# IEPA KOINOTHTA 

AIIOY OPOYE
$A \Theta \Omega$

## ЕРГО： <br> «EPTA EПEEEPTAEIA乏 KAI AIAOE $H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~$ ミTO AIION OPOミ»

 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~ ミ E N O Ф \Omega N T O \Sigma ~$


## ANALOXOE MENETHE

EYミTPATIO $~ K A P A Г E \Omega P I I O Y ~$ ПАПАФН 82， 54453 ӨЕЕさAへONIKH email：skarageo＠gmail．com

# EРГО： <br> «EPГA EПE＝EPTA乏IA乏 KAI AIAOEEH乏 AETIKRN AYMATRN $\Sigma T O$ AГION OPOE» 

MEАETH ПEPIBAMONTIKSN EITIITISEERN EPISN EITEEEPTAEIAE KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I . ~ M . ~ \Xi E N O Ф \Omega N T O \Sigma ~$

## MH TEXNIKH ПEPI＾HШH

ANADOXOE MENETHE<br>EYミTPATIOE KAPAГERPIIOY<br>ПАПАФН 82， 54453 ӨЕこさAへONIKH<br>email：skarageo＠gmail．com

IOYNIOE 2021

## ПINAKA乏 ПEPIEXOMENRN

2. MH TEXNIKH ПEPIAHYH .....  .3
2.1. ПЕРІРАФН ЕРГОУ. .....  3
 .....  3
 ..... 3
 .....  .4
2.1.4 Пертрраии івıторрүіац, ..... 5
2.2. AחOETALEIL- LYNTETAFMENEL .....  .7
2.3. ПЕРIBAAAONTIKE EПIITTQEEIL .....  .8
2.4. METPA KAI $\triangle$ PAEEIE IIA THN IIPOETAEIA TOY HEPIBAAAONTOE. ..... 11
2.5. ОФЕАН ..... 11
2.6. ENAAAAKTIKEL AYEEIL ..... 11
2.7. $\Sigma Y N O \Psi H ~ T \Omega N ~ \Sigma Y M \Pi E P A \Sigma M A T Q N ~ T H \Sigma ~ E O A ~ T O Y ~ П A P A P T H M A T O \Sigma ~ 3.2 .2 ~ T H \Sigma ~ \Sigma X E T I K H \Sigma ~ K Y A ~ A ~$ ..... 12

## 2．MH TEXNIKH ПEPI＾H $\mathbf{\Psi}$



## 2．1．Пєргүрачгர் є́pүou

## 








 oाँ Өá入aoóa



## 



































##  E．E．A．






| ПAPAMETPO乏 |  | ПAPOYEA ФAEH | ФAEH EXEAIAEMOY |
| :---: | :---: | :---: | :---: |
|  | Kar． | 320，00 | 420，00 |
|  | $\mathrm{m}^{3} / \mathrm{d}$ | 48，00 | 63，00 |
|  акаӨápтшv | $\mathrm{m}^{3} / \mathrm{d}$ | 72，00 | 94，50 |
|  | $\mathrm{m}^{3} / \mathrm{h}$ | 3，00 | 3，94 |
|  | $\mathrm{m}^{3} / \mathrm{h}$ | 10，80 | 14，18 |
| Eıठıкȯ Punavtıkó ¢oprio $\mathrm{BOD}_{5}$ | gr／Kar／d | 60 | 60 |
| Eıठ̈ィкó Puпavtıко่ ¢ортіо TSS | gr／kat | 70 | 70 |
| Eıరıкк̇ Punavtıkȯ 甲ортio TN | gr／kar／d | 10 | 10 |
| Eıठ̈ко̇ Punavtıkó ¢ортio TP | gr／кat／d | 3 | 3 |
|  | kg／d | 19，20 | 25，20 |
|  | kg／d | 22，40 | 29，40 |
|  | kg／d | 3，20 | 4，20 |
| Фортіо TP охعঠıабнои่ | kg／d | 0，96 | 1，26 |











