．2．7．4 Пе́pas خ．8ıtoupyias tov ह́pyov кои отокатд́бтабा 202
 203
13．IIPOEQETA ETOIXEIA 204
13．1．EEEIATKEYMENEE MEAETE 204
13．2．ПРОВАНМАТА ЕКПОNH工Hะ 204
14．ФЛТОГРАФIКН TEKMHPI $\Omega Н$ 205
15．XAPTE - EXEAIA 207
15．1．XAPTHट חIPOLANATOAIEMOY 207
15．2．XAPTHL ПEPIOXHE MEAETHZ 207
15．3．XAPTHE ENAAAAKTIKRN AYEE Ω N 207
15．4．ГЕялOITKOL XAPTHट． 207
15．5．XAPTHट XPHLE Ω N KAI KAAYYHL ГHL 207
15．6．इXEAIA TOY EPIOY H THE $\triangle P A \Sigma T H P Ю T H T A \Sigma ~$ 207
15．7．XAPTESE！IIITREESN 207
15．8．XAPTHЕ ПPOГРAMMATOL ПAPAKOAOYӨHLHE 207
16．ПАРАРТНМА 216
16.1. YTIEIONOАОГIKOI YПOАОГILMOI THटЕ.Е. 217
16.2. ПTYXIO MEAETHTH 218
16.3. EIAIKH OIKOАOГIKH AЕIOAOГHLH 219

1．ЕİАГЛГН

 EПE＝EPTAEIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \Lambda Y M A T \Omega N ~ I . ~ M . ~ O \Sigma I O Y ~ Г P H Г O P I O Y » ~ T O u ~ غ ́ p y o u ~ « E P Г A ~$

 Movís Ooiou Гpnyopiou．

 каІ тоv N1650／1986．

1．1．Títhoc épyou

 IEPA乏 MONH乏 OミIOY ГPHГOPIOY»．

ЕІठıко̇тєра，перıスaußảvouv：

 1）．
 ouvoגıкоú μ ทֹккоия періпои 11 m

1．3．1 〇モ்णך

Eıkȯva 1．1：Xápтŋ̧ пробavatoגıбนoủ

1.3.2 Аıокптıк் unaүшүர்

 Фор $̇ a c ̧ ~ т о u ~ \varepsilon ́ p y o u ~ \varepsilon i v a ı ~ \eta ~ I \varepsilon p a ́ ~ K o ı v o ́ t \eta т a ~ A y i o u ~ ' O p o u c ~ ' A \theta \omega . ~$

 каı $Y=4476569,54$.

	Euvtetayuėvec ETEA 87	
	X	Y
Apx'̇	521633,60	4447659,54
Evōıáneoo 1	521660,85	4447632,83
	521667,14	4447616,68
	521677,90	4447608,61

	इuvtetayuėvec，EГ乏A 87	
	X	Y
Apxṅ	521681，62	4447598，62
	521677，90	4447608，61

 521676，32 ка। $Y=4447605,81$ ．

Кшбıко̇¢ опиعiou	ミuvtetayuėvec，E［EA 87	
	X	Y
＇EȨOJOc anó EEへ	521676，23	4447602，05
ミпurio סiáOraņ	521677，29	4447597，73

Kんరెıкóç опиعiou	इuvtetayuėvec EГГA 87	
	X	Y
Apxin	521600，16	4447425，74
	521600，61	4447442，12

1．3．3．7 इนルTETवҮนE่VEC E．E．1． 2

 521599，67 каІ $\mathrm{Y}=4447419,09$.

	ミuvtetaypėvec，EГ乏A 87	
	X	Y
Apxi＇	521609，53	4447380，62
Evঠıáneбo 1	521615，77	4447379，49
Evöıáuعరo 2	521634，06	4447389，20
Evōıáuعరo 3	521669，55	4447395，55

	521675，86	4447390，82

1．3．3．9 EUVTETवУนÉVEC E．E． 1.3

 $521676,03 \mathrm{kai} \mathrm{Y}=4447387,31$.

Kんठठıко̇¢ бпиعiou	इuvtetaypėvec，ETEA 87	
	X	Y
＇Ȩoס̃oc anó EEへ	521673，26	4447387，52
	521654，58	4447391，36

1．4．Ката́та६̧ף тоu غ́pyou

 кататáơovтаı đ६：
－ 12 Oนáठ̄६̧ каı
－ 2 Катпүорі६૬：
－ 1^{η} катпүоріа（A）$\mu \varepsilon$ ठúo uпокатпүорієऽ（A1 каı A2）каı
－ 2^{n} катпүоріа（B）

 ap

$\begin{aligned} & \text { EIAOE EPTOY H } \\ & \text { DPAETHPIOTHTA乏 } \end{aligned}$	$\underset{\text { A1 }}{\text { YIIOKATHIA }}$	$\underset{\text { A2 }}{\text { YIOKATHIA }}$	$\underset{\text { B }}{\text { KATHIOPIA }}$	חAPATHPHEEİ
a／a： 19 Еүкатабтабөя， （пò̀ $\quad \omega \mathrm{\omega}$ ка। оікІбนஸ்v）$\mu \varepsilon$	$\Pi \geq 100.000$ ı．к．	П＜ 100.000 ו．к．		П凤ПӨuбนои́（МіП） a）乏uипарабúpovтaı $\mu \varepsilon \pi \eta v$ $\lambda u \mu a ̀ t \omega v(E E N):$ －оІ кеутрікоі апохЕтвитікоі aүตyoi عктós oxeठiou

ঠ̈áधran uypöv $\sigma \varepsilon$ єпираvєıако́ 				－ol aywyoi סíáधॄのクs 3）O！EEA IठI ω TIKळ́v по入єоठо $\mu \mathfrak{\eta} \sigma \varepsilon \omega \mathrm{V}$ ， тоирıбтікळ்v ε үкатабтабє $\omega \mathrm{v}$ ， к．ג．п．，биипараби்роитаı апо́ браотпріо́тптея， ү）Гіа то єбШтеріко́ ठіктио

 1^{17} Kaтпуорі́́ каı Yттокатпүорі́а A2．

KatáraEn katá ミTAKOA 2008 kal NACE Rev． 2

1．6．ПعрıßалАоутıкós $\mu \varepsilon \lambda \varepsilon т \eta т \check{\varsigma ~ \varepsilon ́ \rho ү o u ~}$

$\Delta / v o \eta \eta \quad: \quad$ Папа́甲п 82，Өєбба入оviкn，Т．К． 54453
TП入．впıкоіv ω viac ： $2310902321 / 6976801783$
e－mail ：skarageo＠gmail．com

2. MH TEXNIKH ПEPINH $\mathbf{\Psi H}$

3．乏YNOПTIKH ПЕРІГРАФН TתN EPГЛN

3．1．Baбıкá отолхвia тоu غ́pyou

3．1．2 Пєріүра甲ท่ غ́рүшv anохє̇тєưךя

 кגäoņ SN8，．

 （E．E．＾．3）．

E.E.A.

 бтоис ако்’оиӨоич піvaкع६:

ПAPAMETPOE		TAPOYEA ФAEH	ФAEH EXEAIAEMOY
E૬unnpetoúnevoç П入nӨuđuós aixuņs	кат.	280,00	370,00
	$\mathrm{m}^{3} / \mathrm{d}$	42,00	55,50
акаӨд்ртшv	$\mathrm{m}^{3} / \mathrm{d}$	63,00	83,25
	$\mathrm{m}^{3} / \mathrm{h}$	2,63	3,47
	$\mathrm{m}^{3} / \mathrm{h}$	9,47	12,49
Eİ̈ıкó Punavtikó ¢ортio BOD ${ }_{5}$	gr/kar/d	60	60
Eiōıkó Punavtikó 甲ортio TSS	gr/kat	70	70
Eiöıó Punavtikó ¢optio TN	gr/kar/d	10	10
Eıठ̈ı<̇ Punavtikó ¢ортio TP	gr/kat/d	3	3
	kg/d	16,80	22,20
	kg/d	19,60	25,90
Форті0 TN oxeठiaguoủ	kg/d	2,80	3,70

Фортіо TP охєठıабиои́	kg／d	0，84	1，11

ПAPAMETPOE		ПАРОYЕA ФAEH	ФAEH EXEAIAEMOY
	кат．	84，00	111，00
	$\mathrm{m}^{3} / \mathrm{d}$	12，60	16，65
акаӨд́pтшV	$\mathrm{m}^{3} / \mathrm{d}$	18，90	24，98
	$\mathrm{m}^{3} / \mathrm{h}$	0，79	1，04
Пapoxń aixuris Q	$\mathrm{m}^{3} / \mathrm{h}$	2，84	3，74
Eıర̈ıкó Punavtıkó ¢ортio BOD ${ }_{5}$	gr／Kar／d	60	60
Eİııó Punavtıкó ¢ортio TSS	gr／kat	70	70
Eıठıкȯ Punavtikó 甲optio TN	gr／kat／d	10	10
EıЇıкó Puпavtıкó ¢ортіо TP	gr／kat／d	3	3
Фортіо BOD_{5} охદठıабนои่	kg／d	5，04	6，66
	kg／d	5，88	7，77
Фортіо TN охहర゙ıабนой	kg／d	0，84	1，11
Фортіо TP охहరıабน०บ่	kg／d	0，25	0，33

Пivakas 3．3．：$\Delta \varepsilon \delta \bar{\circ} \mu \varepsilon ่ v a ~ \sigma \chi \varepsilon ס ̄ ı a \sigma \mu о บ ่ ~ E . E . \wedge . ~ 3 ~$

ПAPAMETPOE		ПАРОУЕА ФАЕН	ФAEH EXEAIAEMOY
	кат．	112，00	148，00
	$\mathrm{m}^{3} / \mathrm{d}$	16，80	22，20
акаӨ́аттшv	$\mathrm{m}^{3} / \mathrm{d}$	25，20	33，30
Mह̇yıotn ω pıaia парох＇̆ aкаӨáptov	$\mathrm{m}^{3} / \mathrm{h}$	1，05	1，39
Парох＇̆ aıхй́¢ Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	3，78	5，00
Eıర̈к⿺尢丶 Punavtikó ¢ортio BOD_{5}	gr／Kar／d	60	60
Eıठıкó Punavtikȯ фортio TSS	gr／kat	70	70
Eıठıккó Punavtikó 甲ортio TN	gr／кat／d	10	10

Eidikó Punavtikó ¢ортio TP	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	3	3
Фортіо BOD_{5} бхદঠıaণرой	kg/d	6,72	8,88
Фортіо TSS охعঠıабиои่	kg/d	7,84	10,36
Фортіо TN охعठıабнои่	kg/d	1,12	1,48
Фортіо TP охहठıабнои่	kg/d	0,34	0,44

3.2.1 Періүра甲й Аєıтоирүіая

 ठıапєрато̇тпта UVT $50 \% / \mathrm{cm}$ ．

aпоßАர்тшV

3．3．1 Aпaıтоủ $\mu \varepsilon v \varepsilon \varsigma ~ п о \sigma o ́ т \eta т \varepsilon ৎ ~ п р \omega ் т \omega v ~ u \lambda \omega ் v ~$

 проß入غ̇пहтai va anartทヲouvv घivai：

－ミu入ótunol ர் वiठ̃прótuno $19 \mathrm{~m}^{2}$

Xprion evėpveıas

 ò $\lambda \omega v$ t ωv E．E．Л．वe перinou 63.145 kWh kal 173 kWh avtiotoixa．
Xpウ்on xnuiкळ́v

3．3．2 Побо́тŋтес anoß入ウ่тшv

Кшठ̈кко่̧ Е．K．А．：19．08．05

 10－12 $\mathrm{m}^{3} /$ غ́тос）．

Yypá anóß λ nta

 үіvovtaı єvто́，тои єрүота६ıакой хळ்pou．

Aغ́pıa aпóß入nta

 ठıモப்Өuvan avé $\mu \omega \mathrm{v}$ ）．

 ठ̈іктиo tク̧ I．Movís．

4. $\Sigma T O X O \Sigma$ KAI $\Sigma K O \Pi I M O T H T A ~ Y А O П O I H \Sigma H \Sigma ~ T O Y ~ E P Г O Y ~-~$ EYPYTEPE Σ Y Σ XETİEI乏

4.1. इто́хоя каı бкопиио́тпта

 סıáधron autúv.

ouvŋүopoúv unép Tņ uגonoinoņ tou épyou

 апобєкто்.

 тПऽ апохе்тєибпऽ "گпро́".

4.3. Оıкоуонıка́ отољхві́a тшv غ́pүшv

4.3.1 Ектіцŋбŋ бuvoגıкои่ проӥпоגоүıбนои่

 бદ 623.459,81 Eupढ்.

4.3.3 Тро́поя хрпиатоб́т́тпопৎ

 проура́ниата.

 'Opos.

5．इYMBATOTHTA TOY EPLOY ME OEटMOOETHMENE XתPIKE乏 KAI ПO＾EOAOMIKE乏 $\triangle E \Sigma M E Y \Sigma E I \Sigma$ TH乏 ПEPIOXH乏

5．1．Qéoŋ тоu घ́pyou

 －apxovtapiкiou．
 apoavá－кабтра́кı．
 aпоßáӨрас̧ aпо́ бкиро́ঠ̄єца．

5．1．1＇Opıa oıкıоцஸ்v

5．1．2＇Opıa проотатєuóuعvตv періохळ்v

5．1．3 Аабıкモ̇ৎ عкта̇бモıৎ

5．1．4．1 Обіко́ ঠіктио

 хшнато́ठ̄роно．

5．1．4．3 பіктиа техиікі்́ Үпобоит́s Апороіриата

5.1.4.4 Aпохદ่тยиणП

 $\mu \varepsilon ் \sigma \omega ~ a v t \lambda ı о т t a \sigma i o u ~ к a ı ~ к а т а Ө \lambda ı r t i к o u ́ ~ a y \omega ү o u ́ ~ o t \eta v ~ E . E . \Lambda . ~ 1 . ~$

5.1.4.5 'үбовиоп

tou غ́pyou

 ипоб̄о $\dot{\omega} \mathrm{v}$.

5.2.1 ПроßАє́шєıя

 4% avá ठєкаєтіа.

 ГХООАП, ПЕРПО К.т.入.).

 х£роóvŋоо тои 'AӨ ω.

6. ANAAYTIKH ПEРIГРАФН ГXEAIA乏MOY TOY EPГOY

 kไảonç SN8,.

- Baputıкóç ay -

 (E.E.^. 3).

 к入áonऽ SN8, غүкıß

 апохЕтعU்øع $\omega \mathrm{V}$.

E.E.^. 1: $X=521676,32-Y=4447605,81$.
E.E.^. 2: $X=521599,67-Y=4447419,09$.
E.E.^. 2: $X=521676,03-Y=4447387,31$.

 $\lambda \cup \mu a ่ т \omega v$.

 ठıапєрато́тŋта UVT 50\%/cm.

 отоиц ако்доuӨous піvaкєऽ:

TAPAMETPOE		ПАРОУГA ФАЕН	ФAEH EXEAIAEMOY
	кबт.	280,00	370,00
	$\mathrm{m}^{3} / \mathrm{d}$	42,00	55,50
акаӨápтшv	$\mathrm{m}^{3} / \mathrm{d}$	63,00	83,25
	$\mathrm{m}^{3} / \mathrm{h}$	2,63	3,47
Пapox' arxu'¢ Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	9,47	12,49
Eıర̈кó Punavtikó ¢ортio BOD ${ }_{5}$	gr/kar/d	60	60
Eıठ̈ко̇ Punavtikȯ ¢ортio TSS	$\mathrm{gr} / \mathrm{kat}$	70	70
Eıбıко̇ Punavtikȯ ¢ортio TN	gr/kat/d	10	10
Eıరıкó Puпavtıkó ¢ортіо TP	gr/kat/d	3	3
Фортіо BOD_{5} охદరıаवนой	kg/d	16,80	22,20
	kg/d	19,60	25,90
	kg/d	2,80	3,70
	kg/d	0,84	1,11

Пivakaç 6.2.: $\Delta \varepsilon \delta \sigma_{0} \mu \varepsilon ่ v a ~ \sigma \chi \varepsilon \delta ı a \sigma \mu o u ่ ~ E . E . \Lambda . ~ 1 ~ \& ~ 2 ~$

TAPAMETPOE		ПАРОУЕA ФАЕН	ФAEH EXEAIAEMOY
Е६uпnperoủ	кст.	84,00	111,00
	$\mathrm{m}^{3} / \mathrm{d}$	12,60	16,65
Méyıoтŋ пиعрர்біа парохй	$\mathrm{m}^{3} / \mathrm{d}$	18,90	24,98

акаӨன்pтШv			
	$\mathrm{m}^{3} / \mathrm{h}$	0，79	1，04
Пapox＇̇ aıx μ＇¢ Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	2，84	3，74
Eıठıкó Puпavtikó بортio BOD_{5}	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	60	60
Eıठ̈кó Punavtikó ¢ортio TSS	gr／kat	70	70
Eıठ̈ıкó Pumavtıkó ¢ортio TN	gr／кat／d	10	10
Eıठıко̇ Puпavtıкó 甲ортіо TP	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	3	3
	kg／d	5，04	6，66
	kg／d	5，88	7，77
	kg／d	0，84	1，11
Фортіо TP охहठıабนоบ่	kg／d	0，25	0，33

TAPAMETPOE		ПAPOYEA ФAEH	ФAEH EXEAIAEMOY
	кबт．	112，00	148，00
	$\mathrm{m}^{3} / \mathrm{d}$	16，80	22，20
акаӨа́pтшv	$\mathrm{m}^{3} / \mathrm{d}$	25，20	33，30
	$\mathrm{m}^{3} / \mathrm{h}$	1，05	1，39
	$\mathrm{m}^{3} / \mathrm{h}$	3，78	5，00
Eıठıкó Puпavtikó 甲optio BOD_{5}	gr／kat／d	60	60
Eıర̈к⿺尢丶 Punavtikó ¢ортio TSS	gr／kat	70	70
Eıठııк̇ Punavtikó ¢ортio TN	gr／kar／d	10	10
Eıठıкó Punavtikó 甲ортio TP	gr／Kar／d	3	3
Фортіо BOD_{5} бхદठıабиой	kg／d	6，72	8，88
Фортіо TSS оXहঠıабиои่	kg／d	7，84	10，36
Фортіо TN охहठıабนой	kg／d	1，12	1，48
Фортіо TP охЕঠıабนои่	kg／d	0，34	0，44

Пара́нетроя	KYA 5673／400／97	KYA 145116 －Пiv． 2
	Епі甲．uठ̈átiva đஸ́ $\mu a t a$ апоठ̄غ̇ктПऽ）	
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{l})$	≤ 25	≤ 25
COD（mg／l）	≤ 125	≤ 125
Alwpoúurva oteped（mg／l）	≤ 35	≤ 35
Eschericia Coli（E．coli） （EC／100ml）	＊	

 （દiठoç ठıáӨะaņ D8）．

 ка入 $\omega \delta ँ \omega \dot{\omega} \sigma \varepsilon \omega \mathrm{~V}$ ．

－Еگんтєріко́я Фштібио́s，

- इu̇otnua yعiшons
- Eуката́бтаön avтікєраuviкウ்я пробтабias,

6.3. Eпıนغ́pouৎ घ́pүa

6.3.1 Kтıрıaкá ėpya

$\Delta \varepsilon v$ проß

E.E.^. 1 unóyદıa.

E.E.A. 1 \& 2 : $\quad 4.50 \times 2.50 \times 2.00 \mathrm{~m}$
E.E.A. 3 : $\quad 5.50 \times 2.50 \times 2.00 \mathrm{~m}$

 m.

\checkmark Evepyoú ilưos,
\checkmark Avtiōpaotinpec $\mu \varepsilon \mu \beta$ pavш்v

＞Yшп入ós ßaӨцо́s auтонатопоіпопя

 ठıаотабіо入о́үпопৎ тои бибтท่натоৎ，

 п入úøๆ．

 avá μ оváठ́a óyкou k入ivŋ̧（ $\mathrm{m}^{2} / \mathrm{m}^{3}$ ）．

 ठєv un६pßaiveı ta $150 \mathrm{~m}^{2} / \mathrm{m}^{3}$ ．

 ота日हрйs кגivns

6．3．4．4 Anolúnavan

 ठוaпघратóтпта UVT 50\％／cm．

 цікроорүаvібцஸ்v.

 парако入ои́Өnon каı $\lambda \varepsilon ı т о u p y i a ~ \mu \varepsilon ~ п р \omega т о ́ к о \lambda \lambda а ~ \varepsilon п ı к о ı v \omega v i a c, ~ C A N, ~ E t h e r n e t, ~ U S B, ~ S e r i a l ~(M o d b u s, ~$ TCP/IP, CANopen).

катадацßävєтаı

Ta véa غ́pүa перıスaußávouv:
Фáon A': X Wuatoupyıkéc epyaoizc, E.E. Λ.

6.4.3 Үпоотпріктікєৎ вукатаота̇бєıৎ катабкєиท่ৎ

 єкпоvПӨєi.

 IKAO．

6．4．4 Avayкаia uגıкà катаơкєuท่я

－Λ ®об̄оиદ́я $67 \mathrm{~m}^{2}$ ．

6．4．5 Екров்¢ uүрळ்v anoß入ウ்тшv

6．4．6 ПАعováそovta uגıká

 uпо入оүіگovтаı бє пєріпои $117 \mathrm{~m}^{3}$ ．

 हíठou̧ عpyađia．

 ठıદن́Өuvō avé $\mu \omega \mathrm{v}$ ）．

 тіৎ атнобфаıрікє́ц бuvӨウ்кєц.

- 1 МпЕтоvípa
- 1 Мпхаиіко́я єкокачєац,

Mnxávŋnua	LWa dBA	Leq/LWa	Eúvodo				Аıápıııa			$d B(A)$
			$\begin{gathered} \text { Res.Laeq } \\ \text { dBA } \end{gathered}$	Dist. Ratio	Equiv. On-time	Equiv. On-time	Active dur.	Corr. On-time	PNi	
$\begin{aligned} & \text { Екокачр́ас } \\ & 200 \mathrm{~kW} \end{aligned}$	109	Lwa	61.00	4.00	0.32	0.32	8	21.6\%	0.02	54
Фортпуо்$\mu п \varepsilon т о V I \varepsilon ̇ \rho a ~$	106	Lwa	58.00	4.00	0.32	0.32	8	21.6\%	0.01	51
$\begin{aligned} & \text { Avaтрєпо் } \begin{array}{l} \text { हvo } \\ 25 \mathrm{Tv} 120 \mathrm{kw} \end{array} \end{aligned}$	108	Lwa	60.00	4.00	0.32	0.32	8	21.6\%	0.02	53
Combined (Leq): 59 dBA										

6.5. Фáбך גعıтоupүía

 парои́баৎ $\mu \varepsilon \lambda$ ह́tๆc.