## 







## 







## Фàon 「': Enavenix $\omega$ on opuyuát $\omega$ v av $\omega$ váv




## 




## 







### 2.1.4 Перıүрафй лєıтоирүіая,






































 aı


 ঠıаперато்тпта UVT 70\％／cm．







## 





|  | ミuvtetayuėves E［टA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| D． 0.0 （apx＇̇） | 514998，94 | 4456136，88 |
| D．0．2 | 515019，86 | 4456092，08 |
|  | 515067，80 | 4456079，46 |




|  | इuvtetayuėves EIEA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| B． 4 （apx ${ }^{\text {（ }}$ ） | 515239，17 | 4455997，38 |
| B． 3 | 515194，60 | 4456020，69 |
| B． 2 | 515173，20 | 4456035，58 |
| B． 1 | 515142，20 | 4456036，88 |
|  | 515121，22 | 4456043，78 |




|  | ミuvtetayuėvec，E［टA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| B． 0 | 515121，22 | 4456043，78 |
| C． 0.2 | 515105，67 | 4456067，78 |
| C．0．2 | 515081，40 | 4456078，64 |
|  | 515067，80 | 4456079，46 |




|  | ミuvtetaypėvec E［EA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| A． 3 （apxí） | 515102，82 | 4456161，33 |
| A． 2 | 515095，63 | 4456127，28 |
| A． 1 | 515087，27 | 4456100，42 |
|  | 515067，80 | 4456079，46 |





|  | ¿uvtetayuéveç E[टA 87 |  |
| :---: | :---: | :---: |
|  | X | Y |
| 'Ȩoठoc anó EE^ (C.1) | 515072,82 | 4456059,32 |
|  | 515065,51 | 4456034,16 |





## 





1. חPAEINH ENAEIEH avtiotoıxzi or ӨETIKH EПIITI $\Omega \Sigma H$

2. KOKKINH ENAEIEH avtıoтoıx\&i $\sigma \varepsilon$ APNHTIKH EПIIT $\Omega \Sigma H$
EPTO ：«EPTA ETEEEPTAEIAL KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K I N ~ A Y M A T S 2 N ~ \Sigma T O ~ A I T O N ~ O P O \Sigma " ~$

| ФAEH EPROY | IEPIBAANONTIKO ETOIXEIO | Enimiseeis |  |  | BAPYTHTA |  |  |  | DIAPKEIA |  | ANAETPE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{\pi}{2}$ | W | 증 |  | 砏 |  |  | $\begin{aligned} & \sum_{i=1}^{2} \\ & \sum_{i}^{0} \\ & \hline \end{aligned}$ | 들 M M O | 층 | W | $\frac{3}{2}$ |
|  |  |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ | $\checkmark$ |  |  |
|  | Морролоүıка́ каı топо入оүıка่ характпрıттка̇ |  | $\sqrt{ }$ |  |  |  | $\checkmark$ |  |  | $\checkmark$ |  |  | $\checkmark$ |
|  |  характпріөтіка́ |  |  | $\sqrt{ }$ |  |  |  |  |  |  |  |  |  |
|  | Фuדıко́ пعрıßà入入ov |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  | $\checkmark$ |  |  | $\checkmark$ |
|  |  |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  |  | $\sqrt{ }$ |  |  | $\checkmark$ |  |  |  |  | $\checkmark$ |  |  |  |
|  |  |  | $\checkmark$ |  |  |  |  | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |
|  | AvӨр |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  | Поıо́т刀та тои аह́pa | $\checkmark$ |  |  |  | $\sqrt{ }$ |  |  |  | $\checkmark$ |  | $\checkmark$ |  |
|  |  | $\checkmark$ |  |  |  |  | $\checkmark$ |  |  | $\sqrt{ }$ |  | $\sqrt{ }$ |  |
|  | Н入єкронаүvๆтіка́ пеठia |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  | ＇үбата |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  |  | $\sqrt{ }$ |  |  |  | $\sqrt{ }$ |  |  |  | $\sqrt{ }$ |  | $\sqrt{ }$ |  |


EPTO ：«EPIA ETEEEPTALIA乏 KAI $\triangle T A O E E H \Sigma ~ A \Sigma T I K S N ~ A Y M A T S N ~ \Sigma T O ~ A / I O N ~ O P O \Sigma » ~$

| ФAEH EPTOY | ПEPIBAMAONTIKO ETOIXEIO | enimiseeis |  |  | BAPYTHTA |  |  |  | $\triangle I A P K E I A$ |  | ANAETPEYIMH |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{y}{2}$ | W్W | 충 |  | $\frac{5}{\frac{L}{E}}$ |  | 空 | $\sum_{i=1}^{工}$ |  | 밍 |  | そ |
|  |  |  | $\checkmark$ |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |  |
|  | Морфоגоүıка́ каı топоגоүıка́ характпрıттıк่ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  Характпріөтіка́ |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\sqrt{ }$ |  |  |  |  |
|  |  | $\sqrt{ }$ |  |  | $\sqrt{ }$ |  |  |  | $\checkmark$ |  |  |  |  |
|  |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  |  |
|  | TEXVIKદ̇¢ unoठouȩ̇， |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  |  | $\checkmark$ |  |  | $\sqrt{ }$ |  |  |  | $\checkmark$ |  |  |  |  |
|  | Поьо́тпта то⿱ аи́pa | $\checkmark$ |  |  |  |  |  | $\sqrt{ }$ | $\checkmark$ |  |  |  | $\sqrt{ }$ |
|  |  | $\checkmark$ |  |  |  |  | $\sqrt{ }$ |  | $\checkmark$ |  |  |  | $\checkmark$ |
|  | Н入екроиаүVПтіка̇ пеठía |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  | ＇Үбата | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  |  |
|  |  | $\sqrt{ }$ |  |  |  | $\sqrt{ }$ |  |  |  | $\sqrt{ }$ |  | $\checkmark$ |  |

[^0]
## 


 $\lambda \varepsilon$ лтоupyia tous．

入uна́тшv ото перıßà入入ov．






## 2．5．O甲ع́1ク


 перıßं̀ $\lambda$ lov．

## 



 періßà入lov．





 бро́ $\boldsymbol{\mu} \mathbf{0}$ ．



















##  тПऽ бXETIKர்ৎ KYA










## 

МЕ TПV катабкєuท́ Tou غ̇pyou:
















Tax．$\Delta / v o \eta$ ：Папа́甲ク 82，Өعбба入оviкП，Т．К．54453，
Tク入．： 2310902321
Email：skarageo＠gmail．com
ミфраүіठ̈а－Үпоүра甲ர்

KAPATERPIIOY A．EYETPATIOE ДIПАОМ．ХНMIKOE MHXANIKOE A．П．O． MEAOE T．E．E．APIOMOE MHTPSOY 87022 ПАПАФH2Z KनOYMIA 54453 ӨEE／NIKH THA 2310．992．321

## 

Oraoa入ovíkn 14104120.22
「IA TON EへETXO


## E＾ETXOHKE

Өとaoaरovikn ．．．4．1．04／．．．20．22
O ПPOİITAMENOE
TMHMATOE $\triangle A E Q N \& ~ D C P I B A M O N T O \Sigma ~$

$\triangle a \sigma 0$ 人Óyos $\mu \varepsilon A^{\prime} \beta$


OEתPHOHKE
Өeббa入ovikn． $14 \%$／420．22．
O $\triangle$ IEYOYNTHE TH乏
TEXNIKHY YMHPEEIAE


Гєம́pүıos Matpaná̧̧̧̧
Hoдıtккó Mnxaviкós $\mu$ ع A ${ }^{\prime} \beta$ ．

IEPA KOINOTHTA AIIOY OPOY乏 $A \Theta \Omega$

## EРГО：

 AIION OPOE»