Xprion evépyeıas

E.E.A. Iepác Movíc Ooion Г ρ propion							
A/A		Tquázú $\sigma \varepsilon$ 2extovpyia	I σ zúş/rqu.	Aлоррро甲биами І σ zūg/тгр.		$\begin{gathered} \text { Xpóvoç } \\ \text { 2R*Toupfiac } \end{gathered}$	Нигрібла катаvábeoŋ ехе́pyeuc
	Пергураро	Тера.	kW	kW	hw	h/d	kWh/d
1	Yтоßрíxua avthia трофобобіас $\beta \ldots \lambda$. 	3	0,37	0,30	0,89	12	10,7
2	Yroßpóxua avàtía a/aiov 	1	0,90	0,72	0,72	12	8,6
3	егеட̆еруабіас EEA 1 \& 2	2	1,50	1,20	2,40	24	57,6
4	Ееукро́тпиа β юодоүийร EteEveraoiac EEA 3	1	2,00	1,60	1,60	24	38,4
5		3	0.44	0,35	1,06	12	12,7
6	Аvтоиатшбйя	3	0,50	0,50	1,50	24	36,0
7		3	0,25	0,25	0,75	12	9,0
	EYNOAO						173

Xpr்on xпuıкळ́v

Кшठัıко̧́ E.K.A.: 19.08.05

 10-12 $\mathrm{m}^{3} /$ غ்ТСऽ).

 ठiktuo tnc I. Movņs.

 uпعрßaivouv то о́pıо T $\omega v 50 \mathrm{dBA}$.

6.6. Пaи́бך Аहıточруiaৎ - апоката́бтабך

 прос аvаки́к $\lambda \omega \sigma \eta$.

 п $\lambda \dot{1} \rho \omega \overline{\text { ．}}$

 हц甲avił̧ouv aöuvauia \eाтоupyiac．
 П入єктрік่я тро甲об̄обіая，

－Aотохia Tņ $\lambda \varepsilon$－ $\varepsilon п \varepsilon \xi ६ p y a \sigma i a ~ T \omega v ~ \lambda u p a ́ t \omega v . ~$

 àpঠ̄モuoŋ.

7．ENAMNAKTIKE $\operatorname{AY\Sigma EI\Sigma ~}$

－η anóoтaon anó тa u甲ıбтáнغva ктipıa

甲úणПऽ，к $\lambda \pi$ ）

7．1．3．1 ГعVIкف́

1．ミuotíuata Evepyoú I λ úos
i．$\Sigma u \mu \beta$ атıкó бúণтпйa
ii．乏úoтпиа паратвтанغ̇vou aعpıбرоu่

3．$\Sigma u ́ \sigma T \eta \mu a \mu \varepsilon \mu ß p a v \omega ் v$（MBR－Membrane－Bio reactor）
 к入ivŋऽ，к．ג．п．）

1．ミuotinuara Bpaঠ̌iaç E甲apuoүńs

ii．Үүроßıо́топоі катако́рийпя роウ́s（SFS）

6．TEXVПTغ่ৎ $\wedge i \mu v \varepsilon \varsigma$

7．1．3．2 ミúotnua evepvoú IAúos

ミuußatikó oúornua evepyoú i入úos

 пои оvoцáそоvтаı ßıкрокіঠєц．

 апо́ то би́бтпиа．

Апора́криуәп BOD_{5} (\%)	Opyaviкn่ фо́ртїŋ (KgBOD ${ }_{5} / \mathrm{kg}$ เ\u̇oç $\boldsymbol{\eta} \mu$ ह̇pa)		Aváцıкто uүpó MLSS (mg/lt)	Xpóvos, Параиоvท่я (hr)	Avaкиклочоріа ıAủos	Xpóvos Параиогท்я ıAúos ($\eta \mu \varepsilon \dot{\rho} \varepsilon \varsigma$)
85-95	0.2-0.4	0.3-0.6	1500-3000	4-8	0.25-0.50	5-15

 ханплой мортіои.

 BOD_{5} (85-95\%).

 ìùocs.

 та́दॄळц тои 10\%).

 паратвтанह̇vou aعрıбนоu่．

Апора́криvỡ BOD 5 （\％）	Opyaviki่ фо́ртїп （KgBOD ${ }_{5} / \mathrm{kg}$ 		Aváuıкто uypó MLSS （ $\mathrm{mg} / \mathrm{It}$ ）	Xpóvos Параноvŋ்я （hr）	Avaкиклочоріа ıAúos	Xpóvos Парарогท்я idu̇os （ $\boldsymbol{\eta} \mu \varepsilon \dot{\rho} \rho \varepsilon$ ）
85－95	0．05－0．15	0．16－0．4	3000－6000	18－36	0．95－1．50	20－30

 ウ் μ гбаіас к入інакац．

 паратвтанв́vou аєрıศนои́．

 ¢aivo kaI aпоиákpuvon tou aद̆ய̈тоu．

 тпऽ vitponoinons．

 бин

 ı入ủos．

 прعціац отоv пuӨんદ̇va．

 ı λ ùoc．

 aпоцáкр

$\Theta c=300 / T \eta \mu \varepsilon \rho$.

 єкрой̧ перıßà入入оvтаı апо́ ката́ $\lambda \lambda \eta \lambda о$ ठıáчраүиа.

 náxuvã．

Aпора́криуот BOD_{5}（\％）		$\begin{gathered} \text { Оүкорєтріки́ } \\ \text { фо́ртıоŋ } \\ 9 \mathrm{KgBOD}_{5} / \mathrm{m}^{3} \\ \eta \mu \varepsilon \dot{\rho a}) \end{gathered}$	Avápıктo uypó MLSS （ $\mathrm{mg} / \mathrm{It}$ ）	Xpóvos Параиогท்я （hr）	Avaкиклороріа ıגủoç	Xpóvos Параноvís （ $\eta \mu \varepsilon \dot{\rho} \varepsilon \varsigma$ ）
85－95	0．05－0．30	0．08－0．24	1500－5000	12－50	－	－

 єпаvакиклороріац каі то аvтлıота́бıо впаvакиклороріац．
 аитоиवтопоІвітв．
甲ортішv．

7．1．3．3 玉úotnua almpoúusvou Bıo\ovikoú pilu（MBBR－Moving Bed Bio Reactor）

To ou

乃ооріл μ.

 (Rusten et al., "Upgrading to nitrogen removal with KMT moving bed biofilm process", Water Science

 өернокрабіа ото вúpos $10-20^{\circ} \mathrm{C}$.

Пivakaç 7.3. Характпрıттка́ биотர்иатоৎ MBBR

Anopáкрuvön BOD_{5} (\%)	Opyaviкi่ фóption (KgBOD ${ }_{5} / \mathrm{kg}$ เ\úoç $\eta \mu$ ह̇pa)		$\begin{gathered} \text { Aváuıкто } \\ \text { Uypó } \\ \text { MLSS } \\ \text { (mg/lt) } \end{gathered}$	Xpóvos Параиоvท่я (hr)	Avaкиклочоріа IAǔos,	Xpóvos Параиогі̆я inúos ($п \mu \varepsilon \dot{\rho} \varepsilon \varsigma)$
85-97	0,05-0,3	-	2-10.000	0.25-1.5	0.95-1.50	20-30

 ı λ ùoc घivaı та кät ω өl:

 $\mu غ ் y \varepsilon Ө \circ \varsigma$,
 прохшрпиغ̇vn трітоßàӨніа єкроп்

Пара̇цетроя	Tıи่	Аıгрүабia nou anaıтвітаı
Өо入о́тпта	＜ 1 NTU	
Anoخủjacvn	＞LRV 5	
BOD	＜ $5 \mathrm{mg} / \mathrm{l}$	
А $\mu \mu \omega \mathrm{via}$ а́ ［ NH_{4} ］	＜ $1 \mathrm{mg} / 1$	
О入ıкó ą̧то	＜ $5 \mathrm{mg} / \mathrm{l}$	$\mu \varepsilon \mu ß p a v \dot{\omega} v$
Олıко́s фш்очороя	＜1 mg／l	Avaعро́ßıa апофшофо́р ω on + Aпоviтропоinon +

Пivaкас 7.6. Характпрıттıк் бибтйцатоৎ MBR.

Anouáкpuvor BOD_{5} (\%)	Opyaviкì фópтї́n (KgBOD ${ }_{5} / \mathrm{kg}$ เ入úoç $\eta \mu$ ह̇pa)		Avàцикто uypó MLSS (mg/lt)	Xpóvos Парарогท่я (hr)	Avaкиклочоріа inúos	Xpóvos Параногп்’ IAủos (пиغ்ря؟)
95-99	0,02-0,06	0,2-0,4	5-15.000	6-30	3-5	20-50

avtiסpaotrípes otäepís klívnc)

 Tクc evepyoù ilưocs.

 $\varepsilon \vee T \delta \dot{\beta} \omega \mathrm{v}$.

 m^{2} हпाца́véac,

 нккр்.

\square

	$\triangle \varepsilon \cup \tau \varepsilon \rho о \beta \dot{\theta} \boldsymbol{\theta} \boldsymbol{\prime}$ о	таито́хроип viтропоіпоп	$\Delta \varepsilon \cup т \varepsilon \rho о \beta a \dot{\theta} \mu \circ \frac{\mu \varepsilon}{}$ virропоіПоп бع
үбраилıкі чо́ртїп （ $m^{3} / m^{2} d$ ）	0．08－0．16	0．03－0．08	0．04－0．1
Oруаviкí фо́ртіоп			
－Kg SBODs／m m^{3} d	0．003－0．01	0．002－0．007	0．0005－0．001
－ Kg TBOD ${ }_{s} / \mathrm{m}^{3} d$	0．01－0．017	0．007－0．015	0．001－0．003
прш்то бтд́ঠо			
－ $\mathrm{Kg} ~ S B O D_{5} / \mathrm{m}^{3} d$	0．02－0．03	0．02－0．03	
－Kg TBOD $/ / m^{3} d$	0．04－0．06	0．04－0．06	
		0．0007－0．0015	0．001－0．002
Yбраиגıк＜́s хро́voç параноvís（hr）	0．7－1．5	1．5－4	1．2－2．9
	15－30	7－15	7－15
		＜2	1－2

\checkmark Ап入о́тпта 入єाтоирүіас，

\checkmark பuvatóтпта viтропоinoŋヶs．

 оруаviкои́ фортiou．
\checkmark Euع入ı६ia бuotrinatoc．

 ठібкшv．
× По́ß $\lambda \eta \mu а ~ о \sigma \mu \omega \dot{v .}$
 oxદסІaવนou่．

Avtiōpaotniges otaӨepńs kגivns

 (submerged aerated filters - SAF).

 п入и்ஞŋ.

 ßıофì μ avá μ оváס̄a óүкоu кスivņ ($\mathrm{m}^{2} / \mathrm{m}^{3}$).

 ठєv unعрßaiveı тa $150 \mathrm{~m}^{2} / \mathrm{m}^{3}$ ．

 mm ．

 топо日غ́тпons

 aпонакрúveтaı μ óvov η ппріббєıa 入áのпņs

7．1．4 Фuoıкá ouotijuata

7.1.4.1 Eиоті́иата Bрабвіас Eфариоуп்ऽ

 єфариоүйя.

 ßaoાkoús тúnouc:

 тоछוкои่.

		$\Delta \eta j \theta \eta \sigma \eta$ ¢
	$\mu \varepsilon ́ \theta o \delta \delta_{0}$	$\mu \varepsilon ́ \theta$ oठิot
Yסрад入̊lкó чортio (m/Étoc)	0.60-2.00	1.70-6.00
$\left(\sigma \pm p, / 10^{3} m^{3} d\right)$	170-550	56-200

 ß入áotnons．

 ка入入ıвंрүвıа̧．

\checkmark Tautóxpovn $\varepsilon п \varepsilon \xi \varepsilon p y a \sigma i a ~ \lambda u \mu a ́ t \omega v ~ к a ı ~ \delta ı a ́ Ө \varepsilon o n ~ a u t \omega ̉ v . ~$

 бıако́ாтєтаі үіа 6－20 пиغ்рєऽ．

Пара́детроя，	Фóption （Kg／oтр．ท $\mu)$	Ba日uóc anóסัoon！ （\％）	Паратпрฑ̇бвıя
BODs	4．50－18．0	86－100	
A 3 ¢ ω то	0．33－4．10	10－93	Ȩ̧apтàtaı anȯ： －To عпіпहठо проєпє६६pyaciac - Tnv ava入oyia BOD／N - Tov кúk入o 入єाтоupyiaç －То иб́раидıко́ чортіо
ФНО¢ópos	0．11－1．34	29－99	$\varepsilon \xi$ арта́таı апо́ то μ йкоৎ тпऽ ठіаб̈ронйя
		2－6 ¢орદ̇ऽ	 －то $\mu \grave{k о \varsigma ~ т п ऽ ~ ठ ̈ а б ̄ р о н и ̆ я ~}$

 ßраб̈iac عфариоүп்ऽ．

7．1．4．3 ミиоти́иата Eпा甲аиعіaкís Poŕs

 غ̇хモI：

 отعрعஸ்v，a入入á каı тоu a̧ढ̈тоu．
 kal：

7.1.4.4 TEхиптоі Yуоовıо́топоі

 (థuтá Tou ү ̇̀vouç Typha).

 фибікоі иүроßıо்топо.

 Өрєптіка́ каі фитофа́риака.

 T $\omega \mathrm{V}$ рún $\omega \mathrm{v}$.

 бuүкغ̇vтр

 влáotпons.

 orpáv.

※ H aठ́uva

Yypoßıòтопоו катако́pu甲ns pońs (SWS)

uүроßїтопшv．

 opyaviкoú 甲ортiou

	Mováȯe¢	Lvíctıu ${ }^{\text {a }}$ FWS	
	$\eta \mu \hat{¢} ¢ \varepsilon ¢$	5－14	5－14
Bátoç vepov́	m	0．1－0．5	0．3－0．8
Opyovikí ¢óption	kgBOD／هт $\mathrm{d}^{\text {d }}$	8	8
	$\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}$	0．01－0．06	0．01－0．06
	$\sigma \tau \rho / \mathrm{m}^{3} . \mathrm{d}$	0．02－0．14	0．02－0．14
	－	2：1－10：1	<1
ĖErरoç коuvovatóv	－	Aлоıтвitou	$\triangle \varepsilon v$ aranteitou
 	yr	3－5	1－2

1．Aعpóßia（ μ п वعрıて̇óneva），

入єाтоupyñoouv $\mu \varepsilon$ uчП入á opyaviкá фортia．

 tóvouc．
 घпıплह́ovта 甲utá．

Пара́нєтроı				
	B＇$^{\prime}$ á̇ $\boldsymbol{\theta} \boldsymbol{\mu}$ aعро́ßıо	B＇$^{\prime}$ в́̈ $\boldsymbol{\theta} \mu ı$ aعрı̧̆ӧцєvo	Аеро́ßıая Апона́криvбпя （xapis аврıбио́）	ェиотர்иата $\mu \varepsilon$ 甲итá tᄁ̧ оוкоүÉveıa̧ Lemnaceae
Тотткג́ критйриа 				
Anaínnon Провпеद彑рyаテіая	Eoxápwon ர் KäiZ̆on	Eoxápoon n่ KaBiそnon		Eкроர் anó єпан甲отеріҚоибєц，入ijves，
BODs عוó̇סou （ mg / t ）	130－180	130－180	30	40
Opуaviкi фо́ртіт（Kg $B O D_{s} / \sigma$（tp．d）	4．5－9．0	16．8－33．6	1．12－4．50	2．24－3．36
Bätoç vepoú（m）	0．5－1．0	1．0－1．22	0．6－1．0	1．22－1．83
xoóvos параноигія（d）	10－36	4－8	6－18	20－25
Yбраидіко́ форті́ （ $\left.m^{3} / m^{2} d\right)$	$\begin{gathered} 0.019- \\ 0.056 \end{gathered}$	0．094－0．28	0．037－0．15	0．056－0．084
Өериокрааіа лица́таи（ ${ }^{\circ} \mathrm{C}$ ）	＞10	＞10	＞10	＞7

Поо́vраниа биукоииס்̄द	Епохіаки́ $\dot{\varepsilon} \omega \varsigma$ हाท்่๐a	$\Delta u ̉ o ~ \varphi o p e ́ s ~$ To $\mu \mathrm{g}_{\mathrm{va}}^{\mathrm{va}} \mathrm{\varepsilon} \omega \mathrm{c}$ ouvexஸ்s	Δ ט̉o 甲орદ்̧ то $\mu \eta_{i v a}$ ह́ $\omega \varsigma$ бuvexळ்ऽ,	μ пviaia
Avaนevó $\mu \varepsilon v \eta$ поо́тпта екроர́я				
$\begin{aligned} & B O D_{5} \text { عIoóסou } \\ & \text { (mg/tit) } \end{aligned}$	<20	<15	<10	<30
SS (mg/t)	<20	<15	<10	<30
TN (mg/t)	<15	<15	< 5	<15
TP (mg/t)	<6	<1-6	<2-5	<6

7.1.4.6 TEXVПTÉs Míuves (Мíuves इTaOEponoinons)

 тои апо́ß λ птои отп $\lambda i \mu v \eta$.

\checkmark To хацŋ入ó катабквиаотіко́ ко́отоৎ,

7.1.5.1 ГعVIKÓ

 апобЕ்ктєऽ)

 каı фшофо́pou.

- Enavaxpnaıнопоinon yia ápঠॄuan

Enavaxpnaımonoinon via á $\rho \delta \varepsilon u o n$

 проб̈ıаүра甲ш்v Tпऽ KYA 5673/400/1997.

 про́бßатп.

 $\mu \varepsilon \mu \varepsilon \mu ß \rho d ́ v \varepsilon \varsigma)$ кaı anoגú $\mu a v o \eta$.

- $\Delta ı \grave{\theta}$ -

 апоррофптікой $\beta \dot{\theta} \theta \rho о$.

є६ॄта́бтŋкаv

 парака́тш.

 E.E.^., каӨ்்c:

- Xарактпріそ६таı anó धпа́ркєıа Хஸ́pou

 катаӨ入ıгтікой аушүoú.
 $\mu п р о \sigma т а ́ ~ а п о ́ ~ т о ~ п а р а \lambda ı а к о ́ ~ \mu \varepsilon ́ т \omega п о . ~$

 апо́ бкиро́ঠॄца $\mu п р о о т а ́ ~ а п о ́ ~ т о ~ п а р а \lambda ı а к о ́ ~ \mu غ ் т \omega п о . ~$.

- Aпó ànочп xஸ́pou paivovtaı va عivaı عпарквi¢.

 ENAM. OESH 1 Tns $1^{\text {ns }}$ про́таäяs.

 oúvӨモto kal uun\oú kóotouc.

 וкауопопптікウ่．

поoavaøep日

 $\mu \varepsilon \lambda$＾$Ө$ обо $\mu \dot{\varepsilon} \zeta)$ ．

－anaitnoņ xprionc ठбદ

 عпıßápuvon．

 $\lambda \dot{\gamma} \boldsymbol{\omega}$ ：

 вva入入актіка́ биотйцата．

 عпıßápuvoŋ．

 auそ̆ảvouv TOu̧̧ kivठ̄úvouç ox

ミuotńната عпічаveıaкńs pońs

 touc．

－aváyкпऽ aveúpeonऽ єктєта tous．

TEXvntés 入iuvec otaӨeponoinons

 тоuc．

－uษП入ウ่ऽ бuүкغ̇vTp

 та плعоvєктท่ната тои опоіои घival：

－Xaцп入á єпiпहס̃a Өорúßou kaı обцஸ்v

 топо日غ்тクoņ
－Yчп入ós ßаӨиós autouatoпоinons

弓んウ่я，к．ג．п．）．

－Гعшнвтріка́ каІ норфо入оүıка́ характпріотıка́ ре́натоя

 браотпріо́тптец．
入єкávŋ．
 uठ̆́т $\omega \mathrm{v}$

 uппребієя

 $\lambda \cup \mu \dot{т} \boldsymbol{\omega} \mathrm{v}$ ．

 вүкатव́oта⿱亠巾．

 घпіптшणワ．

 периாтய்бモя，

 unápxouv．

 غ́pyou．

8．YФİTAMENH KATA乏TA乏H חEPIBAMAONTO乏

 $\mu \varepsilon$ тПV YA 5980／16－10－1965－ФЕК 714／B／29－10－1965．

8.1.2 ミпиعıaкó غ̇pүo

8.1.3 Katпүopia غ́pyou

8.1.5 Үүротопики่ перıохй

 tou $A \theta \omega$.

8.2. КДıнато৯оуıка́ каı ßıокौıнатıка́ характпрıотıка́

 НпЕıр

 avėpxยтal $\sigma \varepsilon 16-17^{\circ} \mathrm{C}$.

$\begin{array}{\|l\|} \hline \text { Пєріоठоя } \\ 1978-2004 \\ \hline \end{array}$	характпріотıкш்v			
Mṅvas	$\begin{gathered} \hline \text { Oءpuокрабіа } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	${ }^{\mathrm{Y}} \mathrm{Y} \boldsymbol{\mathrm { Yos }}$	$\begin{array}{c\|} \hline \text { ミxєтıкो } \\ \text { uypaóa aह́pos } \end{array}$	$\begin{gathered} \text { Еद̧áruıō } \\ (\mathrm{mm}) \end{gathered}$
Iavouápiocs	2,6	47	85	21
Фeßpouápıos	3,4	55	83	21
Máptios,	6,5	50	80	34
Апріліоs	11,0	51	73	51
Málos	16,2	50	71	59
Ioúvios	20,9	41	66	76
Ioùios	22,9	54	65	84
Aúyouotos	22,3	38	67	SO
Гептغ̇घßрıся	18,6	31	72	63
Октӫßрı¢	13,3	56	80	40

Noغ̇нßpıos,	7,6	84	85	20
$\Delta \varepsilon к \varepsilon ̇ \mu ß р ı ¢, ~ ¢$	4,7	90	86	23
Mėon (o^ıкฑ่)	12,5	649	76	568

8.3. МорфоАоүıка́ каı топьолоүıка́ характпрıотıка́

8.3.1 Катаүрафй топiou avaфорáя

8.3.2 Eupwnaïкŋ் σ च́ μ ßaon топiou

 проотатвย̇घтаı aпó autó．

 tou $A \theta \omega$ ．

 аркєтஸ்v oпиavтıкы́v taxa．

 $\mu \varepsilon$ то ро́̀о тоu otnv ıбторікウ่，оıкоvo

8.4.1 Гвюגоүюка́ характпрıотıка่

Rh: Máça tic Posóntis

 Menoviaç, Pa: Zóvn Пlüukou, Al: Ziovn

Pk: Zóvn Пapvacooí-Гkuóvas,
P: Ziovn Hivoov,

L: Jóvos Goin7,

 O＾OKAINO）

 IOYPAEIKO）

 TPIA $\triangle I K O$ ）

11．Eццаиібвı̧ каı коıта́биата Cr каı
12．Мहта入入віа．

8.4.2 Eठачоגоүıка́ Характтріотıка́

 ато 'Аүıо 'Оро૬ (І.Г.M.E. 1978, Nта́甲П̧ к.á 1999).