## MEАETH ПEPIBAИAONTIKSN EПIITTSEERN EPISN EПEEEPГAEIA乏 KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ I . ~ M . ~ \Xi E N O Ф \Omega N T O \Sigma ~$



ANAAOXOE MEAETHE
EYミTPATIO $\Sigma$ KAPATERPIIOY
ПАПАФН 82， 54453 ӨЕУรAへONIKH
email：skaraqeo＠qmail．com

O

## MINAKAE MEPIEXOMENתN

1．EILAГ $\Omega \Gamma H$ ..... ．． 9
1．1．Titaos eproy ..... ．． 9
1．2．EInoz KAI MEIE＠OL EPIOY ..... ．． 9
1．3．ГЕЛГРАФIKH＠ЕटH KAI AIOIKHTIKH YПAГ $\Omega$ ГН ЕРГOY ..... ．． 9
1．3．1 धरेका ..... 10
1．3．2 Аюопртвй этауюю́ ..... II
 ..... 11
 ..... 11
 ..... 11
 ..... 12
.12
 ..... 12
1．3．3．5 ミuvtetaүuévec ouколе́öov EEA ..... 12
 ..... 12
1．4．Katatazh toy eproy ..... 13
1．5．ФOPEAL EPTOY． ..... 14
1．6．ПEPIBAAAONTIKOL MEAETHTHZ EPIOY ..... 14
2．MH TEXNIKH ПEPIAHYH ..... 15
3．इYNOПTIKH IEPIГРАФН T®N EPГ®N ..... 16
3．1．BAEIKA ETOLXEIA TOY EPIOY ..... 16
 ..... 16
 ..... 16
 ..... 17
3．2．BALIKA LTOLXEIA KATAEKEYHE KAI AEITOYPIIAL： ..... 18
 ..... 18
3．3．AПAITOYMENE ПOLOTHTEL חIPQTSN YA $\Omega$ N，NEPOY，ENEPTELAL KAI AПOBAHT $\Omega$ N ..... 20
 ..... 20
 ..... 20
4．इTOXOL KAI ГKOHIMOTHTA YAOHOIHエH TOY EPTOY－EYPYTEPE $\Sigma Y \Sigma X E T I \Sigma E I \Sigma$ ..... 22
4．1．ETOXOE KAI ЕKOПIMOTHTA ..... 22
 ..... 22
 Epyod 22
 ..... 22
4．2．IETOPIKH EEEAIEH T $\Omega N$ EPI $\Omega$ N ..... 23
4．3．OIKONOMIKA ETOLXEIA T $\Omega$ N EPI $\Omega$ N ..... 23
4．3．1 Ектіцүоп ашvоฝ̀ıко́ тройтоえоүбцой． ..... 23
 ..... 23
4．3．3 Тро́лоя хрпиатоб́отпопя． ..... 23
4．4．इYEXETILH TOY EPIOY ME AAAA EPIA ..... 23
5．इYMBATOTHTA TOY EPГOY ME OE $\Sigma M O \Theta E T H M E N E \Sigma ~ X \Omega P I K E \Sigma ~ K A I ~ П O A E O A O M I K E \Sigma ~$ AELMEYミEI乏 THE ПEPIOXH乏 ..... 25
5．1．ЄEटH TOY EPROY ..... 25
5．1．1 Орıа оькабцө́v ..... 25
 ..... 25
 ..... 25
 ..... 25
5．1．4．1 Oठ̈ィо́ ठ́ктто ..... 25
 ..... 25
 ..... 25
5．1．4．4 Алоде́tevoा ..... 25
5．1．4．5 Ү8рвит ..... 26
 ..... 26
5．2．IEXYOYГE X XROTAEIKEL KAI ПOAEOAOMIKE PY＠MILEIL THZ ПIEPIOXHE TOY EPIOY． ..... 26
 ..... 26
5．2．2 Өєбцико́ каӨєбтळ́s． ..... 26
 ..... 27
 ..... 27
6．ANAAYTIKH ПEРIГРАФН ЕXEAIA亡MOY TOY EPГОY ..... 28
6．1．ANAAYTIKH IEPITPAQH TEXNIK $\Omega$ N－TE $\Omega M E T P I K \Omega N ~ \Sigma T O L X E I \Omega N ~$ ..... 28
 ..... 28
 ..... 28
 ..... 29
6．2．ANAAYTIKH HEPIIPAФH KYPI $\Omega$ N，BOH＠HTIK $\Omega$ N KAI YHOLTHPIKTIK $\Omega N$／EYNOA $\Omega$ EIKATAZTALE $\Omega$ N KAI EPI $\Omega$ N 31
6．3．EпIMEPOY：EPTA ..... 32
6．3．1 Ктриака́ е́рүа． ..... 32
 ..... 33
 ..... 33
 ..... 33
6．3．4．1 Ерүа протоßӓӨиац влегрруабіац ..... 33
6．3．4．2 Вю久оүкฑŋ епвदॄерүабіа ..... 34
 ..... 36
 ..... 37
 ..... 38
 ..... 38
6．4．ФAटH KATAZKEYH亡 TQN NE $\Omega$ N EPR $\Omega \mathrm{N}$ ..... 38
 ..... 38
 ..... 39
 ..... 39
6．4．4 Avaүкаía vìка́ катабквоभ́s ..... 40
 ..... 40
6．4．6 Mieová̧ovta dגıкג́． ..... 41
6．4．7 Еклоил反́؟ аб́ришv ро́тळv ..... 41
 ..... 41
 ..... 42
6．5．ФALH AEITOYPILAL ..... 42
 ..... 42
 ..... 43
 ..... 43
6．5．4 Eкроéc отереळ̈v алоßెдخтшv ..... 43
 ..... 44
 ..... 44
 ..... 44
6．6．ПAYZH AEETOYPIIAZ－AПOKATAETALH ..... 44
 ..... 44
6．6．2 Каөаірбоп $\mu$ о́vциоу катабквио́v． ..... 45
 ..... 45
6．7．EkTAKtez eynehkes kai kinaynoi ria to Iepibanaon ..... 45
 ..... 46
 ..... 46
 ..... 46
 ..... 46
6．8．EIIAPALH TOY EPIOY EE KOITE PEMATRN ..... 46
7．ENAAAAKTIKE $\operatorname{AY}$ EEIE ..... 48
7．1．ПAPOYEIALH BIQEIMHL AYEHE ..... 48
 ..... 48
 ..... 48
 ..... 49
7．1．3．1 Геvка́ ..... 49
7．1．3．2 इй́ттпиа evepyov́ йúog ..... 50
 ..... 56
 ..... 58
 ..... 60
 ..... 64
 ..... 64
7．1．4． Evorijuata Taxsias $\Delta$ tijemons． ..... 66
 ..... 67
7．1．4．4 Техиクтоі Y үро乃ио́тотои ..... 68
 ..... 72
 ..... 74
 ..... 75
7．1．5．1 Гevkর́ ..... 75
 ..... 75
 ..... 76
7．2．AミIOAOГHEH KAI AITIOAOГHLH THE TEAIKHE EIIAOTHE ..... 77
 ..... 77
 ..... 77
 ..... 78
 ..... ．． 82
 ..... 84
 ..... 84
8．YФIГTAMENH KATAETALH IIEPIBAAAONTOL． ..... 86
8．1．ПEPIOXH MEAETH： ..... 86
 ..... 86
8．1．2 इпиєєако́ вјро ..... 87
8．1．3 Kаттүоріа е́pүov． ..... 87