IZпиатоуعvท่ пहтрळ்

'Eठapos

 (тúnou Грпуоріои).
 керооті»ßıко่ үраvітт.

 1：50．000）

8．4．3 Тектоvıка́ характтріотіка́

H ava oxモ்ఠๆ：

$$
A=\mathbf{a} \cdot \mathbf{g}
$$

＇Onou：\quad g：єпıтáxuvon ßapútఇтаく，каו

NEOE XAPTH乏 £EIIMIKH乏 EПIKINAYNOTHTA乏

8．5．Фuवıкó перıßáM

8．5．1 「eviká otoryeia

X $\lambda \omega$ ріба

 Мєбદuршпаїка́ (4\%) каı топıка่ єvठ̄пиıка́ (2\%).

 (Мпанпа入बंvaç 1998).

\mathbf{a} / \mathbf{a}		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii			V	
4	Asperula aristata ssp. thessala		X		
5	Astragalus thracicus ssp. monochorum		X		
6	Atropa belladona	r			$\mathrm{A} \Delta$
7	Aubrieta erubescens		X	R	
8	Beta nana		X		
9	Campanula lavrensis	A		X	
10	Centaurea pannosa	A 11 Centaurea peucedanifolia		A	

12	Cephalanthera longifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		$\mathrm{A} \Delta$
15	Fritillaria euboeica		X	R	
16	Fritilaria graeca		X		$\mathrm{A} \Delta$
17	Helichrysum sibthorpii		X	V	
18	Hypericum athoum	X			
19	Isatis tinctoria ssp．athoa	B		A	
20	Limodorum abortivum		X		A
21	Linum leucanthum	B			
22	Linum olympicum ssp．athoum	B			
23	Neotinea maculata		X		
24	Neottia nidus－avis		X		A
25	Polygonum icaricum	X			
26	Silene echinosperma	A		V	
27	Silene multicaulis ssp．genistifolia		X		$\mathrm{A} \Delta$
28	Silene orphanidis				
29	Viola athois				

EпदEnyñoek Пivaka 18

 Проєбріко́ ঠıа́таүна 67／80．
2．Evōŋนाккó．Na： X ．
 عiठ̄os［（V）］，A5：इnávio عiठ̄oc（R）．
 K．à．（1998）

Пoviōa

 K．ПоїраZї̄ŋ（Nтá甲ク̧ 1992a）．

 oтףv aváканчף тои віठоuc．

 пропүои́ ε гท пара́үрачо．

EIIIKA XAPAKTHPI乏TIKA：EIAH TH乏 ПPOミTATEYOMENH乏 ПEPIOXH乏－GR 1270003 EZA XEPEONHEO AOS

－Oauvต்vec $\mu \varepsilon$ Laurus nobilis 5230

－Фpúyava Sarcopoterium spinosum 5420

－EMAnviká ठáon o६ıá̧ $\mu \varepsilon$ Abies borisii－regis 92701 C C B C
－Δ áon o ξ ís $\mu \varepsilon$ Quercus frainetto 92805 B B A A

－Δ Uтікウ่я Ißпрікп்ऽ Xepoovท்бou（Securinegion tinctoriae）92D0
－$\Delta a ́ \sigma \eta \eta \varepsilon$ Quercus brochyphylla otnv Kрíтп 9310
－$\Delta a ́ \sigma \eta \mu \varepsilon$ Quercus ilex 934025 A B A B
－Δ áon $\mu \varepsilon$ Quercus macrolepis 9350
 Pinus mugo kaı Pinus leucodermis 7 B C B B

（avaрорá oтŋv парака̇тш 入ітта）：

Eión Bגáornons

Abies borisii－regis（Макعठ̄оvıкó हों ато）
Abies cephalonica
Acinos alpinus nomismophyllus

Aethionema orbiculatum
Allium quttatum sardoum
Allium moschatum
Allium chamaespathum
Alyssoides utriculata
Amelanchier ovalis ovalis（A $\mu \varepsilon \lambda a ́ v x ı \varepsilon \rho$ To $\omega 0 \varepsilon ı 0$ ह́ç）
Anthemis sibthorpii
Anthyllis montana jacquinii
Anthyllis vulneraria pulchella
Arabis brvoides
Arctostaphylos uva-ursi (Арктобта́чu入оऽ)
Arenaria biflora
Asperula aristata nestia
Asperula suberosa
Astragalus thracicus monachorum
Atropa bella-dorma
Aubrieta erubescens
Aurinia corymbosa
Beta nana
Berberis cretica (Bepßepic п крптıкп்)
Bromus cappadocicus cappadocicus
Buxus sempervirens (Пuछ̆óc)
Calamintha hirta
Campanula albanica sancta
Campanula chalcidica
Campanula lavrensis
Campanula orphanidea
Centaurea athoa athoa
Centaurea chalcidicaea
Centaurea huliakii
Centaurea pannosa
Centaurea peucedanifolia
Cephalaria flava flava
Cephalanthera longifolia
Cephalanthera damasonium
Cerastium banaticum speciosum

Colchicum doerfleri
Convallaria maialis
Coronilla varia
Corydalis integra
Crepis athoa
Cruciata glabra
Cruciata pedemontana
Cyclamen graecum graecum
Cyclamen persicum
Danthonia alpina
Delphinium fissum
Dianthus gracilis gracilis
Dianthus pinifolius pinifolius
Dianthus stefanoffii
Digitalis leucophaea
Erysimum calycinum
Erysimum drenowskii
Euphorbia amygdaloides amygdaloides
Euphorbia deflexa
Festucopsis sancta
Fritillaria euboeica
Fritillaria graeca
Fumana procumbens (Фou ${ }^{\prime}$ áva η ह́pnouoa)
Gagea bohemica
Gagea pusilla
Gagea villosa
Galium asparagifolium
Galium demissum
Galium incanum incanum
Galium insularae
Galium pycnotrichum
Genista lydia (Гعvioтa Tņ ^uठ̄iac)
Geocarvum capillifolium
Globularia bisnagarica
Helianthemum nitidum (HıávӨ\& $\mu \mathrm{O}$)
Helichrysum sibthorpii
Heracleum humile (Hpáк $\lambda \varepsilon ı$ то хо \quad ти λ ó)
Heracleum sphondylium ternatum
Hypericum athoum
Hypericum cerastoides
Hypericum montbretii
Hypericum rumeliacum rumeliacum
Hypericum vesiculosum
Isatis tinctoria athoa
Juniperus communis hemisphaerica（Bouvóкєठоро то пилбраıрıко́）
Juniperus foetidissima（Bouvoкunápıбסo）
Linum elegans
Linum olvmpicum athoum
Matthiola fruticulosa valesiaca
Melica nutans
Neotinea maculata
Neottia nidus－avis Onosma paradoxum
Qphioglossum vulgatum
Orobanche purpurea
Qrthilia secunda
Paeonia peregrina
Platanthera bifolia
Platanthera chlorantha
Phyllitis scolopendrium
Pimpinella tragium polyclada
Pinus brutia（Tpaxeia пєúkn）
Pinus nigra pallasiana（Avaто入ıкó наиро́пєико）
Poa compressa
Poa hybrida
Poa thessala
Polygala nicaeensis mediterranea
Potentilla speciosa
Pterocephalus perrenis perrenis
Rhamnus saxatilis prunifolius（Pá $\mu v o \varsigma$ о п пpouvóqu $\lambda \lambda$ 人ос）
Polygonum icaricum
Rosa villosa（AvpıotoıavtaФu入入ıá η тpıx ω тウ́）
Satureia parnassica athoa
Saxifraga juniperifolia sancta
Saxifraga sempervivum
Scorzonera cana
Sedum cepaea
Sedum grisebachii grisebachii
Sedum reflexum
Sideritis perfoliata athoa
Silene compacta
Silene flavescens thessalonica
Silene multicaulis genistifolia
Silene orphanidis
Silene vulgaris prostrata
Sorbus aria cretica（Крптікウ் aonn
Sorbus aucuparia aucuparia（Aypıooopßıá）
Sorbus chamaemespilus（Xaцa॥દ்бпı入о६）
Sorbus umbellata（Mıкрர் aonnооорঠঠiá）
Stachvs leucoglossa
Taxus baccata（Tтaноৎ）
Tephroseris integrifolia aucheri
Teucrium divaricatum athoum
Thymus praecox iankae
Thymus thracicus
Vaccinium mvitillus（Baккivıo o μ úpтı入入oc）
Veronica barrelieri
Valeriana alliariifolia
Veronica chamaedrys chamaedrys
Veronica officinalis
Vicia cracca stenophylla
Viola arvensis
Viola athois
Viola delphinantha
Viola orphanidis orphanidis
Viola reichenbachiana
Viola sieheana
Eiōn Onגaotikळ́v
Canis lupus（＾úkoc）
Sus scrofa（Aypıoyoủpouvo）
Mustela nivalis
Felis silvestris
Capreolus capreolus
Eiōn Aucıßi

Bombina variegata
Triturus karelinii
Triturus alpestris
Eiön عดпยт由่v
Podarcis muralis
Lacerta viridis
Testudo graeca
Testudo hermanni

Eiōn opvıOnaviöas

Accipiter brevipes（ Σ aivi）
Accipiter nisus nisus（Тбıx入оүє́рако）
Apus melba melba（ Σ кєтıарvás）
Aquila chrysaetos chrysaetos（Xpuซaetóc）
Bubo bubo bubo（Mnoúqoc）
Buteo buteo buteo（Гعракiva）
Caprimulqus europaeus（Гuठ̄oßu̧̧áxтра）
Ciconia nigra（Mauponє\apyóc）
Circaetus gallicus（ФІठаعтóc）
Columba livia livia（Aүpıпперіотєро）
Corvus corax corax（Ко́ракас）
Delichon urbica urbica（ \sum пıтохモ入iठ̃ovo）
Emberiza cirlus（ $\Sigma 1 \rho \lambda$ otooix λ ovo）
Erithacus rubecula rubecula（Koккivoגai $\eta \varsigma$ ）
Falco eleonorae（Mauponहтрітпऽ）
Frinailla coelebs coelebs（ Σ nivoc）
Garrulus glandarius atricapillus（Kiббa $\mu a u p o \kappa \varepsilon \dot{\varepsilon} р а \lambda \eta$ ）
Hieraaetus fasciatus（ $\sum n ı$ Z，
Lullula arborea arborea（ $\Delta \varepsilon v \tau \rho о \sigma т a p \eta \dot{\theta \rho a) ~}$
Phalacrocorax aristotelis（ \quad алаббоко́ракас）
Tetrao urogallus（Aypıoкoupvós）

92/43/EOK

1410 Mzбoүعוaká a入inहס̄a (Juncetalia maritimi) - OXI

2220 Oivȩ $\mu \varepsilon$ Euphorbia terracina - OXI

92A0 Σ тоє́ $\varsigma \boldsymbol{\mu}$ Salix alba kaı Populus alba - OXI

 m.

 ६u入oкápßouva.

8.5.3.1 Xарактп́pas ths ह́ктаans tou ह́pvou

 паviठас $\eta \times \lambda \omega$ piठac.

8.6.1.1 Y ¢IOTánevec xorioeic vns

 unápxouv тоивіс, параүшүıко́тптац,

 бú $\mu \varphi \omega \mathrm{va} \mu \varepsilon$ то àpӨpo 5 пар. A от. 26 тои Opyavıбной тои (ápӨро пра́то N. 3566/2007),1411 каі

 Халкіб̈кท்с.

 'Opous عival povaxoi.

 Movn்.

8.6.2.2 Проотатеио́иеуа типи́мата

 10-1965.

 غ̇Xouv.

8.6.3 Поגтпотнй́ кАпроvоцıá

 ¿анарвітіठ̄ос, к.à..

 - ФЕК 714/B/29-10-1965.

8.7. Коıvшvıко́ каı оוкоvонıко́ перıßáגМоv

8.7.1 Апрюүрафик่ ката́отаот

 Ayiou 'Opous,

 тıৎ Iદpદ்̧ Movغ̧́.

 ठєv катаурáфovtav (Патрıv $̀ \lambda \eta \varsigma ~ 1997) . ~$

8.7.2 Параушүıк่ ठıа́рӨршоп

8.7.2.1 Параvшviкоi тоивis

$\Delta \varepsilon v$ uпápxouv параүшүікоі тонвіц.

8.7.3 Etoryeia anaoxóAŋoņs

 Tпv ठ̈aßi

8．10．Атнобчаıрıко́ пєрıßáдАоv－Поо́тпта ад́ра

Характпрıбцо́s عாıாย̇ठ̄ ω v púnavans	$\begin{gathered} \text { CO } \\ \left(8 \omega \rho \varepsilon, \text { тıи́ } \varsigma_{r}\right. \\ \left.\mathrm{mg} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \text { Kanvó̧ } \\ (24 \omega \rho \varepsilon \varsigma \\ \left.\pi \mu \varepsilon ̇ \varsigma, \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{SO}_{2} \\ (24 \omega \rho \varepsilon \varsigma \\ \text { T } \mu \dot{\varepsilon} \varepsilon^{\prime} \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$		$\begin{gathered} \mathrm{NO}_{2} \\ (\omega p ı a i \varepsilon \varsigma \\ \left.\mathrm{T} \mu \varepsilon \varepsilon_{,} \mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$
Xацплá	＜15	＜250	＜200	<180	＜200
Мغ̇трıа	$>15 \leq 20$	$>250 \leq 275$	$>200 \leq 250$	$>180 \leq 250$	$>200 \leq 350$
Y $¢ \eta \lambda$ A	$>20 \leq 25$	$>275 \leq 300$	$>250 \leq 300$	$>250 \leq 360$	$>350 \leq 500$
Пo入ú uшŋ入ả	＞25	＞300	＞300	＞360	＞500

8．11．Акочотıкó перıßáגМоv каı סоvฑ்бєıৎ

8．11．1 Пףүモ̇с，Өорúßou

 латрєитıк̇я，к．д．п．）．

перıß்̇גАоттоя

 піvaка тои ápӨpou 2 пар． 5 тои П．Δ ．1180／81（ФЕК－293 А＇）．

a／a		Avต்тато о́рıо Oopúßou $\sigma \varepsilon \mathrm{dBA}$
1	NouоӨятпи	70
2	ßıоипхауіко́	65
3	 	55
4		50
5		45

Өópußo．

8．12．НАєктронаүvптıкá пеठía

unóßaӨpou

8．13．＇Үбата

H перıox

 $\lambda u ́ \mu a t a$.

8．13．1．1 Пapouviaon проß入غ́ $\psi \varepsilon \omega v$

8．13．2 Eпıфаvモıaкá ய́ठ̄aта

－Yס̄peuon
－Aрббuon

$\Delta \varepsilon v$ unápxé η napoucia ßıounxavikக்v pún ωv

8．13．3 Yпóyモıa úס̄ata

 о опоіос трофоботвіта। $\mu \varepsilon$ vєро́ апо் тои паракатш треІц тро́поиц．

8．13．3．1 ПеріураФர் иброуعш৯оуіка́v характпрюотіка́v

 перıххウ்s．

－Үठ́рعưп
－＇Apঠ̌zưך

 катavä̀ ω on μ óvo．
$\Delta \varepsilon v$ uпápxદı púnavon anó проїóvта фutoпробтабias，

ŋ்／каı то перıßádMov，кирі́шs лóүш атиХпиáтшv каı катабтрофผ́v

ß．Екठ̄ウ̀ $\lambda \omega \sigma \eta$ пиркаүıа́द
ү．Eпıßap μ и́va aпóß入пта

$\Delta \varepsilon v$ avau

 норфолоүіка́ үєш৯оүгка характпрıотіка́ тпс.

 актіvoßо入iec.

9．EKTIMHEH KAI AEIO＾OГHEH ПEPIBANAONTIK EПIПT $\Omega \Sigma$ ERN

9．1．МвӨобоฝоүıкє̧́ апаıтர்бєıऽ

 عпıாтஸ்சદ $\omega \mathrm{V}$ ．

 عпıாтஸ்ఠॄ $\omega \mathrm{V}$ ：

 оиठغ்тєро̧．
ii．ПіӨavótŋта вц甲áviơ幺̧．

 unápxouv．

 'Epyou:

- Фáon Kataбквuท́s,
- Фáon ^عाтoupyia̧

характпріотіка́

9.2.3 Екпоипйц аєрiou tou Өвриокппіои

9.2.3.1 Фа́on катабквй́s

 ако入ои̇ $\theta \omega \varsigma$:

Eíóç púnou	$\mathbf{C O}_{\mathbf{2}}$
$\mathbf{g} / \mathbf{H P}-\mathrm{hr}$	587,3

	CO_{2}	
	Kg / d	tn/y
$\begin{aligned} & \text { Екбкаре́ас 200kW } \\ & (286.5 \mathrm{HP}) \end{aligned}$	1346.1	40
Фортпүó- $\mu п \varepsilon т о v i \varepsilon ̇ р а ~ а ~$ 100kw (134.5 HP)	632	19
Avatpenónevo 120kw (161 HP)	756	23

 غ่py $\omega \mathrm{v}$.

9.2.3.2 Фáon deitoupvias

п入єктропараүшүण்	$0.855 \mathrm{~kg} / \mathrm{kWh}$
	$147.92 \mathrm{~kg} / \mathrm{d}=0.148 \mathrm{tn} / \mathrm{d}$ ¢ं $54.02 \mathrm{tn} / \mathrm{y}$

9.3.2 Tопıоגоүıкє̇¢ $\mu \varepsilon т а ß о \lambda \varepsilon ́ \varsigma ~$

характпріотוка́

 μ цкра́ $\mu \varepsilon ү \dot{\varepsilon} \theta \eta$.

 катабквиท̆ каı $\lambda \varepsilon ı т о u p ү i a ~ T \omega v ~ \varepsilon ̇ p ү \omega v . ~$

9.4.2.1 П॥Өаvótnta púnavonc tuv हסаøа́v

$\Delta \varepsilon v$ ava

9．5．Епıптஸ்бєıऽ ото чибıко́ перıßádМоv

9．5．2 Проотитеuóนеvєц періохモ̇ц

X $\lambda \omega$ ріба

Пavióa

 $\mu \varepsilon т а к ı v \dot{\sigma} \sigma \omega \mathrm{v}$ T $\omega \mathrm{V}$ 孔 $\omega \omega \mathrm{V}$

9．5．2．1 EIסIкá otoIxEía

Eión Bגáotnons

 nou そouv otnv перıххウ่．

Eiön Auрißıa каı Eiön عрпетஸ்v

Enırाт்̈osic tou غ́pyou otnv nepıoxń Natura

 т T v то́п $\omega \mathrm{V}$ шотокіас, клп.

9.6.1.2 Епиптш்бе।я

 uyizivñs.

тпр проотабіа тои перıß்̀ $\lambda \lambda$ доитоऽ,

9.6.2.1 Eктіипоп हпиттш்бвढи

 тпV проотабіа тои перıß்̀ λ лоитоц.

 періохウ่.

9.6.3.1 Eпıाтш்бع।ك

 anó ıторıко́ $\mu \mathrm{v} \eta \mu \varepsilon i o$.

9.6.3.3 Eiठiкń Eктiunon

9.7.3 Өモ́वहıç epyaciac

 otnv I.M. Ooiou Гpnyopiou.

9.8.2 Enápкєıa

 va $\lambda \eta \varphi Ө$ оúv та катà $\lambda \lambda \eta \lambda а ~ \mu غ ் т р а . ~$

Movís.

9.9.1 ПıӨavótŋта عvioxuons

 каı 入оппйя סраотпріо́тптая,

9.10. Епıптஸ́бعıৎ отпи поо́тпта тои ац́ра

 $100 \mathrm{mg} / \mathrm{m}^{3}$, пои каӨорі६६таı апо́ то ápӨро 2 парау. ठ тои П.А. 1180/81 (ФЕК 293/А/6-10-1981).

 ठєкáठ६ৎ ppm).

 ßıо入оүıкウ่ऽ єпє६६рүаवiac．

 autokivクTшv．

 293／A／6－10－1981）．

 גеітоируіа тоиद，
 aпо́oтaon

 Tんv EEA．

9．11．2 Eпıாтம்ơıィ

9．12．1 Enırтய்णモıৎ

9．12．2 ПІӨavóтџта

$\Delta \varepsilon v$ uпápxouv $\eta \lambda \varepsilon к т р о \mu а ү v \eta т і к а ́ ~ п \varepsilon ঠ ̈ і а . ~$

9．13．Епıптผ́беıৎ ота и́бата

9．13．2．1 EпиттШ̈бعוに णто ठіктио

9.13.2.3 Eктіипоп нетаßо入а́v

 à $\mu \varepsilon \sigma a$ каı $\mu \varepsilon \lambda$ лоvтіка́.

Фáan катабквuńs

Фáon AEıtoupvias

 ठıарроळ̇v.

9．13．3．4 Ektiunon 山हтаßо1⿳㇒人

до́үш атบХпна́тшv каı катабтрофฝ́v

Фàon катабкعun่s

Φ ágn Aeıtoupvias

1．ПPAミINH ENAEIEH avtıorox
2．avtıoтoıxधi $\sigma \varepsilon$ ENUIAMEEH KATA乏TAEH－EПIחT $\Omega \Sigma H$
3．KOKKINH ENAEIEH avtıotoıxદi $\sigma \varepsilon$ APNHTIKH EПIחTT $\Omega \Sigma H$

©AEH EPROY	IEPIBANAONTIKO ETOIXEIO	enimiszets			BAPYTHTA				$\triangle I A P K E I A$		ANAETPE		
		$\frac{\pi}{2}$	W్凶入入	믕	¢	砏		$\frac{\text { S }}{\stackrel{\text { B }}{\mid c}}$	$\sum_{i=1}^{\text {I }}$	들 댕 O 륻	징		$\frac{\pi}{2}$
			\checkmark			\checkmark				$\sqrt{ }$	\checkmark		
	Морфолоүıка่ каı топо入оүıка่ характпрıөтіка่		\checkmark				$\sqrt{ }$			$\sqrt{ }$			$\sqrt{ }$
	характпрітткк்			\checkmark									
	Фuбiкó перıßà入入ov		\checkmark				$\sqrt{ }$			$\sqrt{ }$			\checkmark
				\checkmark									
		$\sqrt{ }$			$\sqrt{ }$					$\sqrt{ }$			
			\checkmark					\checkmark		\checkmark			\checkmark
				\checkmark									
	Поıо்тŋта тои аह̇ра	$\sqrt{ }$				\checkmark				$\sqrt{ }$		$\sqrt{ }$	
		\checkmark					\checkmark			\checkmark		$\sqrt{ }$	
	Н入єкроиауvๆтіка́ пеठía			\checkmark									
	＇ Јата			\checkmark									
		\checkmark				$\sqrt{ }$				\checkmark		$\sqrt{ }$	

EPIO ：«EPIA EПE＝EPTAEIAE KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K S 2 N ~ \Lambda Y M A T S 2 N ~ I T O ~ A I I O N ~ O P O \Sigma » ~$

ФAN EPTOY	ПEPIBAMONTIKO ミTOIXEIO	EMIMTSEEİ				BAPYTHTA			AIAPKEIA		ANAETPEYIMH		
		¢	W	$\begin{aligned} & x \\ & 0 \end{aligned}$	¢	$\frac{\text { S }}{\text { 京 }}$	¢	㟶	$\sum_{\text {E }}^{\text {2 }}$		8	W ¢ ¢ 岂	ㄹ
	К入ıиатıка́ каı ßıоклıиатıка́ характпрıотıка́		$\sqrt{ }$					$\sqrt{ }$	$\sqrt{ }$			\checkmark	
	Морфолоүıка́ каı тополоүıка́ характпрıотıка		$\sqrt{ }$			$\sqrt{ }$			$\sqrt{ }$			$\sqrt{ }$	
	характпріттіка́			$\sqrt{ }$									
	Фuđıкó перıßà入入ov	$\sqrt{ }$			\checkmark				$\sqrt{ }$				
		$\sqrt{ }$			$\sqrt{ }$				\checkmark				
		$\sqrt{ }$			\checkmark				$\sqrt{ }$				
				$\sqrt{ }$									
		$\sqrt{ }$			\checkmark				$\sqrt{ }$				
	Поı́ттта тои аह̇ра	$\sqrt{ }$						$\sqrt{ }$	$\sqrt{ }$				$\sqrt{ }$
		$\sqrt{ }$					\checkmark		$\sqrt{ }$				\checkmark
	Н入єкроиаүvŋтіка̇ пеठїа			$\sqrt{ }$									
	＇Yסата	\checkmark			\checkmark				\checkmark				
		\checkmark				\checkmark				\checkmark		$\sqrt{ }$	

Гعvıке̇с катвuӨúvgeis

 ото П. $\Delta .1180 / 81$ (ФЕК 293/A/81) каı عıठІкк்тєра то ápӨро 2 autoù:

 тои перı ß́̀ Мооттоя.

 aко்入оuӨa:

 єкбкафळ்v.

 та проß入єпо́ $\mu \varepsilon \mathrm{va}$ от।ऽ:

- YA A5/2375/78 (ФЕК 689/B/78)
- YA 56206/1613/86 (ФЕK 570B/86)
- YA 69001/1921/88 (ФЕК 751/B/88)
- YA 765/91 (ФЕK 81/B/91)

 （EK 801ß／74），KYA 5673／400／1997，KYA 145116／2011 каӨ⿳亠二口欠 каı ото П．$\Delta .1180 / 81$.

 apxŕs．

 бпицоupyoúv aıррйиата．

 праүнатопоппөві．

 тПऽ бко́vクఢ：

фáon \eıtoupvias

клıнатıка́ каı ßıокДıнатıка́ характпрıотıка́

Фáбп катабкеuís

 ०入ок入ウ்ршоך тои غ́pүou．

Фáon 入eitouovias

норфолоүіка́ кал топооћоүіка́ характпрıотıк்่

Фáon катабкहuís

Фáon deltoupvias

уєळ৯оүıкá, тєктоуıкá каı єঠачо৯оүıкá характпрıотıкá

Фáon катабквиї́s

 парака்тш:

єКбка甲গ่ऽ	
Oптіки́ anouóv. вүкатабта́бв ωv	

Фáón λ Eitoupvias

甲ибוко́ перıß்̇̀lov

ФáбП катабкहиग́＇s

 $\beta \lambda a ̀ ß \eta ~ \sigma \varepsilon ~ a u t \eta ่ v ~$

 aпó тПV $\mu \varepsilon \lambda \varepsilon ́ T \eta . ~$

 OTףV KYA 71560／3053，ФEK 665／B／85．
 Фáon \eltoupvias

avӨpんпоүعvغ́s перıßádAov

Фáon катабкहиís

 тоu غ́pyou.

Фáon λ हıtoupvias

Фáon катабкहиர́s

 перıß̀̀入入ov عival:

Фáon λ हItoupvias

Фáのп катабкहuís

Katack\＆un่ unoठonciv	

Фóon גemoupvias

фáon катабкеuŕs

 браотпріо́тптац

Фáon 入हitoupvias

отๆи поו́тпта точ aย́ра

Фáのп катабкहuins

 T $\omega \mathrm{V}$ عкпоцпळ்v бкóvŋร.

 $\mathrm{mg} / \mathrm{m}^{3}$, пои каӨоріそ६таı апо́ то àpӨро 2 параү. ठ тои П. Δ. 1180/81 (ФЕК 293/А/6-10-1981).

Атүоофаıрıкй рúnavon	 عivaı $a \mu \varepsilon \lambda \eta t \varepsilon ̇ \varepsilon \varsigma$.

Фáon \eitoupvias

 хпникढ́v.

Фáon катабкहиग́s

 17252/1992 (ФЕК 395B/29-06-1992) ópıa Өopúßou.

Өópußoç anó tŋv kivnon охпиáт ω к каı та катабквиаотікд́ ह́pya	

Фáon \eitoupvias

$\Delta \varepsilon v$ uпápXouv П入єктроцаүvŋтіка่ пєठїa．

úठata

Фáon катаоквuís

 סıappoéc，

фáon deltoupvias

 $\lambda u \mu a ́ r \omega v$ ото перıßà λ 人

Фáon катабк\＆uम＇s

 фáon 1 हाтоиоуias

10.15. АпотєАвблатıко́тпта $\mu \varepsilon ่ т \rho \omega v ~$

Фáon катаокغuŕs

Өópußoç anó tŋ̧ kivŋoŋ oxпиát $\omega \mathrm{v}$ каі та катабквиаoтıка̉ ह́pya	
Атноб¢аıрікй рúnavon	
Kataokeuท่ opuyमáт ω v 	
єкбка甲ウ่я,	

Фáon גEItoupvias

Арабтпрıótпта－ парє́цßабп	
Xpión yns	H періохウ่ тои غ̇pyou каı то око́ппठо ото опоіо Өа вүкатабтаӨві то в́pүо характпріद̧таı апо́ ауротıко́ Характர்ра．
ouvtinpnons	 періохйя．
Eүкатáのтaøך ह̇pyou	 ठєvठрофúтєữ
AıөӨŋтікர் unoßáӨpion топiou	 катабкєиш்v aпо́ đкиро́бॄца． парадıако́ μ غ̇тюпо．
Граниغ́я нвтачора́я 	

Ефікто́тпта не்тршv

 TOU．
 tov uncúӨuvo tクc Moviç．

 TOU．

Фáon катабкеиர́s

Өópußos anó тŋ२ kivŋon охпиátшv каІ та катабкєиаотіка́ غ́pya	
Атноораıрıк่ púnavon	
	 отаӨ人ои่．
Катабквиர่ ориүнátov	
єкбка甲ウ่ऽ	
Фuđıкó перıßà入入оv	 عпıто́пıo ह่ $\lambda \varepsilon ү \chi$ ．

Фáon \عıтоupvias

Арабтпрıóтпта－ парє́цßaō	
Xprion yns	Н перıох＇̆ тои غ́pyou каı то око்пहठо ото опоіо θ а
ouvtinpnoņ	 пєрıохท่я．
Eyкatȧoтađп غ́pyou	
	 паралıако́ нغ́тшпо．
Гра μ ц́я нєта甲ора́я 	

 145116／2011

（Пクүர்：aпó¢aon 171914 ФEK 3072／B 3－11－13）

 anó tpitous．

 $287 \mathrm{~B}^{\prime} / 07$).

B. Фáon kataoкعuŕs

 тоиa入દ่т६¢．

 та ако́入оиӨа：

 ह入áxıாто ठ̄uvató

Yypá каı oteped aпóß λ nta

 квіццvクऽ vo

OópußOs - סOvn்ǫis

 19пऽ $\Delta \varepsilon \kappa \varepsilon \mu ß$ piou 1978，тクऽ 7クऽ $\Delta \varepsilon \kappa \varepsilon \mu ß$ piou 1981 каі тпऽ 11пऽ Iou入iou 1985）．

Фáon \eitoupvias

 фaivó $\mu \varepsilon v a ~ п \lambda п \mu \mu u p \omega ̈ v ~$

 проßлпиаттшv.

¿uүкєкрıцд́va va үiveтal:

 avtippúnavoņs.

Yyod Aпóß入nta

 тпऽ періохウ́я

 عка่бтотદ ІбXỦouv.

 П入єктроипХа⿱㇒⿻二丨⿴囗⿱一一

 ón $\omega \varsigma$ єка்бтотє Ібxủouv．

$\Delta .3 .2$ Ta גúnata $Ө$ a oठ̄クүoúvtaı үıa ano入ú $\mu a v o \eta$ ．

 апоß入ウ่тшV тпऽ параүшүікウ่я ठıабıкабіас．

ミтeped Aпóß入nta

 （ФЕК 24／A＇／2012）．

 NoноӨعбіас，ЕІठ̈ıко́тера：

 41624／2057／E103／10（ФЕК 1625 B＇）ón $\omega \varsigma$ ı IOXúouv．

 ón $\omega \varsigma$ Ібхย̇ย．
 （ФEK 81 A＇）．

 $1312 B^{\prime}$ ）óп $\omega \varsigma$ וסхய่ยו．
 13588／725／28．3．06（ФЕК 383 B＇），24944／1159／30．6．06（ФЕК 791 B＇），8668／2．3．07（ФЕК 287 B＇）каı

 $\varepsilon п \varepsilon \xi \varepsilon p y a \sigma i a \varsigma ~ а п о \beta \lambda \eta \dot{T} \omega \mathrm{v}$.

 Ioxúouv.
 OTףV KYA 114218/1997 (ФEK 1016 B'/17-11-1997).

 $\Delta / v \sigma \varepsilon \omega v$ T ω v $\sigma u v a p \mu$ óठi ωv Yпоupyघi ωv.

 Еүкик入i ω v.

Abstract

 Пєріßа́入lоитоя， о入ок入ウ்pшon тоия．

Протáoॄıс ци̇тр ω v avá páon

Фáon oxeठiaनuoú

 xpóvo．
 12，пар． 2 тпऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каı ß）ота घпıкіvठ̄uva anóß入пта
 $287 \mathrm{~B}^{\prime} / 07$ ）．

тоия ap

 43504/2005 (ФЕК B' 1784) кaı TఇV KYA 150559/2011 (ФЕК B' 1440) ón $\omega \varsigma ~ \varepsilon к а ́ \sigma т о т \varepsilon ~ ı \sigma X u ̉ o u v ~$

 ерүасієс,

 тоиa入દ்т६,.

А ह́pıદऽ عкпоипย่ऽ

 та ако่入оиӨа：

 ع\áxıロто ठ̄uvató

Yypá каı orepeá anóß入nta

 1312）ón $\omega \varsigma$ عка่бтотє ıбхu่ย।

 ón $\omega \varsigma$ عка́oтотє ıХХப்モા．

Oópußoc－סovñozis

 ठıaтá̧̧ıı，пعрі Өорúßou

Фáon 入eitoupviás

Ásiola AпÓß入nta

 проßлпиатт ωv ．
 غ́үкаıр каı тактıкウ่ апокоцıठ̈ท́ тоиц，

－Ta ßıо入оүıкá фі̀ттра пробко入入пи

¿uүкекрıи̇̇va va үіveтal：

 т7ऽ عүката́отаопऽ

 avtippúnavoons．

Yypá Aпóß入nto

 праүнатоповітаı $\mu \varepsilon$ ßа́のп та ако́入оиӨа：

 үוa Tı，aváyкȩ，тоu ह̇pyou．

 тクऽ перıохウ்ऽ

 єка́oтотを ІбXúouv．

 Kaı óp $\omega \mathrm{V}$ ठıáӨzaņ वह autóv．

 апочعuxӨદi п отроßı৯ब்ठ̄nऽ роウ่．

ミтерع́d Aпóß入nта

 （ФEK 24／A＇／2012）．

 41624/2057/E103/10 (ФЕК 1625 B') ón $\omega \varsigma$, וסxúouv.

 (ФЕK $81 \mathrm{~A}^{\prime}$).

 1312 B' $^{\prime}$) ón $\omega \varsigma$ וбхய่モા.
 13588/725/28.3.06 (ФЕК 383 B' $^{\prime}$), 24944/1159/30.6.06 (ФЕК 791 B'), 8668/2.3.07 (ФЕК 287 B') KaI

 ıoxúouv.
 OTףV KYA 114218/1997 (ФEK 1016 B'/17-11-1997).

 Еүкиклі ω v．

 Пєрıßа́入入оитоя，

 олок入ñp ω on touc．

Пaúan גहıtoupvias

opı̧̧́neva oTnv KYA 50910/2727/2003 (ФЕК B'1909), OTףV KYA 13588/2006 (ФЕK B'383), ото N.2939/2001 (ФЕК A' 179) каı ото N. 4042/2012 (ФЕК A'24), ón $\omega \varsigma$ દка́бтотє ıбхйouv.

EPIO ：«EPIA ETE＝EPTAIIAI KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K S N ~ A Y M A T S Z N ~ \Sigma T O ~ A I T O N ~ O P O \Sigma » ~$

ФAEH EPTOY	חEPIBAMAONTIKO ETOIXEIO	Emintoseis			BAPYTHTA				\triangle IAPKEIA		ANAETPEYIMH			חAPATHPHEEIE
		$\frac{1}{2}$	W	층		$\frac{\Sigma}{\mathbf{E}}$		$\stackrel{\text { 区 }}{\stackrel{\text { E }}{5}}$	$\sum_{\text {를 }}^{\text {ㄴ }}$	들 맹 을	징		$\frac{2}{2}$	
	Клıиатіка́ каı ßıокдıиатıка́ характпріөтка́		$\sqrt{ }$			\checkmark				\checkmark	\checkmark			Пробшріvغ̧́ عкпоипغ่ऽ ठıбद६ঠठiou tou ávӨрака апо́ та $\mu \eta \chi$ Хvทั่ μ ата катабквuñs
	Морфолоүіка́ каı тополоүіка́ характпріттіка́		$\sqrt{ }$				\checkmark			\checkmark			$\sqrt{ }$	Перюopizovtar ol ठıахघipıøпऽ проїövTwv єкбкафळ̈v．
	Гєш入оүіка́，тєктоviкд каı єбачолоүіка் характпріттка			\checkmark										
	Фuбiко́ перıß̈̀入入ov			\checkmark										
				\checkmark										
	KoIvตviкooikovouıкó періßа̀入1ov	$\sqrt{ }$			$\sqrt{ }$					\checkmark				
			$\sqrt{ }$					$\sqrt{ }$		\checkmark			\checkmark	Yпоувıопоinan tuxóv vЕ̇ $\omega \mathrm{v}$ ठıктu่ ωv ． ミuvtónعuan xpóvou катабкєบท̆с．
	Avөp ω поү ото перıß̈̀入入оv			\checkmark										
	Пооттףта тои аغ̇pa	$\sqrt{ }$				$\sqrt{ }$				$\sqrt{ }$		\checkmark		 апо́ та $\mu \eta \chi$ хvท่ната катабквийs．Eпı入оүп்

EPTO : «EPTA EIEEEPTAIIAL KAI $\triangle I A O E Z H \Sigma ~ A \Sigma T I K Z N ~ A Y M A T S N ~ \Sigma T O ~ A / T O N ~ O P O \Sigma » ~$

EPRO：«EPRA ETEEEPTAITAI KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ I T O ~ A T I O N ~ O P O \Sigma » ~$

ФAH EPROY	REPIBAANONTIKO ETOIXEIO	Emintaseis			BAPYTHTA				AIAPKEIA		ANAETPE			ПAPATHPHEEİ
		$\frac{1}{2}$	W్ㅐㅐ	징	¢	$\frac{5}{2}$		$\frac{\text { 宏 }}{\stackrel{y}{\mid c}}$	$\sum_{\sum_{3}^{2}}^{\text {ㄹ }}$	들 M M 읃	증	W 흘 를	$\frac{\mathbf{x}}{2}$	
	єठачолоүıк் характпріттіка́			\checkmark										
	Фuđiкó перıßà入lov	\checkmark			\checkmark				\checkmark					
		\checkmark			\checkmark				\checkmark					
	Koıv ω viKOoıікоvo μ IKó перıß̈̀̀入ov	\checkmark			\checkmark				\checkmark					
				\checkmark										
	ото перıß̇̀Mov	\checkmark			$\sqrt{ }$				$\sqrt{ }$					
	Поıо́тпта тои аغ́pa	\checkmark						\checkmark	\checkmark				\checkmark	Eпıіоүท் aعробтєүஸ்v ठ $\varepsilon \xi a \mu \varepsilon v \omega \dot{v}$ каı $\varepsilon \xi \circ п \lambda ı \sigma \mu \circ$ Үia T Ү
		\checkmark					\checkmark		\checkmark				\checkmark	Плектропараүшүо́ ̧éyoc．
	НАєкроцаүиๆтіка́ пеठіа			\checkmark										
	Үбата	\checkmark			\checkmark				\checkmark					
	乏оßара́ атихŋ்иата ウ் катаотроре́я	\checkmark				$\sqrt{ }$				\checkmark		$\sqrt{ }$		

Tax．$\Delta /$ voŋך：Пaná甲n 82，Өعббa入ovikn，Т．К．54453，
Tク入．： 2310902321
Email：skarageo＠gmail．com
¿фраүіб̈а－Үпоүра甲＇

Өrooalovín $14 / 041$ 2022
「IA TON EMETXO

EAETXOHKE
Oruondovikn ．．．．1．4．／04／．．202\％
－MPOİITAMENOE
TMHMATOE AAEOM\＆MEPRBANONTOE
 $\Delta a 00 \lambda 0$ yos $\mu \varepsilon A^{\prime} \beta$

ӨEתPHOHIKE
Oeorondovikn．．．14／04／20．28
O AIEYOYNTH TH

Tećpyıos MatparáZ̧ņ
Пlahtuкós Mnxaviкós μ e A＇β ．

11. ПEPIBAAMONTIKH $\triangle I A X E I P I \Sigma H ~ K A I ~ П A P A K O N O Y O H \Sigma H ~$

 Plan (EMP) عival:

 $\lambda a \mu ß a ́ v o u v ~ \chi \omega ́ p a ~$

- Opia үппह்סou EEA
- Opia ктірíwv Movウ́s

	Пара́ретроя		ouMloyñs	ठегуратаи	Xpȯvos rapapovís	
					E¢¢ywү门	Avákuot
Eigoठoc Égō̃os	BOD－5	MCAWW Method 405.1	One $500-\mathrm{mL}$ amber glss jar with TeflonTM－lined cap	Store at $4^{\circ} \mathrm{C}$	48 hours	5 days
	COD	MCAWW Method 410.4	One $500-\mathrm{mL}$ amber glss jar with Teflon ${ }^{\text {TM }}$－lined cap	$\mathrm{H}_{2} \mathrm{SO}_{4}$ ；store at $4^{\circ} \mathrm{C}$	NA	28 days
	TSS	MCAWW Method 160.2	One $500-\mathrm{mL}$ polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	7 days
	ORG	MCAWW Method 413.2	One 1－L amber glass jar with Teflon ${ }^{T M}$ ． lined cap	HCl ；store at $4^{\circ} \mathrm{C}$	28 days	40 days
	Chloride and sulfate	MCAWW Method 300	One $250-\mathrm{mL}$ ，polyethylene bottle	Store at $4^{40} \mathrm{C}$	NA	28 days
	Micobiolog． parameters		$120-\mathrm{mL}$ sterilized borosilicate glass bottle	Store at $4^{\circ} \mathrm{C}$	1 hr	48 hours
	DO	MCAWW Method 360.1	One $\mathbf{2 5 0}-\mathrm{mL}$ ，polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours
	pH	MCAWN Method $150,1$	One $250-\mathrm{mL}$ polyethylene bottie	Store at $4^{\circ} \mathrm{C}$	NA	24 hours

 غ́द๐ठัం．

ПAPAMETPOE	EIEOAOE	EEOAOE	INYE	$\triangle E I T M A$	TIAPATHPHEEİ
Парох＇̆		$+$			
$B O D_{5}$	\＃	\＃		M．H	
COD	\＃	\＃		M．H	
SS	\＃	\＃		M．H	
А $\mu \mu \omega \mathrm{viaka}, \quad$ vitp $\omega \dot{\partial} \check{n}$, vitpiká	\＃	\＃		M．H	
TP	\＃	\＃		M．H	

\＃：Пєрıобıка่（п．х．1－2／ипvıаiш¢）
＊：इпораб̈ка́

－$\Omega \varsigma$ аvшт ε р ω пivakac

ПAPAMETPOE	£Y「KENTP $\mathbf{\Omega} \mathbf{E H}$
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{lt})$	<25
$C O D$（ $\mathrm{mg} / \mathrm{lt}$ ）	＜ 125
	≤ 35

- 'Opıa ктıрі ω v Movท́s

- 'Yпарछп ס̈ıарроळ́v

11.2.4 Паракоגои்Өŋоŋ Өори́ßou

- KaӨпиعрıvá ($\mu \varepsilon$ паратர்рпоп)

- Opia xஸ́pou EEA
- Opıa ктірі ω v Movís

- Auそппи̇voc Өópußos

11.2.5 Паракоגои்Өпоŋ ооцக்v

 є६оп入ıб

 عیо்тптє६：

KaӨapiouóc－ミuvtnipnon

－KaӨпиерivá

－＇Opia x由́pou EEA
－Opia ктıрі ω v Movís

11．3．1 Eıоаүшү＇่

 aпоठ́غ்kтๆ．

 перıохウ́ каı та vepà．

 $\varepsilon \varphi$ ариóそоvтаı $\mu \varepsilon$ тро́по бuvтвтаүцд̇vo．

11．3．3 Evepyonoinoŋ tou ミxઘठ்iou

乃．Екठ̈ர் $\lambda \omega$ оп пиркаүıа́я

－YпгрӨغ́puavon

ү．Eпıßарпиغ́va aпóß入пта

 $\mu \varepsilon \dot{\varepsilon}$ обо каӨapıб

－ －ıappoń $^{\text {or aүшүó }}$

 Acquisition or SCADA) каı ठ $\varepsilon ı ү \mu а т о \lambda \eta \psi i \varepsilon \varsigma-a v a \lambda u ̈ \sigma \varepsilon ı \varsigma, ~$

11.3.4 Anevepyonoinon tou Exeठiou

Nai Oxı

B. Xpŋ́on ßutioழópuv

 к.А.т.

Г. Мદ̇ба عктáктоu aváyкŋ̧

$\square \square$

апоß入n่тшv

ГIA THN EГKPİH חEPIBAMAONTIKQN OP Ω N

 $\lambda u \mu a ́ t \omega v$.