 ..... 87
8．1．5 Үүрототикй терเохй． ..... 87
 ..... 87
8．2．KAIMATOAOIIKA KAI BIOKAIMATIKA XAPAKTHPIETIKA． ..... 87
8．3．МОРФОАОГIKA KAI TOПIOАОПТКА XAPAKTHPIETIKA． ..... 89
8．3．1 Катаурафи́ тотіор аvафора́м ..... 89
8．3．2 Еирюлайпј о́дивапр тотіои ..... 89
 ..... 90
 ..... 90
8．4．ГE®AOITKA，TEKTONIKA KAI EAAФOAOIIKA XAPAKTHPIZTIKA ..... 91
 ..... 91
 ..... 93
 ..... 94
8．5．ФYЕTKO ПЕРIBAANON ..... 95
8．5．1 Геvid́ वтoryeía ..... 95
 ..... 96
 ..... 98
 ..... 98
 ..... 104
 ..... 105
 ..... 106
 ..... 106
 ..... 106
 ..... 106
 ..... 107
8．6．ANOPQПOIENEE IEPIBAAAON ..... 107
 ..... 107
 ..... 107
 ..... 107
 ..... 107
 ..... 108
8．6．2．2 Пробтатєио́цвиа $\tau \mu \grave{\eta} \mu \tau \alpha$ ..... 108
 ..... 108
8．6．3 Мо入патткך кіпроvорд́． ..... 108
 ..... 108
 ..... 108
8．7．KOIN $\Omega$ NIKO KAI OIKONOMIKO IIEPIBAAAON ..... 109
8．7．1 А Аиоүрафикך катд́аташ ..... 109
 ..... 110
8．7．2．1 Параүюүккоі тонеіс． ..... 110
 ..... 110
 ..... 110
 ..... 110
8．8．TEXNIKE YTIOAOMEE ..... 110
8．8．1 Үтодоне́я $\mu$ втароро́v， ..... 110
 ..... 110
8．8．3 Аіктоа о́бреитп． ..... 111
8．9．ANӨPQПOFENELE HIELEIL ETO ПEPIBAAAON ..... 111
 ..... 111
 ..... 111
8．10．ATMOLФAIPIKO ПIEPIBAAAON－ПOIOTHTA AEPA． ..... 111
 ..... 111
 ..... 112
 ..... 112
8．11．AKOYミTIKO IIEPIBAAAON KAI $\triangle O N H E E I \Sigma$ ..... 112
8．11．1 Пinés Oоро́ßov ..... 112
 ..... 112
 ..... 112
8．12．HAEKTPOMAINHTIKA IEALA ..... 112
 ..... 113
 ..... 113
8．13．＇Y $\triangle A T A$ ..... 113
8．13．1 Exéta סtayziplons． ..... 113
 ..... 113
 ..... 113
 ..... 113
8．13．2 Eлираveıaкג́ ט́סата ..... 113
8．13．2．1 Пергүра甲ர́ иб̈роүрафıкой ठ̈ктйои ..... 114
 ..... 114
 ..... 114
 ..... 114
8．13．3 Yло́үеа ט́daта ..... 114
 ..... 114
 ..... 115
 ..... 115
 ..... 115
ATYXHMATQN KAI KATALTPOФQN115
8．15．TALEIE EEEAIEHE TOY חEPIBAMAONTOE XQPIL TO EPIO ..... 116
 ..... 116
 ..... 116
9．EKTIMHटH KAI AЕIOAOГHะH IIEPIBAAAONTIK $\Omega$ N EIIIIT $\Omega \Sigma E \Omega N$ ..... 117