12.2.1 Karára૬̆n غ̇pyou

 2703/B75-10-12).
 1931B/27-12-2004).
 3-2007).

KaràtaEn katá ミTAKOA 2008 кaı NACE Rev. 2

 каІ $Y=4476569,54$.

Bо́реіас пероххŋ́c прос E．E．1． 1

	ミuvTETayu̇̇vec ETZA 87	
	X	r
Apx＇்	521633，60	4447659，54
EvōiàuEco 1	521660，85	4447632，83
Evōiáuscoo 2	521667，14	4447616，68
Tė̀os－Eiooōos Пpokatiznons	521677，90	4447608，61

	£uvtetayuėvec ETEA 87	
	X	Y
Apx＇்	521681，62	4447598，62
	521677，90	4447608，61

 521676,32 каІ $Y=4447605,81$ ．

1

	EuvTETaypėvec ETटA 87	
	X	Y
＇EEOJoc anó EE＾	521676，23	4447602，05
ミท	521677，29	4447597，73

	£uvTETayHĖvec EГटA 87	
	X	Y
Apxń	521600，16	4447425，74
	521600，61	4447442，12

 521599,67 ка। $Y=4447419,09$ ．

	¿uvteraypėvec EİA 87	
	X	Y
Apxí	521609,53	4447380,62
Evōıáuroo 1	521615,77	4447379,49
Evōiáneбo 2	521634,06	4447389,20
Evठ̇ı́áuøo 3	521669,55	4447395,55
	521675,86	4447390,82

 521676,03 ка। $Y=4447387,31$.

	इuvtetayuėvec, EГ乏A 87	
	X	Y
'Ȩoठ̃oç anó EE^	521673,26	4447387,52
	521654,58	4447391,36

12.2.3 Періүрафй 'Epyou

Aпохєтєutiká öiktua

 тоu $\xi \varepsilon v \omega ் v a ~ o t \eta v ~ п \varepsilon p ı o x ' ̆ ~ т о u ~ \lambda ı \mu a v i o u ́ ~(E . E . \Lambda . ~ 1) . ~$.

 k 1 àoņ SN8,.

 (E.E.^. 3).

Ta đuvo入ıкá бєठон отоиц, ако்خоuӨоиц піvaкец:

TAPAMETPOE		ПAPOYEA ФAEH	ФAEH EXEAIAEMOY
	кат．	280，00	370，00
	$\mathrm{m}^{3} / \mathrm{d}$	42，00	55，50
акаӨápтшV	$\mathrm{m}^{3} / \mathrm{d}$	63，00	83，25
	$\mathrm{m}^{3} / \mathrm{h}$	2，63	3，47
Парохウ் aıхцウ่¢ Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	9，47	12，49
	gr／кat／d	60	60
ЕІЇкко่ Puпavtıко́ ¢ортіо TSS	$\mathrm{gr} / \mathrm{kat}$	70	70
Eıठ̈ккó Punavtikó 甲optio TN	gr／кat／d	10	10
Eıठıко́ Punavtıkȯ ¢ортіо TP	gr／kar／d	3	3
Фортіо BOD_{5} бХЕঠıабนой	kg／d	16，80	22，20
Фортіо TSS охहסıaбนой	kg／d	19，60	25，90
Фортіо TN охєठІабиой	kg／d	2，80	3，70
Фортіо TP охعठІабนоบ่	kg／d	0，84	1，11

ПAPAMETPOE		ПAPOYEA ФAEH	ФAEH EXEAIAEMOY
	кат．	84，00	111，00
	$\mathrm{m}^{3} / \mathrm{d}$	12，60	16，65
акаӨа́ртшv	$\mathrm{m}^{3} / \mathrm{d}$	18，90	24，98
	$\mathrm{m}^{3} / \mathrm{h}$	0，79	1，04
	$\mathrm{m}^{3} / \mathrm{h}$	2，84	3，74
Eıठıко̇ Puпavtıкȯ ¢ортіо BOD_{5}	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	60	60
Elठıкȯ Punavtikó ¢ортio TSS	gr／kat	70	70
Eıర̈ı̇̇ Punavtikó ¢ортio TN	gr／Kat／d	10	10
Eıठıкó Puпavtikó 甲ортіо TP	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	3	3
Фортіо BOD_{5} бхЕঠıабนой	kg / d	5，04	6，66

Фортіо TSS охебıабиои́	kg／d	5，88	7，77
Фортіо TN охغঠıабนоบ่	kg／d	0，84	1，11
Фортіо TP охहঠıаоцой	kg／d	0，25	0，33

$\triangle \varepsilon \delta о \mu \varepsilon ่ v a ~ o x \varepsilon \delta ठ ı \sigma u o u ́ ~ E . E . \Lambda . ~ 3 ~$

TAPAMETPOE		ПAPOYЕA ФАЕН	ФAEH EXEAIAEMOY
	кат．	112，00	148，00
	$\mathrm{m}^{3} / \mathrm{d}$	16，80	22，20
акаӨápтшv	$\mathrm{m}^{3} / \mathrm{d}$	25，20	33，30
	$\mathrm{m}^{3} / \mathrm{h}$	1，05	1，39
	$\mathrm{m}^{3} / \mathrm{h}$	3，78	5，00
Eıర̈ıкó Puпavtıкó ¢ортіо BOD	gr／kar／d	60	60
EIठıко̇ Puпavtıкȯ ¢ортіо TSS	$\mathrm{gr} / \mathrm{Kat}$	70	70
Eıठıкȯ Puпavtıкó ¢ортio TN	gr／kat／d	10	10
Eıठ̈ко̇ Puпavtıкó 甲ортіо TP	gr／Kat／d	3	3
Фортіо BOD_{5} бхعठıабนой	kg／d	6，72	8，88
	kg／d	7，84	10，36
Фортіо TN охहठıабиой	kg／d	1，12	1，48
Фортіо TP oxzठııのศиоบ่	kg／d	0，34	0，44

Пєріпои 10－12 m³／غ́тоя

 غ́xモı $\omega \varsigma$ ß ßaøıкоú̧ бкопоúৎ：

 145116/2011.

12.2.5.1 Ае́рıa апо́ß入пта

 KoivotititwV.

12.2.5.2 Y Үоá апо́ß৯пта

Мацßávovtaç unó $\uparrow \eta$:

ПAPAMETPOE	EYTKENTP 2 EH
BOD 5 （ $\mathrm{mg} / \mathrm{lt}$ ）	≤ 25
COD（ $\mathrm{mg} / \mathrm{lt}$ ）	≤ 125
	≤ 35
ОХıка́ ко入о३актпрıвıб̈n	
pH	5，5－8，5

 Пара́ртпиа 1 Tп̧ КYА 5673／400／97．

Катá тŋ 甲áoŋ Катабквuņ̃：
－KYA 9272／471／07，ФЕК 286／B／2．03．07：«Tропопоinan TOU áp рои 8 TクS un＇api $\theta \mu$ ．

 81／1051／EOK каі
Kaтá тŋ 甲áoŋ＾عıтоupyiaç：

 μ ováס̄aç．

12．2．7．1 Kaтá тп 甲áon Kaтаоквuŕc：

 12，пар． 2 тпऽ К．Ү．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каı β ）ота عпıкіvঠ̈uva aпóß入пта
 $287 \mathrm{~B}^{\prime} / 07$ ）．

 каı єкп入úøع $\omega \mathrm{V}$ U入ıкผ́v．

 X роис．

 ако்入ouӨa：

 ع\áxıロто ठuvató

Yyod каı отере́a aпóßスnta

 апорріщиа́т $\omega \mathrm{v}$ ．

Oópußoc－бoviogis

 ঠıaтáそॄı̧ п прі Өорúßou
 £入áxıотоv va тпроúvтaı та aкó入ouӨa：

 єпо́иєvŋ̧ параүра́фои

 koivís пouxias,

12.2.7.3 Katá tᄁ फáon \eाтoupviac:

 фaıvó $\mu \varepsilon v a$ п $\lambda \eta \mu \mu u \rho \omega ่ v ~$

 паракві这шv перıохळ̈v.

 проßлпиа่т ω v.

 тПऽ غүката́бта⿱㇒ๆ

Na тпроúvтaı oı ठıaтáそıı̧ тп̧ Y.А. Н.П. 14122/549/E. 103/2011 (ФЕК 488/B'/30-03-2011) - Мદ்тра

Yyóa AnóßAnta

 праүнатопоıітаı $\mu \varepsilon$ ßáoŋ та ако́лоиӨа:

 4042／2012（A＇24），о́nமऽ عкáбтотє ıбхи́ouv．
Ta גúpara θ a oönyoúvtaı yıa ano入újavan．

ミтеред́ Aпóß入nta

 24／A72012）．

 NoноӨгбіас, Еіб̈ко்твра:

 41624/2057/E103/10 (ФЕК 1625 B') ón ω c וбxúouv.

 ón $\omega \varsigma$ וסXủย1.

 1312 B') òn ω ¢ ıбxủદı.
 13588/725/28.3.06 (ФЕК 383 В'), 24944/1159/30.6.06 (ФЕК 791 В'), 8668/2.3.07 (ФЕК 287 В') каІ

 $\varepsilon п \varepsilon \xi \varepsilon р ү а \sigma i a \varsigma ~ а п о \beta \lambda ク ่ т \omega v . ~$

 IOXÚouv.
 KYA 114218/1997 (ФЕК 1016 B'/17-11-1997).

O ариóठ̄ıऽ фор

 Еүкик入iшv．

 Перıßà入入оитоऽ

 катабкєuஸ்v．

13．ПPOミOETA ミTOIXEIA

2．Yүıєıvo入оүікоі uпо入оүıбноі

13．2．Проßлர்иата єкпо́vŋопя

14. ФЛТОГРАФIKH TEKMHPI Ω H

Өદ̇on x ω рои катабквuท่ร E.E.Л. 1

Өદ̇on xஸ்pou karaøk\&uท̧̆ E.E.A. 2

15. XAPTE - $\Sigma X E \Delta I A$

15.1.Xápтпя пробаvатоАıбนои́

15.1 Xápтŋ̧ пробаvaтоגıбцоỦ

 парако入ойӨŋопя.

16. ПАРАРТНMA

16.1. ҮГIEIONOАOГIKOI YПOАOГIEMOI THЕ E.E.А.

EPIO：＜EPГA EПEEEPTA乏IA乏 KAI $\triangle I A O E \Sigma H ~ A \Sigma T I K \Omega N ~$ AYMATRN $\Sigma T O$ AГION OPO乏»

ANA \triangle OXOE	EYГTPATIOE A．KАРАГЕЛРГIOY Пaाáqๆ 82，T．K．54453，ӨEエEAへONIKH TПА．：2310－902321 \＆ 6976801783 Email：skarageo＠gmail．com

> ПAPAPTHMA A:
> VIIEIONOAOГIKOI YПOAOГIEMOI EГKATAETAEHE EПEEEPГAEIAE A YMATSN I. M. OEIOY ГPHГOPIOY

חEPIEXOMENA

1．EİAГ Ω ГH 2
2．ПAPAMETPOI $\Sigma X E \triangle I A \Sigma M O Y ~ E E \Lambda$. 2
 2
2.2 Поіо́тпта Eкройя 4
 4
3．$\triangle I A \Sigma T A \Sigma I O \wedge O Г H \Sigma H ~ M O N A \Delta \Omega N$ 5
 5
 5
3.2 ＇Ерүа Прштоßа́Өиıая Епє६६рүабias 6
3．2．1 Гعviкá 6
 7
 11
3．3．1 ЕІбаүшүウ่－перıүра甲ர் 12
 12
3．3．3 вıаотабıо入óүпоп－Үпо入оүıбноі Е．E．＾． 1 \＆ 2 13
3．3．4 дıабтабıодо́үпоп－Үпо入оүıбиоі Е．Е．＾． 3 15
3.4 Апоגúuavä 16
3．4．1 Eıбаүшүク่ 16
 17
 18

1．EIEALRГH

 Iepás Movńs Ooiou 「pnyopiou．

2．ПARAMETPOL EXEALAEMOYEEA

ПAPAMETPO乏		ПАРОУГA ФAEH	ФA乏H ミXEAIAEMOY （20عтía）
	кат．	280，00	
	$\mathrm{m}^{3} / \mathrm{d}$	42，00	55，50
	$\mathrm{m}^{3} / \mathrm{d}$	63，00	83，25
	$\mathrm{m}^{3} / \mathrm{h}$	2，63	3，47
Пapoxṅ aıxuńs Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	9，47	12，49
	gr／кат／d	60	60
Eıঠıкȯ Punavtiкȯ ¢ортіо TSS	gr／Kat	70	70
Eıठ̈ıȯ Punavtıкȯ ¢ортіо TN	gr／kat／d	10	10
Eıठıко̇ Puпavtıó ¢ортіо TP	gr／kat／d	3	3
	kg／d	16，80	22，20
	kg／d	19，60	25，90
	kg／d	2，80	3，70
Форті0 TP oxeठiacuou่	kg／d	0，84	1，11

IIA TIE E．E．A． 1 \＆ 2

ПAPAMETPO乏		ПAPOYミA ФAटH	ФA乏H EXEAIAEMOY
	кат．	84，00	111，00
	$\mathrm{m}^{3} / \mathrm{d}$	12，60	16，65
	$\mathrm{m}^{3} / \mathrm{d}$	18，90	24，98
	$\mathrm{m}^{3} / \mathrm{h}$	0，79	1，04
	$\mathrm{m}^{3} / \mathrm{h}$	2，84	3，74
Eıӧıк̇ Punavtikó poptio BODs	$\mathrm{gr} / \mathrm{KOT} / \mathrm{d}$	60	60
Еıб̈ко̇ Puпavtiкó ¢ортіо TSS	gr／кат	70	70
Eıঠııк̇ Punavtıкó ¢ортіо TN	gr／кат／d	10	10
	gr／кat／d	3	3
	kg / d	5，04	6，66
	kg／d	5，88	7，77
Фортіо TN охहঠıабนой	kg／d	0，84	1，11
Фортіо TP охغঠıабนои่	kg／d	0，25	0，33

IIA THN E．E．A． 3

ПAPAMETPO乏		ПAPOYミA ФAH	ФAミH EXEAIAEMOY
	кат．	112，00	148，00
	$\mathrm{m}^{3} / \mathrm{d}$	16，80	22，20
	$\mathrm{m}^{3} / \mathrm{d}$	25，20	33，30
	$\mathrm{m}^{3} / \mathrm{h}$	1，05	1，39
Пapoxṅ aıxuís Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	3，78	5，00
Eı̄̈ıкȯ Punavtıó ¢ортio BOD ${ }_{5}$	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	60	60
Eıठัıó Punavtikó 甲ортіо TSS	$\mathrm{gr} / \mathrm{Kat}$	70	70

Eıठ̈ко̇ Puпаvткко่ ¢ортіо TN	gr／кат／d	10	10
Eıठ̈ко̇ Puпavtikó ¢ортіо TP	gr／кат／d	3	3
	kg／d	6，72	8，88
	kg／d	7，84	10，36
	kg／d	1，12	1，48
	kg／d	0，34	0，44

2.2 Поьо́ттта Екроп́я

 gival：

ПAPAMETPO乏		OPIA	
BOD $_{5}$	$\mathrm{mg} / \mathrm{lt}$	\leq	25
COD	$\mathrm{mg} / \mathrm{lt}$	\leq	125
Al ω poú μ عva oteped（TS）	$\mathrm{mg} / \mathrm{lt}$	\leq	35

ПAPAMETPOE		OPIA	
BOD_{5}	$\mathrm{mg} / \mathrm{lt}$	\leq	15
COD	$\mathrm{mg} / \mathrm{lt}$	\leq	120
Aıwpoủhzva oteped（TS）	$\mathrm{mg} / \mathrm{lt}$	\leq	15
Колоßактпріб̈ィа（E．coli）	EC／ 100 ml		

2.3 इuvoптткí Перıүрa甲í EEA

 пои оріद६таı отоv Піvaка 1 TПऽ KYA 145．116／2011．

 філтра.

 Bópeıa тП̧ I. Movís пpoc, тпV E.E.^. 1.

3. AIAETAEIOAOГHEH MONAARN

періохт's

$3 \times[(50 \times 225) /(1000 \times 24)] \times 1.2=1.69 \mathrm{~m}^{3} / \mathrm{h} \dot{n} 0.47 \mathrm{I} / \mathrm{s}$

$\mathrm{v}=0.9 \cdot \frac{Q_{\mathrm{pm}}}{\mathrm{z}}$
ónou:
$\checkmark=$ uүро̧́ óyкос $\sigma \varepsilon \mathrm{m}^{3}$
Qpm = парохй, бع $1 / \mathrm{s}$

$V=0.9 * \frac{0.47}{6}=0.07 \mathrm{~m}^{3}$

3.2.1 「eviká

Ta $\lambda u ́ \mu a t a ~ a n o ́ ~ т о v ~ a y \omega ү o ́ ~ п р о б а ү \omega ү \eta ่ \varsigma ~ к a ́ \theta \varepsilon ~ E . E . \Lambda . ~ o ठ ̄ n y o u ́ v т a ı ~ \mu \varepsilon ~ \varepsilon \lambda \varepsilon u ́ \theta \varepsilon \rho \eta ~ \rho o n ́ ~ \sigma \varepsilon ~$

 ठє $\xi a \mu \varepsilon v \dot{~}$ Túnou Imhoff.

 oाहрعढ்้.

E.E.A. $1 \& 2$: $\quad 4.50 \times 2.50 \times 2.00 \mathrm{~m}$
E.E.^. $3 \quad: \quad 5.50 \times 2.50 \times 2.00 \mathrm{~m}$

 єп६६६рүабіас,

 пара

3.2.2.1 E.E.A. 1 \& 2

 oxモ̇əๆ:
$\mathrm{q}=\mathrm{Q}_{\mathrm{d}, \mathrm{m}} / \mathrm{A}$

ПAPAMETPOE	MONA \triangle A	TIMH
q : ๆ єпıрауєıакп่ ¢о́ртıоп	$\mathrm{m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$	0,6
	$\mathrm{m}^{3} / \mathrm{hr}$	3,74
	m^{2}	6,23

 $15,70 \mathrm{~m}^{3}$ ．

ПAPAMETPOE	MONA 4	TIMH
Mह̇ץıoтך wpıaia пapoxń Qd，max	$\mathrm{m}^{3} / \mathrm{hr}$	1，04
	m^{3}	3，74
	m^{3}	11，80
	hr	11，35
t2 ：Xpóvoç кaӨiZ̧noņ 入upátwv otף пapoxñ aıxuņs	hr	3，16

 аб甲á $\lambda \varepsilon ı a ~ \omega \varsigma ~ а к о \lambda о u ́ \theta \omega \varsigma ~(A T V-H a n d b u c h, ~ M e c h a n i s c h e ~ A b w a s s e r r e i n i g u n g, 1996): ~$

ПAPAMETPOE	MONA 4 A	TIMH
BOD_{5}	\％	25
COD	\％	25
Alwpoủ	\％	60
О入ıко́ á̧̧то	\％	10
Фஸ்О¢ороऽ，	\％	9

 $\omega \varsigma \varepsilon \xi \check{\square} \zeta:$

ПAPAMETPOE

BOD5	mg／l	300，00
	kg／d	5，00
COD	mg / l	540，00
	kg／d	8，99
Aıwpoújeva oteped SS	mg / l	186，67
	kg／d	3，11
O入ıко́ àそんто	mg / l	60，00
	kg／d	1，00
Фట்ఠ¢ороऽ	mg / l	18，04
	kg／d	0，30

3．2．2．1 E．E．A． 3

 oxモ̇oŋ：
$\mathrm{q}=\mathrm{Q}_{\mathrm{d}, \mathrm{m}} / \mathrm{A}$

ПAPAMETPOE	MONA \triangle A	TIMH
	$\mathrm{m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$	0，6
	$\mathrm{m}^{3} / \mathrm{hr}$	5，00
	m^{2}	8，33

 $19,5 \mathrm{~m}^{3}$ ．

Піvaкая 2．2．Yпо入оүıбцо́s xpóvou каӨiZクoņ

TAPAMETPOE	MONA \triangle A	TIMH
	$\mathrm{m}^{3} / \mathrm{hr}$	1，39
	m^{3}	3，74
	m^{3}	14，60
	hr	10，50
	hr	2，92

 aб甲á $\lambda \varepsilon ı a ~ \omega \varsigma ~ a к о \lambda о u ̉ \theta \omega \varsigma ~(A T V-H a n d b u c h, ~ M e c h a n i s c h e ~ A b w a s s e r r e i n i g u n g, 1996): ~$

ПAPAMETPOE	MONA \triangle A	TIMH
BOD_{5}	\％	25
COD	\％	25
AI ω poúusva oreped SS	\％	60
O入ıко́ à̧んто	\％	10
Фஸ்రழороऽ，	\％	9

Піvaкац 2．4．之úণтаon $\varepsilon \xi \varepsilon р х о ́ \mu \varepsilon v \omega v$

HAPAMETPOE	MONADA	TIMH
BOD5		
	mg / l	300,00

COD	mg／l	540，00
	kg／d	11，99
Alw ${ }^{\text {a }}$（	mg / l	186，67
	kg／d	4，14
О入ıко́ áそんто	mg / l	60，00
	kg／d	1，33
Фஸ்ல¢ороऽ	mg / l	18，04

\checkmark Evepyoú ı入ủos
\checkmark Avтіб̈раотர்рєऽ $\mu \varepsilon \mu \beta$ раvஸ்v

＞Xauп入á $\varepsilon п i п \varepsilon \delta ̄ a ~ Ө o p u ́ ß o u ~ k a ı ~ o \sigma \mu \omega ் v ~$

＞Eúко入n aıoӨŋтікท่ пробариоүท่ ото перıßàMov

3．3．1 Eıбаүшүท่－перıүра甲ர்

 （ β Uөıбนغ̇vo）．

 $\omega \varsigma ~ \delta о \mu \eta \mu \varepsilon ̇ v o ~ u \lambda ı к o ̉ ~ п о u ~ ठ ı a \mu о р ф \omega ́ v \varepsilon т а ı ~ \sigma \varepsilon ~ \mu о р \varphi ท ่ ~ к \lambda i v \eta \varsigma ~$
乃ıорі $\lambda \mu$ عival：
 тои ßıофі $\lambda \mu$ avá μ оváठ் óyкоu к入ivnऽ（ $\mathrm{m}^{2} / \mathrm{m}^{3}$ ）．

 бuveпȧץहтaı au६̨ク

 $\sigma \omega \lambda \eta \dot{v} \omega \mathrm{~V}$ ，плаотוка่ плغ́үцата к．入п．，$\mu \varepsilon$

 μ втачора́ μ áそ̆ся ото ßıофі $\lambda \mu$ ．

3．3．3．1 Emıßapúvozıç Eıoóסou

	（mg／l）	（ Kg / d ）
BOD_{5}	300，00	5，00
COD	540，00	8，99
	186，67	3，11
Oגıко́ àそんто（орүаvıкó N ， $\mathrm{NO}_{3}-\mathrm{N}, \mathrm{NH}_{4}-\mathrm{N}$ ）	60，00	1，00
	18，20	0，30

Oярнокрабіа	$12-20^{\circ} \mathrm{C}$
pH	7,5

Abstract

 25\%

BOD_{5}	$\leq 20 \mathrm{mg} / \mathrm{l}$
COD	$\leq 125 \mathrm{mg} / \mathrm{l}$
Alwpoúر\&va otepeá (SS)	$\leq 25 \mathrm{mg} / \mathrm{l}$

Апаıт. о́үкоৎ, п入прштікой uגıкои่
$9 \mathrm{~g} /\left(\mathrm{m}^{2} \mathrm{xd}\right)$
$5,00 \times 1000 / 9=555,56 \mathrm{~m}^{2}$
$150 \mathrm{~m}^{2} / \mathrm{m}^{3}$
$3.71 \mathrm{~m}^{3}$

3.3.3.5 \quad Параүшүர் ıAúos

Параүшүர் прштоßáӨціас, ıли̇оя,
 aпоиакрuvóuzvo.

	$5,00 \mathrm{~kg} / \mathrm{d}$
	$20 \times 16,65 / 1000=0,33 \mathrm{~kg} / \mathrm{d}$
	$0,5 *(5,00-0,33)=2,34 \mathrm{~kg} / \mathrm{d}$
	$4,66+2,34=7,00 \mathrm{~kg} / \mathrm{d}$

3.3.4.1 Enıßapúvoॄı̧ عıनóסou

	(mg/l)	(Kg / d)
BOD_{5}	300,00	6,66
COD	540,00	11,99
SS (aıwpoúhzva oreped)	186,67	4,14
$\left.\mathrm{NO}_{3}-\mathrm{N}, \quad \mathrm{NH}_{4}-\mathrm{N}\right)$	60,00	1,33
	18,20	0,40
Өєриокрабіа	$12-20^{\circ} \mathrm{C}$	
pH	7,5	

$B O D_{5}$
COD
$\leq 20 \mathrm{mg} / \mathrm{l}$
$\leq 125 \mathrm{mg} / \mathrm{l}$
Aıшрои́ц६va отєрєd (SS)
$\leq 25 \mathrm{mg} / \mathrm{l}$

$9 \mathrm{~g} /\left(\mathrm{m}^{2} \mathrm{xd}\right)$
$6,66 \times 1000 / 9=740 \mathrm{~m}^{2}$
$150 \mathrm{~m}^{2} / \mathrm{m}^{3}$
$4.93 \mathrm{~m}^{3}$

3.3.4.5 \quad Параүшүrí „オúos

	10,36 kg/d
	$4,14 \mathrm{~kg} / \mathrm{d}$
	6,22 kg/d

 апоцакриуо́нєvo.

$6,66 \mathrm{~kg} / \mathrm{d}$
$20 \times 22,2 / 1000=0,44 \mathrm{~kg} / \mathrm{d}$
$0,5 *(6,66-0,44)=3,11 \mathrm{~kg} / \mathrm{d}$
$6,22+3,11=9,33 \mathrm{~kg} / \mathrm{d}$

3.4 Anolúfavon

3.4.1 Eıбаүшүท่

O охદסıaб парадغ்троия:
\Rightarrow Поіо́тПта тоu vepou่

- Alwpoúpeva oteped

\Rightarrow BaӨıós anoגüuavons

 $10^{7} \mathrm{FC} / 100 \mathrm{ml}$.

 Disposal Reuse, 1979, p. 287):

Eoxáp ω orn
E६á $\mu \mu \omega \sigma$

$\mathrm{Eff}_{\mathrm{SCN}}=10-20 \%$
Eff $_{\text {sF }}=10-25 \%$
Eff $_{B B}=90-98 \%$

ПрокаөiZnоп
$E f f p c=10 \%$

$E f f_{B B}=90 \%$
 прокйпттє। апо́ тоV тủпо:

Colifeff $=$ Colifin $_{\text {in }}^{*}\left(1-\right.$ Eff $\left._{\mathrm{pC}}\right) *\left(1-\right.$ Eff $\left._{\mathrm{BB}}\right)$

Colifeyf $=10^{7}(1-0.10) *(1-0.90)$
Colifeff $=9 \times 10^{5} / 100 \mathrm{ml}$
入a ßßávetaı iõn $\mu \varepsilon 10^{6} / 100 \mathrm{ml}$.

$$
N / N_{0}=e^{-k i . t}
$$

о́пои,
№ : o apxıко̧́ apı日uós, TC
N: о тعлıко́s, арıӨцо́я TC
k: वтаӨгрд

kaI

$$
-k^{*} i^{*} t=\ln \left(10^{-4}\right)=-9,21
$$

$i * \mathrm{t}=9,21 \mathrm{mWsec} / \mathrm{cm}^{2}$

 T $\omega \mathrm{V}$ ладптர் $\rho \omega \mathrm{v}$

16.2.ITTYXIO MEАETHTH

EAAHNIKH AHMOKP．ITA
УTOVPГELO VTOЫOMRN
METAФOPQN \＆AIKTYQN
ГEN．TPAMMIATEIA YTIOSOMQN
ГEN．ANEII TEXNIKHE YTIOETHPIミHン
A／NEH MHTP $\Omega \Omega$ N
TMHMA MHTP＠OY MEAETHT Ω N

ПTYXIO ME \triangle TTHTH

ПА 138／2009／N．3316／2005

AP．MHTP』OY：

A．Ф．М．：

A．O．Y．：

EПINYMO：
ONOMA：
ONOMA ПATPOE：
EIAIKOTHTA：
EAPA NOMOE：
ЕПАГГ．ЕАРА：
KATOIKIA：

19558
119767005
гT＇ $\operatorname{EE\Sigma \Sigma AAONIKH\Sigma }$

KAPAГEתPIIOY

EYETPATIOE

ANAPEAL

XHMIKOE MHX．
$\Theta E \Sigma /$ NIKH Σ
ПАПАФН 82 ЄЕЕ／NIKH TK 54453
ПАПАФН 82 ЄЕЕ／NIKH TK 54453

KATHIOPIE $\operatorname{MENETQN}$

«．KATHIOPIA YI＇API＠，．．．．．．．．．．．．．．．．．．．． 18.	TAヨH ．．．．．．．．．．．．．．．．．．．．
§．KATHГOPIA YП＇API＠．．．．．．．．．．．．．．．．．．．． 27.	TAEH ．．．．．．．．．．．．．．．．．
Iбхи́\＆ı ало́ ．．．．．．．．．．．．．22／02／2016．．．	Ewc．．．．．．．．．．．22／02／2026

16.3. EIAIKH ОIKOИOГIKH AЕIOЯOГНЕH

EIIIKH OIKO＾OГIKH AミIONOTHEH

 EPIQN EПEEEPTA乏IA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \Lambda Y M A T \Omega N ~ I . ~ M . ~ O \Sigma I O Y ~$ ГРНГОРIOY

ANADOXOE
EYZTPATIOE KAPATEOPIIOY
ПАПАФН 82， 54453 ӨЕโさAЛONIKH
email：skarageo＠gmail．com

IOYNIOE 2021
Пívaкац $\pi \varepsilon \rho เ \varepsilon \chi о \mu \varepsilon ́ v \omega \nu$ 3
1．YФIミTAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBAM＾ONTO乏 4
1．1 KATATPAФH KAI ANAAY乏H TQN इTOIXEIQN ФYЕIKOY ПEPIBAMNONTO乏 ミTHN ПEPIOXH MEAETH乏 4
 4
 5
 6
1．2．2．2 Bเотเка́ Характпр 10
1．2 ANAФОРА ANA Ω Y YФIミTAMEN ΩN H／KAI EГKEKPIMEN ΩN EPГ $\Omega N^{\prime} H \triangle P A \Sigma T H P I O T H T \Omega N ~ \Sigma T H N ~$ ПЕРIOXH MEAETH乏 32
 32
1.4 ФЛТОГРАФІКН ТЕКМНРІ $\Omega \Sigma H$ 33
1.5 KATAIPAФH TH乏 KATA乏TA乏H乏 TOY ФY乏IKOY ПEPIBAMMONTO乏 ミTHN ПEPIOXH TOY ДIKTYOY NATURA 2000 34
 34
 35
1．5．3 Kúpıє̧ тıиモ̧́ аvaфора́ৎ 41
 41
 42
 46
2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O \wedge O Г H \Sigma H ~ T \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N$. 46
3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma T \Omega N ~ \Pi I \Theta A N \Omega N$ EПICT $\Omega \Sigma E \Omega N$ 48
4．ANTILTAQMIITIKA METPA 52
 4014／2011 52
 52
 53
 54
5．ПРОГРАММА ПАРАКОЛОҮОНГНГ 55
6．$\Sigma Y N O \Psi H ~ \Sigma Y M \Pi E P A \Sigma M A T \Omega N$ 59
7．BIBNIOГРАФIKE ПHTE乏． 61
8．OMA $\triangle A M E \wedge E T H \Sigma$ 65
ПАРАРТНMA I 66

EİAГЛГН - ПЕРРОХН ME^ETH乏

- Enutt סףцtoupyoúvtat aró to épyo

 єлє६६рүабiac)

1．YФIミTAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBA＾＾ONTO乏

menethe

1．1．1 Euvortıkń $\pi \varepsilon \rho เ y p \alpha \phi n ́ ~ t n c ~ o l k i ́ \alpha c ~ \pi \varepsilon \rho ı o x n ́ s ~ N a t u r a ~ 2000 ~$

 Kotvotıkoú Evסıaфépovtoc）（S．C．I．：Special Community Interest）$\mu \varepsilon$ к $\omega \delta$ เкó apıӨ μ ó GR1270003．

 котvotıкó Síktuo Natura 2000.

Гєшүрафıки́ $\theta \varepsilon ́ \sigma \eta: ~ E: ~ 23^{\circ} 87^{\prime} 69^{\prime \prime} \mathrm{N}: 40^{\circ} 08^{\prime} 44^{\prime \prime}$
＇Eктабп：33．567，80ha

 （Мтацлала́vac 1998）．

Rh：Máţa tris Posóntrs，

 Поиovias，Pa：Zóvŋ Пáikou，Al：Zív̄

PI：Пeरcyovaí Chionn

P：Ziviv Ilivoon，

 ちॉण

 aroppońc tou＇A $\theta \omega$（EL1043），$\mu \varepsilon$ éкtaøn 239，44 km²．

 tou 24ω ผ́pou．

X $\cap \Omega P I \triangle A$

1．H $\pi \alpha \rho \alpha \lambda \iota \alpha к n ́ ~ \zeta \omega ́ v \eta \eta ~ \beta \lambda \alpha \dot{\alpha} \not \approx \eta \sigma \eta s$.

 lentiscetum．

 （Euphorbia acanthothamnos），Өu $\alpha \dot{\alpha}$ t（Corydothymus capitatus），фaбкó $\mu \eta \lambda 0$（Salvia sp．），$\phi \lambda o ́ \mu \circ \varsigma$ （Phlomis fruticosa），orapáyyl（Asparagus aphyllus），a入oүoӨú $\alpha \rho_{0}$（Anthyllis hermaniae）k $\lambda \pi$ ．
 （Pistacia lentiscus），ot ápkeuӨol（Juniperus sp．），$\tau \alpha$ peikı α（Erica spp．）$k \lambda \pi$ ．

 клдцатикє́．

 Carpinion orientalis ，$\pi \mathbf{~}$ confertae（frainetto）－cerris $\mu \varepsilon \phi \cup \lambda \lambda о \beta \dot{\lambda} \lambda \alpha \delta \alpha \dot{\sigma} \eta \delta^{\delta} \rho \cup \omega \dot{v}$ aró Quercus frainetto，Quercus pubescens，

 Évんơn．

 to Carpinetum orientalis．

 $\mu \varepsilon \varepsilon \varepsilon ́ x o u v \tau \alpha \xi \cup \lambda \omega \dot{\delta} \eta$ घí $\delta \eta$ Ilex aquifolium，Fraxinus ornus，Sambucus nigra，Clematis vitalba，Rosa canina，Hedera helix，Sorbus aucuparia，Sorbus torminalis，Quercus conferta，Alnus glutinosa（ $\sigma \alpha$

Пivakac 1：Eíסn $\chi \lambda \omega$ рí $\delta \alpha$,

Eión B λ áotnons

Abies cephalonica／£üvnখิ\＆؟
Aethionema orbiculatum／$\Sigma \pi \dot{\alpha} v i o$
Allium chamaespathum／חapóv
Anthemis sibthorpii／Enávio
Arabis bryoides／חapóv
Arctostaphylos uva－ursi／Пapóv
Asperula aristata ssp．nestia／Mapóv
Asperula aristata ssp．thessala／Парóv
Astragalus thracicus ssp．monochorum／Enávio
Atropa bella－donna／$\Sigma \pi \alpha \dot{v}$ ıo
Aubrieta erubescens／Mapóv
Beta nana／Σ זávo
Campanula lavrensis／Mapóv
Centaurea pannosa／חapóv

[^0]Sorbus chamaemespilus／$\Sigma \pi \dot{\alpha} v$ vo
Stachys leucoglossa／Парóv
Thymus thracicus／Mapóv
Valeriana alliarilfolia／$\Sigma \pi$ ávıo
Viola athois／חo入ú इnávio
Zerynthia polyxena

 immanuelis－loewii，Centaurea peucedanifolia，Silene orphanidis，Viola delphinantha，Viola athois，
 $\pi \alpha \rho \alpha ́ \rho \tau \eta \mu \alpha$ 3．3．13），вvஸ́ т α عi $\delta \eta$ Arctostaphylos uva－ursi，Atropa bella－donna，Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．orbelicus，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus пробтатєúovt $\alpha \iota \alpha$ пó тo $\Pi \Delta 67 / 1981$ ．Ta Heracleum

 т $\mu \mathfrak{\prime} \mu \alpha$ тทร．

－$\Delta \varepsilon v \delta \rho o \varepsilon ı \delta \grave{~ M a t o r r a l s ~} \mu \varepsilon$ Juniperus spp．（Arborescent matorral with Juniperus spp．）－ 5210
－$\Delta \varepsilon v \delta \rho o \varepsilon เ \delta \grave{~ M a t o r r a l s ~} \mu \varepsilon$ Laurus nobilis－ 5230
－

－Фpúpava aró Sarcopoterium spinosum－ 5420

－AıӨúveç tis Avato入ıки́c Méoүvíou－ 8140
－$\Delta a ́ \sigma \eta \eta ~ o \xi u a ́ c ̧ ~ a r o ́ ~ L u z u l o-F a g e t u m ~-9110 ~$

－$\Delta \alpha ́ \sigma \eta ~ \mu \varepsilon$ Castanea sativa－ 9260

－$\Delta \alpha \dot{\alpha} \sigma n$ o६ı́ç $\mu \varepsilon$ Quercus frainetto－ 9280
 Xepoovíбou（Securinegion tinctoriae）－92D0
－$\Delta \dot{\alpha} \sigma \eta$ סpuós tou Atyaiou $\mu \varepsilon$ Quercus brachyphyllo－ 9310
－$\Delta \alpha ́ \sigma \eta \mu \varepsilon$ Quercus ilex kaı Quercus rotundifolia－ 9340
－$\Delta \alpha ́ \sigma \eta \mu \varepsilon$ Quercus macrolepis－ 9350

 A入入oußıんка́ $\delta \alpha ́ \sigma \eta \eta \varepsilon$ Alnus glutinosa kaı Fraxinus excelsior， 9530 －（Yпо）$\mu \varepsilon \sigma о ү \varepsilon ı \alpha к \alpha ́ ~ \pi \varepsilon u к о \delta \alpha ́ \sigma \eta ~ \mu \varepsilon ~$
 Ө α 入́oбiac $\beta \lambda \alpha \dot{\sigma} \sigma \eta \sigma \eta \varsigma \mu \varepsilon$ Posidonia．

N17－Δ áaŋ к ωv офо́p ωv（ $10,03 \%$ ）
N18－Aعi申u入入a $\delta \dot{\alpha} \sigma \eta(20,42 \%)$

 фaivovtal otov रáptף tou ПAPAPTHMATOE I．

 avtiotoixoúv otov eupútepo kw

CORINE 32.7 Чعuסоиаккi．Kんбúkós 5350.

 Quercus coccifera，Juniperus oxucedrus，Quercus trojana，Carpinus orientalis，Ostrya carpinifolia， Pistacia terebinthus，Buxus sempervirens，Jasminus fruticans，Fraxinus ornus，Cercis siliquastrum （Coccifero－Carpinetum Honvat）．

 $\alpha \varepsilon i \phi \cup \lambda \lambda \alpha \varepsilon i \delta \eta$（ $\mu \varepsilon$ ки́pıо єкпро́бшто то Quercus coccifera）к $\alpha \iota$ фи $\lambda \lambda$ оßó $\lambda \alpha$（о́лшৎ Carpinus orientalis， Ostrya carpinifolia，Acer monspessulanus к $\lambda \pi$ r．）．Ot $\theta \alpha \mu v \omega ́ v \varepsilon \varsigma ~ \alpha u \tau o i ~ \sigma u v \eta ́ \theta \omega \varsigma ~ \varepsilon i v a ı ~ \pi u к v o i ~ к \alpha ı ~$

 плоuđเо́tepos．

 eupatoria，Acer campestre，Carpinus orientalis，Chrysopogon gryllus，Silene italica，Juniperus oxycedrus，Ballota acetabulosa，Trifolium repens，Fraxinus ornus，Berberis cretica，Ostrya carpinifolia， к．$\dot{\alpha}$ ．

 frainetto．

$\chi \lambda \omega \rho \iota \delta \kappa k \dot{\prime} \sigma \dot{v} \vartheta \varepsilon \sigma=\frac{n}{n}$
 orientalis，Pteridium aquilinum，Coryllus avellana，Poa nemoralis，Quercus petraea，Quercus petraea ssp．，Sorbus torminalis，Fagus sylvatica ssp．sylvatica，k．$\dot{\text { d．}}$

 speciosae $\pi \varepsilon p ı \lambda \alpha \mu \beta \alpha v o \mu \varepsilon ́ v \omega v \tau \omega v$ Silenion articulatae，Galion degenii каı Ramondion nathaliae）．

 ह入áxıซтo ह́ $\delta a ф$ ¢̧．

X $\lambda \omega \rho i \delta$ ккń σ oúv $\theta \varepsilon \sigma$ пn

Sedum album，Saxifraga paniculata，Campanula rotundifolia，Silene parnassii，Poa thessala，Inula verbascifolia，Sedum hispanicum，Centaurea salonitana，Sedum caespitosum，Centaurea graeca， Sedum acre，Festuca valesiaca，Sesleria tenerrina，Carex kitaibeliana，Globularia cordifolia，Thymus praecox，Minuartia stojanovii，Anthyllis aurea，Staehelina uniflosculo，Pinus nigra，k．á．

Katáotaon Sıatńpnonc－Arei入és

 тои μ гбоүвเакои́ оккобибтŋ́ $\mu \alpha$ тоৎ

TANIAA

OpviЭ̛oravi $\delta \alpha$

 Handrinos and Akriotis (1996), Birdlife Intenational (2004) kגı Mлои́бuroupaç (2009), η

 (Xpuซaยtós), Bubo bubo (Mпоúфо¢), Buteo buteo (Гعракiva), Caprimulgus europaeus

（ Σ рр peregrinus（ $\Pi \varepsilon \tau \rho i t \eta \varsigma)$ ，Fringilla coelebs（ $\Sigma \pi_{i}^{\prime}{ }^{\prime} \circ \varsigma$ ），Garrulus glandarius atricapillus（Kioo α
 （ $\Delta \varepsilon v \tau \rho \circ \sigma t \alpha \rho \hat{\eta} \theta \rho \alpha$ ），Phalacrocorax aristotelis（ $\Theta \alpha \lambda \alpha \sigma \sigma o \kappa o ́ \rho \alpha \kappa \alpha \varsigma)$ ，Puffinus yelkouan（Mú犭oৎ）к кı Tetrao urogallus（Аүрьо́коиркоц）．

 Etסıко́тєра：

$\Phi=\Phi \theta$ tvórt $\omega \rho \circ$
$X=X \varepsilon \iota \mu \omega \dot{\omega} \alpha \Omega$,
$A=A v o t \xi \eta$
$K=K \alpha \lambda$ ок α ipt
2）Kaтпүopį̨＂Kóккıvou Bıß入iou＂：
$K 1=K ı v \delta u v \varepsilon u ́ o u v \alpha \dot{\alpha} \mu \varepsilon \sigma \alpha$
$K 2=K ı v \delta u v e u ́ o u v$
$T P=T \rho \omega \tau \alpha$
$\Sigma=\Sigma \pi \alpha \dot{v i \alpha} \alpha$

$\mathrm{A}=\mathrm{A} \rho \rho \circ \sigma \delta$ tóptota
3） $\mathrm{K} \alpha \theta \varepsilon \sigma \dot{\omega} \varsigma \pi \rho о \sigma \tau \alpha \dot{\text { íac：}}$

BON．$=\Sigma$ ú μ ßaon Bóvvŋя，óтоu：
1． $\mathrm{SPEC}=\mathrm{Ei} \delta \eta \chi \rho \dot{\eta} \zeta$ оvт $\alpha \pi \rho \circ \sigma \tau \alpha{ }^{\prime} \alpha \varsigma$ ：
2．SPEC1 $=\mathrm{Ei} \delta \eta \pi \alpha ү к о \sigma \mu i \omega \varsigma$ а $\alpha \varepsilon 1 \lambda$ ои́ $\mu \varepsilon v \alpha$

EIDIKH OIKO＾OГIKH A三IO＾OTHEH（EOA）EPT Ω N EПEEEPTAEIA乏 KAI DIAOE IEPAE MONHE OEIOY［PHIOPIOY
 каӨعotús סıađท́pクons