9．1．ME＠OAOAOIIKE 2 AIIATTHLEIL ..... 117
9．2．EПIIITQEEIL EXETIKA ME TA KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPILTIKA ..... 118
 ..... 118
 Өєриожюриакобтрац ..... 118
9．2．3 Eктоитдцத аеріои тои Өериокәтіои． ..... 118
9．2．3．1 Фа́оा катхбквиџ！， ..... 118
9．2．3．2 Фа́ণт 入вıтоupyiaç ..... 119
9．3．EIIITR®EIE ЕTA MOPФОАОГIKA KAI TOHOАОГIKА ХАРАКТНРІЕТIKA ..... 119
 ..... 119
 ..... 119
 ..... 119
 ..... 120
 ..... 120
 ..... 120
9．4．1 Макроокотикв таратиріргес． ..... 120
 ..... 120
 ..... 120
 ..... 120
 ..... 120
9．4．2．1 Пi日大vótाta púncovols tovv हסaquiov． ..... 121
 ..... 121
 ..... 121
9．5．EIIITREEIE ETO ФYミIKO ПIEPIBAAAON ..... 121
 ..... 121
 ..... 121
9．5．2．1 Etô＊＜́ बтotzeia ..... 121
 ..... 122
 ..... 123
 ..... 123
9．5．3．1 Eスuสt＇́osiç बe d́áoç ..... 123
 ..... 123
9．5．4 А入入ег опиаитке́s териохе́s． ..... 123
 ..... 123
 ..... 123
9．6．EחIITQLEIL STO ANEPQHORENE HEPIBAANON ..... 123
 ..... 123
9．6．1．1 Metaßo ..... 123
 ..... 124
 ..... 124
9．6．2．1 Ектіџणך втилтю́беюv ..... 124
 ..... 124
 ..... 124
9．6．3．1 Emurtuosts． ..... 124
 ..... 125
 ..... 125
9．7．EITTTת工EE 2TO KOIN $\Omega N I K O-O I K O N O M I K O ~ I I E P I B A A A O N . ~$ ..... 125
 ..... 125
 ..... 125
9．7．3 Өвагцц ерүабіас ..... 125
 ..... 125
 ..... 125
 ..... 125
9．8．EIIITTREEIL ETIL TEXNIKE $\Sigma$ YHOAOME ..... 125
9．8．1 Eлитӹхегร． ..... 125
9．8．2 Eлд́рквıа ..... 126
 ..... 126
9．9．1 Ihtavótyra вvioxuors ..... 126
9．9．2 डииооирria váov пtéabav． ..... 126
9．10．EIIITRSEIL STHN ПOIOTHTA TOY AEPA ..... 126
 ..... 126
 ..... 127
 ..... 127
9．11．EIIITT®乏EIL AПO＠OPYBO H $\triangle O N H L E I \Sigma$ ..... 128
 ..... 128
9．11．2 Еилтш்кая ..... 128
9．12．EIIITTQEEIL EXETIKEL ME HAEK TPOMAINHTIKA ITESIA ..... 129
 ..... 129
9．12．2 ПиOavórारa ..... 129
9．13．Enimitazeis sta YaATA ..... 129
 ..... 129
 ..... 129
 ..... 129
 ..... 129
9．13．2．3 Eктіцпоा $\mu$ гтаßодо́v． ..... 129
 ..... 129
 ..... 130
 ..... 130
 ..... 130
 ..... 130
 ..... 130
 ..... 130