EIAH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovopuáia	Eruotquovıки́ Ovouacia									
лацлроßои́ті	Gavia arctica			＋				11	11	3
ミкоuфоßoutnxtápi	Podiceps cristatus		＋	＋						
Kokkıvoßoutnxtápt	Podiceps grisegena		$+$			A		11	11	
Maupoßoutnxtápı	Podiceps nigricoiiis		＋			$A \Gamma$		11		
Aptépךऽ	Caionectris diomedea	$+$		$+$	＋			II		2
Múxos	Puffinus yeikouan	$+$	＋	＋	＋		＊	II		
Kopuopávos	Phalacrocorax carbo	$+$								
Оалаббоко́рака¢	Phaiacrocrax aristoteiis	$+$				TP	＊	11		
Крилтотбикvıá¢	Ardeoia raiioides						＊	II		3
＾ıuкотoukviás	Egretta garzetta	$+$					＊	11		
Etaxtotoukviáç	Ardea cinerea	$+$								
Маироте入аруо́¢	Ciconia nigra	$+$		＋	＋		＊	11	11	3
Пеларүо́¢	Ciconia ciconia	$+$					＊	II	II	2
Воиßо́кикvos	Cygnus oior		$+$						11	
Bapßápa	Tadorna tadorna		$+$			TP		11	11	
Прабוvoкв́фа入П	Anas piatyrhynchos	＋	＋						II	
$\Sigma \alpha \rho \sigma \varepsilon ́ \lambda \alpha$	Anas querqueduia	$+$		＋		$A \Gamma$			II	3
¿фпкıর́pп¢	Pernis apivorus	$+$		＋	$+$		＊	11	11	
Tชi¢tn¢	Miivus migrans	$+$				K1	＊	II	11	3
Aотропápns	Neophron percnopterus	＋				TP	＊	11	II	3
Фiరీaztó¢	Circaetus gallicus	＋		＋	＋		＊	11	11	3
Ка入ацо́кьрко¢	Circus aeruginosus	＋				TP	＊	11	11	
ミтепо́кıрко¢	Circus macrourus	$+$						II	II	
＾ıßабо́кцркоऽ	Curcus pygargus	＋		＋		K1	＊	11	11	
－uthoodivo	Accipiter gentiiis	＋	＋	＋	＋			11	11	
Tбıх入оүе́рако	Accipiter nisus	＋	＋		＋			11	11	
Eaivt	Accipiter brevipes	＋			＋		＊	II	II	2
「еракіvа	Buteo buteo	$+$	＋	＋	＋			II	11	
Xıovoүеракıvа	Buteo lagopus		＋					II	II	
Kpauyaztó¢	Aquila pomarina	$+$				TP	＊	11	II	2

EIAH		（1）	X	A	K	K．BIB＾．		79／409	BEP．	BON．
Koıví Ovou＾ơía										
Xpuoartós	Aquilia chrysaetos	＋	＋	＋	＋	TP	＊	11	11	3
ミru̧actó¢	Hieraaetus fasciatus	＋	＋	＋	＋	TP	＊	11	11	3
¿taupaztós	Hieraaetus pennatus	＋				TP	＊	11	11	3
Kட¢кเvéZ，	Fa／co naumanni	＋		＋		TP	＊	11	1／11	1
Врахокıркіveそ̧	Fa／co tinnuncuius	＋	＋	$+$	＋			11	11	3
Маирокьркігеそ\％	Fa／co vespertinus			$+$				11	11	
هеvтроүе́рако	Fa／co subbuteo	＋						11	11	
Mauporerpitns	Fa／co eieonorae	＋				AI	＊	11	11	2
Хрибоүи́рако	Fa／co biarmicus		＋			TP	＊	11	II	3
Петрitıs	Fa／co peregrinus	＋				AT	＊	11	II	
Aуpıókoupko¢，	Tetrao urogaiius	＋	＋	＋	$+$	Σ		11		
Петропе́рరıка	Aiectoris graeca	＋	＋	$+$	＋					2
Optúkt	Coturnix coturnix	＋		$+$	＋	AT			11	3
Nepókota	Gailinuia chioropus	＋	$+$	$+$	＋					
Ф $\alpha \lambda \alpha \rho i \delta \alpha$	Fuiica atra		＋						II	
Потацобфир：Xtris	Charadrius dubius	＋						11	11	
	Charadrius aiexandrinus	＋	＋					11	11	3
	Vanellus vane／us		＋						11	2
Мтєки́to α	Scoiopax rusticoia		＋						11	3
Пorauotpuypas	Actitis hypoieucos	＋	＋					II	11	3
¿теркора́pıos	Stercorarius parasiticus			$+$						
Maupokéфa入os	Larus meianocephaius		＋			TP	＊	II	11	
Navóphapoç	Larus minutus	＋						I＇		3
Кабтаvокв́фа入о¢	Larus ridibundus	＋	＋							
летто́рацфо̧，	Larus genei		＋			K2	＊	II	II	3
Atyatóy入apos	Larus audouinii			$+$		K2	＊	II	1／11	1
Аопцо́үларо¢	Larus cacchinans	$+$	＋	＋	＋					
「ع入оү入ápovo	Gelochelidon ni／otica	$+$				K1	＊	11	11	3
Хєıцんvoү入入́povo	Sterna sandvicensis		＋			A	＊	II	II	2
Потацоү入ápovo	Sterna hirundo			$+$			＊	II	11	
Aүpıоперítepo	Co／umba iivia	＋	＋	＋	＋					
Фаббопврібтво	Co／umba oenas	＋	＋	＋	＋	Σ				
Фáooó	Co／umba pa／umbus	＋	$+$	＋	$+$					

EIDH		©	X	A	K	K． $\mathrm{BIB}^{\text {A }}$ ．		79／409	BEP．	BON．
Koıví Ovouaoía										
$\Delta \varepsilon к о \chi$ тои́pa	Streptopelia decaocto	$+$	＋	＋	$+$					
Tpuyóve	Streptopelia turtur	$+$		＋	＋					3
Koúkos，	Cucu／us canorus	$+$		＋	＋					
Tutú	Tyto alba	$+$	$+$	＋	＋			II		3
「кıüvク¢	Otus scops	$+$			＋			II		2
Mroúфоऽ	Bubo bubo	$+$	＋	＋	＋		＊	II		3
Koukoußáyıа	Athene noctua	$+$	＋	＋	＋			II		3
Xouxouptotris	Strix aluco	$+$	＋	＋	＋			II		
Navóurouфо̧	Asio otus	$+$	＋	＋	＋			II		
「iSoßú̧，	Caprimulgus europaeus			＋	＋		＊	II		2
	Apus a pus			＋	＋					
ミкعrapvá¢，	Apus melba	$+$		＋	＋			II		
A入kuóva	Alcedo atthis	＋	＋				＊	II		3
Me入ıобофа́үos	Merops a piaster			＋	＋			II	II	3
Халкокоирои́va	Coracias garrulus			＋	＋	TP	＊	II	II	2
Tоа入алетعاvós	Upupa epops			＋	＋			II		3
ミтраßо入аínๆ¢	Jynx torquilla			＋				II		3
	Dendrocopos syriacus	＋					＊	11		
「a入ıávtp ${ }^{\text {a }}$	Melanocoryha calandra			＋			＊	II		3
Katoou入tépņ	Galerida cristata	$+$	＋	＋	$+$					3
$\triangle \varepsilon v \tau \rho о \sigma \tau \alpha \rho \grave{\theta}$ ¢ α	Lululla arborea	$+$	＋				＊			2
£ $\tau \alpha \rho \dot{\prime} \hat{\theta} \rho \alpha$	A／auda arvensis		＋	＋						3
OxӨохع入i（\％on	Riparia riparia	$+$		＋				II		3
Bpaxoxe入íSovo	Ptyonoprogne rupestris	$+$			＋			II		
Xe入ıరóvi	Hirundo rustics	＋		＋	＋			11		3
Δ evtpoxe入í\％ovo	Hirundo daurica	$+$		＋	＋			11		
Enıtoxehisovo	Deiichon urbica	＋		＋	＋			11		3
	Anthus triviaiis			＋	＋			11		
Kıtpıvodouooup $\dot{\delta} \delta \alpha$	Motaciiia fiava	＋		＋	＋			II		
זtaxtooouooupá $\delta \alpha$	Motacilia cinerea	$+$		$+$	＋			11		
	Motaciila alba	$+$	＋	＋				11		
Nероко̇тбифа¢	Cinc／us cinc／us	＋	＋	＋	＋			II		
	Troglodytes troglodytes	$+$	＋					11		

EIAH		（1）	X	A	K	K．BIB＾．	79／409	BEP．	BON．
Kotví Ovouacia	Eruotquoviкí Ovouaбia								
	Prunella modularis		$+$				11		
	Prunella collaris	＋	$+$	＋	$+$		11		
Kouфanర̇óvi	Cercotrichas galactotes	＋		$+$	$+$		II	11	3
Kоккıvo入入iuņ	Erithacus rubecula	＋	$+$	＋			11	11	
AnŠóv	Luscinia megarhynchos	＋		＋	＋		II	11	
Kapßouviápņ	Phoenicurus ochruros	$+$	$+$		$+$		11	11	
Kоккıvoúp刀s	Phoenicurus phoenicurus	$+$		＋	$+$		II	11	2
Kaotavo入aiuns	Saxicola rubetra	＋		＋			11	11	
Maupohaiuns	Saxicola torquata	＋					11	11	
	Oenanthe oenanthe	＋		＋			11	11	3
Аотрокढं入 α	Oenanthe hispanica	＋		$+$			11	11	2
Петроко́тбифа¢	Monticola saxatilis	＋		＋	＋		11	II	
「а入аदоко́тбuфа¢	Monticola solitarius	＋	＋	$+$	$+$		11	11	3
Kótou¢as，	Turd us merula	＋	＋	$+$	＋			11	
Tбix λ 人	Turd us philomelos	＋	$+$	＋	＋			II	
Toaptoápa	Turd us viscivorus	$+$	＋					11	
$\Psi_{\text {eut }}$ П δ óvi	Cettia cetti	＋					11	II	
Kа入ацотрı入ıбт＇s	Locuste／a luscinioides	＋		＋			11	II	
Тогхлопотаці＇α	Acrocephalus	$+$		＋			11	11	
®хроотрıтоi $\delta \alpha$	Hippolais pallida	$+$		$+$	$+$		II	II	3
Aıотрıтоі $\delta \boldsymbol{\alpha}$	Hippolais olivetorum	＋		$+$	$+$	＊	11	11	2
Kıтpıvootpıtoi $\delta \alpha$	Hippolais icterina	＋					II	11	
Kоккivotoıpoßá ко¢	Sy／via cantillans			$+$			11	11	
Maupotaıpoßג́koş	Sy／via melanocephala		＋				II	11	
Феvтротоцоßגкоя	Sy／via hortensis	＋		＋	＋		11	11	3
лалотоцоßд́коऽ	Sy／via curruca	＋		＋	$+$		11	II	
Өаниотороßа́ко̧	Sy／via communis	$+$		＋	$+$		11	II	
Кппотбироза́коऽ	Sy／via borin	＋					11	11	
Maupooкои́фп¢	Sy／via atricapiiia	＋	＋				11	11	
Bouvoфu入入обко́tos	Phyloscopus boneiii	$+$		＋	$+$		11	11	2
Феvтрофи入обко́лоৎ	Phyloscopus coilybita	$+$	＋	$+$			11	11	
Өациофи入лоско́тоз	Phyloscopus trochiius	＋					11	11	
Xpuooßaciスiokos	Regu／us reguius	＋		＋			11	11	

EIAH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovouaoia										
Baciliokos	Regu／us ignicapiiius	＋	＋					11	11	
Muyoxáфtns	Muscicapa striata	$+$		$+$	＋			11	11	3
Navouuyoxádrns	Ficeduia parva	$+$					＊	11	II	
Maupouvyoxáфtns	Ficeduia hypoieuca	$+$						11	II	
Alyi θ ahos	Aegithaios caudatus	$+$	＋	$+$	＋			II		
	Parus pa／ustris	＋	＋	＋	＋			11		
	Parus iugubris	＋	＋	＋	＋			II		
＾офоп $\alpha \pi \alpha \delta$ ito α	Parus cristatus	$+$	＋	＋	＋			11		
E入atorarasito	Parus ater	$+$	＋	＋	$+$			11		
	Parus caeruieus	$+$	＋	＋	＋			11		
Ka入óyepoş	Parus major	＋	＋	$+$	＋			II		
Кацлобеvтроßর́tท¢	Certhia brachydactyia	$+$	＋	＋	＋			II		
－еvtpotooravákoş	Sitta europaea	＋	＋	$+$	＋			II		
Bpaxotoonavákoç	Sitta neumayer	＋	＋	$+$	$+$			II		
¿ 2α 人viote α	Tichodroma muraria		＋			Σ		II		
¿uкофа́yos	Orioius orioius	＋		＋	＋			11		
Actoudxos	Lanius coilurio	＋		＋	＋		＊	II		3
	Lanius minor	$+$		$+$	＋	$\mathrm{A} \Gamma$	＊	11		2
КоккıVокефа入а̇¢，	Lanius senator	$+$		＋	＋			11		2
П α рб $\alpha \lambda$ океф $\alpha \lambda \alpha$ ¢，	Lanius nubicus	＋				Σ		11		2
Kíao α	Garruius giandarius	＋	＋	＋	＋					
K＜ракג̧́ α	Pica pica	＋	＋	＋	＋					
Kápyla	Corvus moneduia	$+$	＋	＋	＋					
Koupoúva	Corvus corone	＋	＋	＋	$+$					
Kópakaç	Corvus corax	$+$	＋	$+$	＋					
Wapóvt	Sturnus vulgaris	$+$	＋	＋	＋					3
Erouppitns	Passer domesticus	＋	＋	＋	＋					3
Xwpaфоотоupyitns	Passer hispaniolensis	$+$		＋	$+$					
Петроотоирүitns	Petronia petronia	＋	$+$	＋	＋			II		
Xeц山wvóotivos	Fringilla montifringilla		$+$							
Enivos	Fringilla coe／ebs	＋	＋	＋	＋			11		
£карӨákı	Serinus serinus		＋					II		
Ф\ढ́pos	Cardueiis chioris	＋	＋	＋	＋			11		

EIAH		©	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovouãoia	Erıotп									
Kapóspiva	Cardueiis cardueiis	$+$	$+$	＋	$+$			11		
＾óuyapo	Cardueilis spinus		$+$					11		
Фavéto	Carduelis cannabina	$+$	$+$					11		2
Xovtpouútrs，	Coccothraustes	＋	$+$	＋	$+$			11		
इ¢p入otoix ${ }^{\text {dovo }}$	Emberiza cirius	＋	＋					11		
Bouvotoix ${ }^{\text {a }}$	Emberiza cia	$+$		$+$	$+$			11		3
Bháxos	Emberiza hortuiana	＋		＋	$+$		＊	11		2
	Emberiza caesia	＋		$+$	＋		＊	11		
Aurte入oupyós	Emberiza meianocephaia	＋		$+$	＋			11		2
Tбı¢Tג̇¢	Miliaria calandra	＋		$+$						2
Zúvo入o：	173					29	40	134	81	68

Өaлаббоко́ракас（Phalacrocorax aristotelis）
K $\alpha \vartheta \varepsilon \sigma \tau \dot{\omega} \varsigma \pi \alpha \rho о \cup \sigma i \alpha \varsigma-\pi \lambda \eta \vartheta ้ \cup \mu \mu \dot{\varsigma}$

Otко入oүіа

Aлєйе́ऽ

ミmıZaとtós（Hieraaetus fasciatus）

Abstract

\section*{Оıкодоуіа}

Алєไиغ̧́

 каı $\eta \eta \lambda \varepsilon к т \rho о \pi \lambda \eta \xi i \alpha$.

Фı δ aEtóc (Circaetus gallicus)

Оккодоүіа

 ठабокд́ $\lambda u \nLeftarrow$ ．

 $\sigma \alpha$ ठutuk tou Avtiá $\theta \omega v \alpha$ ．

 そeupápıa（Tucker \＆Heath 1994，BirdLife International 2004）．

Oккодоріа

Areilés

 то $\begin{aligned} \text { íठos．} \\ \text { ．}\end{aligned}$

Пetpitnc（Falco peregrinus）

K $\alpha \vartheta \varepsilon \sigma \pi \dot{\omega} \varsigma ~ \pi \alpha \rho о \cup \sigma i \alpha \varsigma-\pi \lambda \eta \vartheta \vartheta v \sigma \mu o ́ \varsigma$

 $\mu \varepsilon \tau \alpha \xi \cup \cup 100$ ка兀 250 そeuvápı α（Tucker \＆Heath 1994）．

Oıкодоріа

 ає́pa．

Bouvootaxtáp α（Apus melba）

K $\alpha \vartheta \varepsilon \sigma \tau \omega ́ \varsigma ~ \pi \alpha \rho о и \sigma i \alpha \varsigma ~-~ \pi \lambda \eta \vartheta v \sigma \mu o ́ \varsigma ~$

Otкодоріа

Artılı́s

Onגのотuк

Óov $\alpha ф о \rho \alpha ́ ~ \tau \alpha ~ Ө \eta \lambda \alpha \sigma \tau \iota к \alpha ́, ~ \alpha \pi o ́ ~ \tau \alpha ~ ф и т о ф \alpha ́ ү \alpha ~ \varepsilon i \delta \eta, ~ ह ́ v \tau o v \eta ~ \varepsilon i v a ı ~ \eta ~ \pi \alpha \rho о и \sigma i ́ \alpha ~ \tau \omega v ~ \zeta \alpha \rho к \alpha \delta เ \omega ́ v ~$

 （Erinaceus concolor），η vavo $\mu \cup \gamma \alpha \lambda i \delta \alpha$（Sorex minutus），$\eta \kappa \eta \pi о \mu u \gamma \alpha \lambda i \delta \alpha$（Crosidua suaveolens），$\eta$
 citelus），о μ ккротифлопóvtıкая（Spalax leucodon），о траvorovtıкó（Spalax mikrophthalmus），o
 סаболоvtıкó（Sylvaemys sylvaticus），o apoupaioç（Microtus arvalis），o $\beta \rho \alpha \chi$ опоvtuкós（Apodemys ystacinus）．

 vعро́фı $\delta \alpha$（Natrix natrix），олıtóфı $\delta \alpha$（Elaphe situla）к $\alpha \iota$ баи́ $\rho \varepsilon \varsigma, ~ \varepsilon v \omega ́ ~ \alpha л о ́ ~ \tau \alpha ~ \alpha \mu ф i ́ \beta ı \alpha ~ u \pi \alpha ́ \rho \chi о и v ~$

 （Murr．）Barr，ouv．Endothia parasitica（Murr．）Anderson к $\alpha \iota$ ह́ $\chi \varepsilon \iota ~ \varepsilon ү к \alpha \tau \alpha \sigma \tau \alpha \theta \varepsilon i ́ ~ к \alpha \iota ~ \varepsilon \pi \varepsilon к \tau \alpha \theta \varepsilon i ́ ~ o t \eta v ~$

 vekpŕ opүavikń ú $\lambda \eta$ к $\lambda \pi$ ）．

 arudinaceum，Apiospora montagnei，Porpolomyces farinosus，Microthyrium ilicinum каı по $\lambda \lambda \omega \dot{\omega}$
 катаүpaфéş عivaı モкعiveç $\tau \omega v \mu \nu \kappa \eta ́ t \omega v$ Stomiopeltis pinastri，Phacidium lacerum，Sepultaria arenosa， Amanita virosa，Paxillus panuoides（ Π á $£ \downarrow \lambda \lambda \ldots \varsigma$ o $\pi \eta$ vó $\mu \circ \phi \circ \varsigma$ ），Suillus collinitus，Mycena atrocyanea

 Crucibulum leave（Kроибíßou入o то $\lambda \varepsilon i o$ ），Tremella foliacea（ $T \rho \varepsilon \mu \varepsilon ́ \lambda \lambda \alpha \eta$ η ф $\lambda \lambda о$ о́ $о \rho ф \eta$ ），Auricularia

 alboviolaceus（Koptıvápıo̧ o $\lambda \varepsilon \cup \kappa о$ ö́x $\rho \omega \mu \circ \varsigma$ ），Stropharia aeruginosa（ $\Sigma \tau \rho \circ \phi \alpha ́ \rho เ \alpha ~ \eta ~ \chi \alpha \lambda \kappa о \pi \rho \alpha ́ \sigma ı v \eta)$ ），

 коифа入єрผ́v

1．2 ANAФOPA A＾A®N YФIETAMENSN H／KAI ETKEKPIMENתN EPISN H $\triangle P A \Sigma T H P I O T H T \Omega N ~$

ITHN ПEPIOXH MEAETH乏

1．3 AMAE ГXETIKE乏 ПАHPOФOPIEE ПOY AФOPOYN ГTHN ПEPIOXH MEЛETH乏

1.4 ФЛTOГРАФIKH TEKMHPI』इH

1．5 КАТАГРАФН TH乏 КАТАЕTAГH乏 TOY ФYミIKOY ПEPIBAAへONTO乏 इTHN ПEPIOXH TOY AIKTYOY NATURA 2000

1．5．1 Etóxol סıanńpnonc tnc oukiac repıoxńs Natura 2000

Aró to ápӨpo 8 тоu N．3937／2001

 $\mu \varepsilon \beta \alpha \dot{\sigma} \eta$ т α ларакд́тш крเт！́pıа：

 ठıатท́pクớ̧ tou．

 тाৎ 20 โعाtт ε ßрiou 2012.

 tou入áxıotov Éva μ ŋ́v α

$\chi \alpha \rho \alpha к \tau \eta \rho เ \sigma \tau \varepsilon i ́ n ~ o t k i \alpha ~ \pi \varepsilon \rho เ о \chi n ́ n ~ N a t u r a ~ 2000 ~$

TÚTto̧ OtKOTÚTIOU	K ω ¢tкós	$\pi \varepsilon \rho ⿺ 𠃊 \chi n ̄$ Natura	Avтıгробштвитико́тŋта ＊2	Erıфáveıa ミхєтики́ ＊3	$\begin{aligned} & \text { Karáoraon } \\ & \delta เ \alpha r{\underset{\sim}{n}}_{4} \end{aligned}$	ミuvo入ıkń $\alpha \xi$ เo入óvクon ＊5
－Asuถ̃nnsıḰn Matnrrals $\mu \varepsilon$ Juniperus spp．	5210	1	D			
－NavKonnfi ńn Matorrals $\mu \varepsilon$ Laurus nobilis	5230	1	C	A	C	B
	5310	1	C	A	C	B
Funhorhia knutó as акте́я，	5320	2	A	A	B	A
－Wnívarva Sarrnnoterium spinosum	5420	4	A	C	B	B
－AnRfatríjol $\alpha \lambda \pi$ tkoí $\lambda \varepsilon \iota \mu \omega ் v \varepsilon \varsigma$	6170	3	C	B	B	B
－AıAlinver tne Avatoגıки́ৎ Méoүعiou	8140	3	B	B	B	B
－Aárn ofinár crmó Luzulo－Fagetum	9110	1	D			
Alnus olıtinnca krut Fraxinus excelsior	91E0	1				
－Aŕron μ ع Castanea sativa	9260	39		A	A	A
－Fג入nuikń δ óan nfiŕr $\mu \varepsilon$ Abies borisii－regis	9270	1		C	B	C
－Δ áoŋ okiác μ e Quercus	9280	5		B	A	A

α / α		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii		X		
4	Asperula aristata ssp. thessala		X	V	
5	Astragalus thracicus ssp. monochorum				
6	Atropa belladona		X		
7	Aubrieta erubescens	Beta nana		X	
8	Campanula lavrensis			R	
9	Centaurea pannosa				
10	Centaurea peucedanifolia				
11					

α / α		1	2	3	4
12	Cephalanthera longifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		A \triangle
15	Fritillaria euboeica		X	R	
16	Fritillaria graeca		X		A \triangle
17	Helichrysum sibthorpii			V	
18	Hypericum athoum		X		
19	Isatis tinctoria ssp. athoa		X		A \triangle
20	Limodorum abortivum	B			A
21	Linum leucanthum		X		
22	Linum olympicum ssp. athoum		X		
23	Neotinea maculata	B			
24	Neottia nidus-avis	B			
25	Polygonum icaricum		X		A
26	Silene echinosperma		X		
27	Silene multicaulis ssp. genistifolia		X		
28	Silene orphanidis	A		V	
29	Viola athois		X		A \triangle

Ereधnvñoelc Пivaka 3

α / α			Eión opto日étทơ¢
3	Falco peregrinus	Петрit力¢	
4	Apus melba	Bouvootaxtáp α	

vıа та фибıK α Evסı α ırńuata

 au§ávovtat．

乏Inv repirtiwon عíסous

 $\mu \varepsilon t \omega \theta \varepsilon i ́ ~ к \alpha \tau \alpha ́$ to $\pi \rho \circ \beta \lambda \varepsilon \pi \tau$ о́ $\mu \varepsilon ́ \lambda \lambda \frac{1}{}$

MéүદӨ๐¢	Kんб́ко́¢	
$\chi \sim \mu \eta \lambda n$	B01．02	teyvntń hítfunn as avouktó ह́ $\delta \varepsilon ́ v \delta p \alpha)$
$\chi \alpha \mu \eta \lambda \eta$	E01．03	סıабкортıбие́vך като七кía
$\chi \alpha \mu \eta \lambda \underline{n}$	A01	$\kappa \alpha \lambda \lambda ı \varepsilon ́ \rho ү \varepsilon เ \alpha$
$\mu \varepsilon ́ \tau \rho!\alpha$	L09	

2000 －STANDARD DATA FORM

$160 \Delta \alpha \sigma$ кки́ $\delta เ \alpha \chi$ sipıøך

Пupкаүเе́s

 μ йкоц тпऽ Xepoovท́бou．

 ＇Epyou．

 $\lambda i \mu v \varepsilon$ ，

 Δ เд́таү μ 67／1981）－OXI

 67／1981）－OXI

 －OXI

$>$ Mauremys rivulata IUCN－LC，Kóккเvo Bt $\beta \lambda$ io E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha \varsigma$－LC，Annexes II of the EU Natural Habitats Directive－OXI
 u廿о́ $\mu \varepsilon \tau \rho \alpha$

 67／1981）－NAI
 каı $\delta \alpha \sigma$ кк α 乃обкото́лıа．

 Δ tátaүम α 67／1981），－NAI

 EKOסnүia 92／43／EOK，OXI
$>$ Platanus orientolis PD67／81 По入ú коเvó đe потá $\mu \mathrm{I}$ OXI

$>$ Trapa natans Annex II of Council Directive 92／43／EEC OXI
$>$ Pancratium maritimum Annex II of Council Directive 92／43／EEC OXI
＞Fraxinus angustifolia Annex II of Council Directive 92／43／EEC OXI
＞Groenlandia densa Annex II of Council Directive 92／43／EEC OXI
$>$ Lutra Lutro IUCN：NTKóккıvo Bı $\beta \lambda i$ о E $\lambda \lambda \alpha \alpha^{\delta} \alpha \alpha$ ¢ EN－OXI
 трофи́

$\sum \pi о \rho \alpha \delta \iota \kappa \dot{\varepsilon} \varepsilon \xi \dot{\sigma} \pi \lambda \omega \sigma \eta$ ．

 Пара́ $\rho \tau \eta \mu \alpha$ V．Проот $\alpha \sigma$ i α CITES－OXI

 $\pi \varepsilon \rho ⿺ \lambda \alpha \mu \beta \alpha ́ v o v \tau \alpha \iota$ бто Пара́ртпиа I тп̧ Oס́nүíac 2009／147／EOK．

 kwvoфó $\rho \omega \mathrm{v}$ OXI

 иүрото́лоис $\mu \varepsilon \alpha \mu \mu$ о́ иофоис．OXI $^{\text {о }}$

 ektáซeıç ท́ ßобко́топоиৎ OXI

$>$ Circaetus gallicus 2009／147／EC：Парáptпual，$\Sigma u ́ \mu \beta \alpha \sigma \eta$ tns Bépvnc II，$\sum u ́ \mu \beta \alpha \sigma \eta$ tņ Bóvvnc II，

CITESII／A，KBE－EA入 $\alpha \delta \alpha c ̧: ~ V U, ~ I U C N: ~ O X I ~$

 Е入入áסac．
 KBE－E入入 $\alpha \dot{\delta} \alpha c ̧ / \cup$, IUCN：OXI

 モктáøモı̧．
 CITESII／A，KBE－E入入á $\delta \alpha c ̧: ~ V U, ~ I U C N: ~ O X I ~ A p к \varepsilon \tau \alpha ́ ~ к о เ v o ́ ~ к \alpha т \alpha ́ ~ \tau \eta v ~ \mu \varepsilon \tau \alpha v a ́ \sigma \tau \varepsilon u \sigma \eta ~ \sigma \varepsilon ~ к \alpha \lambda \lambda เ \varepsilon \rho ү \eta ́ \sigma t \mu \varepsilon \varsigma ~$

＞Haliaeetus albicilla 2009／147／EC：Парáptп α I，$\sum u ́ \mu \beta \alpha o ̄ \eta ~ B e ́ p v \eta c ̧ ~ I I, ~ B o n n ~ C o n v e n t i o n ~ I / I I, ~ C I T E S I, ~$
 лара́ктเєऽ $\lambda \iota \mu v 0 \theta \alpha ́ \lambda \alpha \sigma \sigma \varepsilon \varsigma ~ к \alpha \iota ~ \lambda i \mu v \varepsilon \varsigma$.
 лои ф $\omega \lambda \varepsilon \alpha ́ \zeta \varepsilon เ ~ đ \varepsilon ~ \delta \varepsilon ́ v \tau \rho \alpha ~ к \alpha \iota ~ Ө \alpha ́ \mu v o u c . ~ O X I ~$

Melanocorypha calandra 2009／147／EC：Пара́pтпиа I，$\Sigma \dot{\mu} \mu \beta \alpha \sigma \eta$ Bépvņ II，KBE－E $\lambda \lambda \alpha \dot{\delta} \alpha \varsigma$ ：VU，IUCN： OXI

 актіvoßo入ies．

2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O / О O F H \Sigma H ~ T \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N ~$

 $\varepsilon \pi \varepsilon \xi \varepsilon \rho ү \alpha \sigma i \alpha ¢)$ ．

Eлuлt

 $\theta \varepsilon \rho \mu o ́ \beta t \omega v \pi \varepsilon u ́ k \omega v$ ．
 $\theta \alpha$ ठıафоролоıท̆ои́v．

Eлutućares ह́pyou otnv $\pi \alpha$ vi $\delta \alpha$ thc π epioxńs

3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma T \Omega N$ ПIOAN ΩN EПIחT $\Omega \Sigma E \Omega N$

 halepensis，P．nigra к $\alpha \iota$ Abies pseudocilicica），$\mu \alpha\langle i ́ \mu \varepsilon \mu \kappa \tau \alpha ́ \delta \alpha ́ \sigma \eta$ ．H корифท́ тои Bouvoú $\varepsilon i v \alpha \iota \mu \varepsilon$

H rotótŋta tou ૬ú

 Quercus coccifera．

 purpurea，Valeriana alliariifolia，Viola delphinantha）£tov катג́入оүo WCMC каі／ท́ otov Eupwraïкó кatá入oүo $\tau \omega v$ кóккเv $\omega v \delta \varepsilon \delta o \mu \varepsilon ́ v \omega v, 10$ zí $\delta \eta$（Arctostaphylos uva－ursi，Atropa bella－donna， Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．Orbelicus，Neottia nidus－ avis，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus）
 Saxifraga juniperifolia ssp．Sancta，Ophioglossum vulgatum）عival orávi α otఇv E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha$ ń／T α $\beta \alpha \lambda \kappa \alpha v \leqslant \kappa \dot{\alpha}$ ev $\delta \eta \mu$ кর́（Allium chamaespathum，Arabis bryoides，Asperula aristata ssp．Nestia，

 návढ anó 100 ह́tŋๆ.

 пupкaүıá¢ عivaı η Fritillaria euboeica（Phitos et al．1995）．

 тŋऽ π аvi $\delta a c$ ：

 $\tau \omega v$ ：
 ठ́áon）

 про́бкроиöя

 ह́pүшv．

4．ANTIETAOMIETIKA METPA

 N．4014／2011

Enistwon	Métp α
Пробшрıvó̧ катакериатıбиó¢	 $\pi \rho о \sigma \omega \rho เ v \eta$ ทีріфра६п．

Enirtwon	Métp α
ф $\omega \lambda \varepsilon$ опоínons	 （тo ह́pүo عivaı по入ú μ ккрó）

4．3 A\＆เo入óvnon μ étpowv avtiotá $\theta \mu$ Ions

 $\mu \pi о р \varepsilon i(v \alpha \varepsilon \xi \alpha \lambda \varepsilon \mid \phi \tau \varepsilon i)$ ．

＇Ох入Пฮŋ ка兀 $\alpha \pi \dot{\omega} \lambda \varepsilon เ \alpha ~ \alpha т о ́ \mu \omega v$

 ката́ to X ρ óvo ékӨعoņ．

 пробтатвงо́ $\mu \varepsilon v \eta \varsigma \pi \varepsilon \rho เ о х \emptyset ́ \varsigma$.
 т $\eta v ~ \alpha \rho \mu o ́ \delta \iota \alpha ~ \alpha \rho x п ́ . ~$

 прок λ Поúv ох λ ク́бєıऽ．

－N $\alpha \mu \eta v \delta \eta \mu$ toupyoúvtat « $\lambda \mu \nu$ voú $\lambda \varepsilon \varsigma »$

5．ПРОГРАММА ПАРАКОЛОҮОНЕНЕ

 к α орьттоúv．

192／B－14．3．1997）

 опттткйऽ $\delta \varepsilon \xi \alpha \mu \varepsilon v \eta ́ \varsigma$.
－Проотабí tпৎ $\delta \eta \mu$ о́бiац uүعíac．
 $\pi \alpha \rho \alpha к о \lambda о и ́ Ө \eta \sigma \eta \varsigma \tau \omega V$ $\delta \varepsilon \sigma \mu \varepsilon \cup ́ \sigma \varepsilon \omega V$ tou $\sigma \chi \varepsilon \delta i o u$.

 （KYA 5673／400／1997（ФEK 192／B－14．3．1997）．

Etбeрүóuєvo opvaviкó بортio

- $\delta \cup \sigma о \sigma \mu i \varepsilon \varsigma ~ о т \eta ้ ~ \pi \varepsilon р เ о \chi ŋ ́ ~$

 $\lambda u \mu \alpha ́ \tau \omega v$.

 o入ok入ńp ω oŕ touc．

TAPAMETPOE	EIzOAOE	EEOLOE	INYE	\triangle EIIMA	ПAPATHPHEEİ
BOD_{5}	\#	\#		M.H	
COD	\#	\#		M. H	
SS	\#	\#		M.H	
А $\mu \mu \omega \mathrm{v} \alpha \kappa \dot{\alpha}, ~ v i t \rho \dot{\omega} \delta \eta$, vitpiká	\#	\#		M.H	
TP	\#	\#		M. H	
* : \sum ¢орабıка́					
	бвіүиа				

6. $\Sigma Y N O \Psi H ~ \Sigma Y M \Pi E P A \Sigma M A T \Omega N$

 $\lambda u \mu \alpha ́ t \omega v:$

 $\pi \varepsilon \rho ı \dot{\alpha} \lambda \lambda$ ov．

Me tᄁv катабквuท́n tou ह́pץou：

7．BIBAIOГРАФIKE乏 ПHIE乏

 Poठórtŋs．AӨウ்va．

－ELYE Aлоүрафர́ 1991.

－Dimou D，Gikas GD，Tsihrintzis VA：＂Water quantity and quality monitoring of Lissos river，North Greece＂，Proceedings of the Third International Conference on Environmental Management， Engineering，Planning and Economics（CEMEPE 2011）\＆SECOTOX Conference，2011，Skiathos， Greece，p．151－157
 Eтаıрías，Өєб／vikn Arpìitos 2004
－Гıavvótou入o̧，PYПANEH T ΩN Y $\triangle A T I N \Omega N ~ \Sigma \Omega M A T \Omega N ~ A \Pi O ~ T H N ~ K Y K \wedge O Ф O P I A ~ T \Omega N ~ O X H M A T \Omega N ~$ 20 Пave入入ŕvıo ミuvéסpıo Oठorotiaç，Bóגoc，Máıos 2005
－＂The AOPII Cost Effectiveness Study Part III：The transport base case Annex B4 Greece，The European Commission，Standard \＆Poor＇s DRI and KULeuven＂

－Taylor，E．C．，Green，R．E．，\＆Perrins，J．（2007）Stone－curlews Burhinus oedicnemus and recreational disturbance：developing a management tool for access．Ibis， 149 （1），37－44．
－Tucker，G．M．\＆Heath M．F．，（1994）Birds in Europe：Their conservation status．Cambridge，UK．： BirdLife International（BirdLife Conservation Series No 3）
－Barros，C．\＆De Juana，．E．（1997）Breeding success of the Stone Curlew Burhinus oedicnemus at La Serena（Badaioz．Spain）．Ardeola 44 （2），199－206．
－Bealey，C．E．，Green，R．E．，Robson，R．，Taylor，C．R．，Winspear，R．（1999）Factors affecting the numbers and breeding success of Stone Curlews Burhinus oedicnemus at Porton Down，Wiltshire． Bird Study 46 （2），145－156．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．
－Giannangeli，L．，De Sanctis，A．，Manginelli，R．，Medina，F．M．（2005）Seasonal variation of the diet of the stone curlew Burhinus oedicnemus distinctus at the Island of La Palma，Canary Islands． Ardea 92 （2），175－184．
－Green，R．E．，Tyler，G．A．，Bowden，C．G．R．（2000）Habitat selection，ranging behaviour and diet of the stone curlew（Burhinus oedicnemus）in southern England Journal of Zoology 250 （2），161－183．
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Thompson，S．，Hazel，A．，Bailey，N．，Bayliss，J．，Lee J．T．（2004）Identifying potential breeding sites for the stone curlew（Burhinus oedicnemus）in the UK．Journal for Nature Conservation 12， 229 － 235.
－Catry T．，Ramos JA．，Catry I．，Allen－Revez M．，Grade N．， 2004 Are salinas a suitable alternative breeding habitat for Little Terns Sterna albifrons？IBIS 146 （2）：247－257 APR 2004
－Fasola M．，（1993）Distribution，population and Habitat Requirements of the Vommon Tern and the Little Tern breeding in the Mediterranean in Aguilar，J．S．，Monbailliu，X．Paterson，A．M．Status and Conservation of Seabirds，Proceedings of the 2nd MEDMARAVIS，SEO，Madrid
－Goutner V．，Charalambidou T．，\＆Albanis A．（1997）Organochlorina Insecticide Residues in Eggs of the Little Term（Sterna albifrons）in the Axios Delta，Greece．Bull．Environmental Contamination and Toxicology 58－61－66
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Joris E．，\＆Stienen E．，（2009）Impact of wind Turbines on Terns in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．
－Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute （VLIZ）．Oostende，Belgium．Viii＋68 p．
－Medeiros R．；Ramos J．，Paiva V．，Almeida A．，Pedro P．，Antunes S．（2007）Signage reduces the impact of human disturbance on
－Little tern nesting success in Portugal，Biological Conservation 135 （2007）99－100

－Ruben F．，Krijgsveld K．，Camiel Heunks，Martin Poot \＆Sjoerd Dirksen．（2009）Nocturnal and Diurnal Flight Intensity and Altitude of Seabirds and Migrants in and around an Offshore WindFarm in the Dutch North Sea in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．
－Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute（VLIZ）．Oostende，Belgium．Viii＋68 p．

 ミ $\alpha v \theta \eta$ 2006．бع入． 64
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－BirdLife International（2008）Species factsheets．Downloaded from http：／／www．birdlife．org Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
 каı тทุ Eupш́rtnc．

－Xavסpıvó̧ 「．，（1992）Пou入ıá oto Kapavסetvó̧ M．，＾eүákı̧ A．To Kókкıvo Bı $\beta \lambda i o$ twv
 OpvıӨо入оүıки́ Etaıpعía．
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．

- De La Montana, E., Rey-Benayas, J.M., Carrascal, L.M. (2006) Response of bird communities to silvicultural thinning of Mediterranean maquis. Journal of Applied Ecology 43, 651-659.
- Guerrieri, G., Pietrelli, L., Biondi, M. (1996) Status and reproductive habitat selection of three species of Shrikes, Lanius collurio, L. senator and L. minor in a Mediterranean area. (Proc. of the First Intern. Shrike Symposium) Found. Vert. Zool. 6, 167-171.
- Handrinos, G., \& Akriotis, T., (1997) The birds of Greece. C. Helm, A \& C Black, London.
- Isenmann, P., Debout, G. (2000) Vineyards harbour a relict population of Lesser Grey Shrike (Lanius minor) in Mediterranean France. Journal fur Ornithologie 141 (4), 435-440.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) Philopatry, dispersal patterns and nest-site reuse in Lesser Grey Shrikes (Lanius minor). Biodivers. Conserv. 16, 987-995.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) The importance of breeding density and breeding synchrony for paternity assurance strategies in the lesser grey shrike. Folia Zoologica 57 (3), 240250.
- Kristin, A., Hoi, H., Valera, F., Hoi, H. (2000) Breeding biology and breeding success of the Lesser Grey Shrike (Lanius minor) in a stable and dense population. Ibis 142 (2), 305-311.
- Lepley, M., Ranc, S., Isenmann, P., Bara, T., Ponel, P., Guillemain, M. (2004) Diet and gregarious breeding in lesser Grey Shrike (Lanius minor) in Mediterranean France. Revue d'Ecologie (La Terre et la Vie) 59 (4), 591-602. Pons P., Lambert B., Rigolot E., Prodon, R. (2003) The effects of grassland management using fire on habitat occupancy and conservation of birds at a mosaic landscape. Biodiversity and Conservation 12, 1843-1860.
- Ristow, D., Wink C., Wink M. (1986) Assessment of Mediterranean Autumn Migration by Prey Analysis of Eleonora's Falcon. Proc. 1st Conf. on Birds wintering in the Mediterranean Region, Aulla Feb. 1984. Supplemento alle Ricerche di Biologia della Selvaggina 10(1), 285-295.
- Tucker, G. M. \& Heath M. F., (1994) Birds in Europe: Their conservation status. Cambridge, UK.: BirdLife International (BirdLife Conservation Series No 3)
- Valera, F., Kristin, A., Hoi, H. (2001) Why does the lesser grey shrike (Lanius minor) seldom store food? Determinants of impaling in an uncommon storing species. Behaviour 138 (11-12), 14211436.
- Wirtitsch, M., Hoi, H., Valera, F., Kristin, A. (2001) Habitat composition and use in the lesser grey shrike (Lanius minor). Folia Zoologica 50 (2), 137-150
 $\Delta ı \alpha \chi \varepsilon i p ı \sigma \eta ~ к \alpha \lambda \alpha \mu t \omega \dot{v} \omega v \lambda i \mu v \eta \varsigma$ l $\sigma \mu \alpha \rho i \delta \alpha c$),
 Bıбtwviסac, lopapiסac), Boskidis et al., 2010 (J., Envir., Scien., Health, 45,11, 1421-1440, Changes of water quality and SWAT modelling of Vosvozis river basin),
 Өрákпс),
- Economou et al., 2007 (Medit., Mar., Scien., 8,1,91-166, The freshwater ichthyofauna of Greece),

- Papastergiadou, Babalonas, 1993 (Willd., 23,137-142, Aquatic flora of N.Greece)Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),
- Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),

 OППЕО 97
 Екठо́бモıс ОППЕӨ 97.
 A日グva．
－Zagas，T．D．，P．P．Ganatsas，T．K．Tsitsoni and Marianthi Tsakaldimi．2004．Thinning effect on stand structure of holm oak stand in northern Greece．In：
－Arianoutsou，M．and V．P．Papanastasis（eds），Proceedings of the 10 th MEDECOS Conference，April 25－May 1，2004．Rhodes，Greece．Millpress，Rotterdam．

 117.
－Grisebach，A．1841．Reise durch Rumelien und Brussa in jahre 1839，1．2 Gottingen．
－Mattfeld，J．1927．Aus wald und macchie in Griechenland．Dendrol．Ges．38：106－151．
 Apvaiac．Өعббба入ovikn．

8．OMADA ME／ETH乏

Taх．$\Delta / v \sigma \eta$ ：Пата́фף 82，Өعбба入оvíkŋ，Т．К．54453，
Tп入．／Fax： 2310902321 ／ 2310330630

ミфраүіба－Үлоүрафи́

OERPHOHIKE

（1）GEVGYNHHエ THE

「éọyıos Matparázns
Hoд̀tuкós Minxavikús pe A＇β ．

ПAPAPTHMAI

								P

3Od＠O日 3ONヨWVI3IФ人 ®

3OJUJV ZONヨWVIZIゆ人

HNOL VILNOZIdO

КАТОчн

[^0]: Cephalanthera damasonium／חapóv
 Cephalanthera longifolia／חapóv
 Colchicum doerfleri／П α oóv
 Convallaria majalis／Mapóv
 Corydalis integra／$\Sigma \pi \alpha \dot{v}$ เo
 Cyclamen persicum／П 1 рóv
 Cystoseira spp／Ma oóv
 Dianthus petraeus ssp．orbelicus／Пapóv
 Digitalis leucophaea／End́vto
 Erysimum drenowskii／Пapóv
 Fritillaria euboeica／Пoגú इrávıo
 Fritillaria graeca／Mapóv
 Helichrysum sibthorpii／חo入ú इnávio
 Heracleum humile／Парóv
 Hypericum athoum／ミndivio
 Isatis tinctoria ssp．athoa／इrávto
 Limodorum abortivum／Пapóv
 Linum leucanthum £úvŋษัยऽ
 Linum olympicum ssp．athoum／Moגú $\Sigma \pi \alpha \dot{v} v o$
 Neotinea maculata／ח $\alpha \rho o ́ v$
 Neottia nidus－avis／Hapóv
 Ophioglossum vulgatum／Парóv
 Osmunda regalis／Ta $\alpha o \dot{v}$
 Oxytropis purpurea／Enávio
 Platanthera bifolia／Пapóv
 Platanthera chlorantha／Mapóv
 Poa thessala さúvnvิes
 Polygonum icaricum／$\Sigma \pi \dot{\alpha} v i o$
 Saxifraga juniperifolia ssp．sancta／Mapóv
 Silene echinosperma／П $\alpha \rho o ́ v$
 Silene multicaulis ssp．genistifolia／Mapóv