／KAI TO IIEPIBAAAON，KYPI $\Omega$ ת $O[\Omega$ ATYXHMATQN KAI KATAETPOФ $\Omega$ N ..... 131
9．15．इYNOYH EIIITISEESN LE IINAKES ..... 131
10．ANTIMETSПIธH IEPIBAAAONTIK $\Omega$ N EIIIT $\Omega \Sigma E \Omega N$ ..... 134
10．1．ME＠OSOAO IKEL AПAITHEEIL KAI IPOL＠ETA METPA ..... 134
10．2．METPA AПOKATALTALH亡 KAL ANTIMETQIILHLEIIITIQSE $\Omega$ N $\Sigma E$ KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPIETIKA ..... 136
10．3．METPA AПOKATALTALH亡 KAI ANTIMETQПIILL EПIITQЕE $\Omega$ N $\Sigma E$ MOPФOAOПKA KAI TOIIOAOГIKA XAPAKTHPILTIKA ..... 136
 XAPAKTHPIETIKA ..... 137
10．5．METPA AПOKATAZTALHE KAI ANTIMETQUIILHL EIIITTSZE $\Omega$ N $\Sigma T O$ Ф Y IKKO IEPIBAAAON ..... 137
 ..... 138
 ..... 139
10．8．METPA AПOKATAETALH亡 KAI ANTIMET $\Omega I I \Sigma H \Sigma ~ E \Pi I I I T \Omega \Sigma E \Omega N ~ \Sigma T I \Sigma ~ T E X N I K E \Sigma ~ Y \Pi O \triangle O M E \Sigma . ~$ ..... 139
10．9．METPA AПOKATALTALH亡 KAI ANTIMET $\Omega$ HILHE EIIITI $\Omega E \Omega N$ EXETIK $\Omega N$ ME TIL AN＠PQПOIENEIL ПIELEIL ETO IIEPIBAAAON ..... 140
 ..... 140
 ..... 141
 ..... 142
10．13．METPA AПOKATAETAEHL KAI ANTIMETQПIEHZ EП！ ..... 142
10．14．METPA AПOKATALTALHE KAI ANTIMETQПILHE ПEPIBAAAONTIKQN EПIIITISE $\Omega$ N ПOY AПOPPEOYN AПO THN EYTIA＠EIA TOY EPIOY EE KINAYNOYE EOBAPQN ATYXHMAT $\Omega$ N H KATAETPOФ $\Omega$ N ..... 143
10．15．AПOTEAELMATIKOTHTA METP $\Omega$ N ..... 143
11．IIEPIBAAAONTIKH $\triangle I A X E I P I \Sigma H ~ K A I ~ П A P A K O A O Y \Theta H \Sigma H . ~$ ..... 171
11．1．ПEPIBAAMONTIKH $\triangle I A X E I P I \Sigma H$ ..... 171
11．2．ПEPIBAAAONTIKH IIAPAKOAOYЄHLH ..... 171
 ..... 171
 ..... 171
 ..... 171
 ..... 171
 ..... 171
 ..... 172
 ..... 172
 ..... 172
 ..... 173
 ..... 173
 ..... 173
 ..... 173
 ..... 173
 ..... 174
 ..... 174
11．2．4 Паракоіоט்Өךоך Өори́fov． ..... 174
 ..... 174
 ..... 174
 ..... 174
 ..... 174
11．2．5 Паракоіои́Өпоп обио́v ..... 174
 ..... 175
 ..... 175
 ..... 175
 ..... 175
11．3．$\Sigma X E A I O$ ANTIMETSIILHL EKTAKTRN HEPILTATIK $\Omega N$ ..... 175
11．3．1 Euoxpory ..... 175
11．3．2 Avтквіиєvo тор $\Sigma$ xedion ..... 175
11．3．3 Evepyoroinon tov Exediov． ..... 176
11．3．4 Алеvерүотоіроा тоь Ехебі́ои． ..... 177
 ..... 178
12．KЛАIKOПOIHЕH AПOTEAELMATתN KAI IIPOTAГE IIEPIBAAAONTIK $\Omega$ O OPSN ..... 185
12．1．OEMA－ONOMALIA EPIOY H APALTHPIOTHTAL． ..... 185
12．2．EПLNYMIA ФOPEA H $\triangle$ PALTHPIOTHTAL ..... 185
 ..... 185
 ..... 186
 ..... 186
 ..... 186
 ..... 186
 ..... 186
 ..... 187
 ..... 187
12．2．3 Перıрраии Ерүои． ..... 187
 терıß̈̀isovtas ..... 189
 ..... 190
12．2．5．1 А А́pıa $\alpha \pi \sigma \beta \lambda \eta \tau \alpha$ ..... 190
 ..... 190
 ..... 191
  ..... 191
12．2．7．1 Katá тा фáoा Kataokहvị̆ ..... 191
 ..... 192
 ..... 195
 ..... 199
  ..... 199
13．IIPOEOETA ETOIXEIA ..... 200
13．1．EEEIAIKEYMENES MEAETE ..... 200
13．2．ПРОВАНМАТА ЕKIIONHLH亡 ..... 200
14．ФЛТОГРАФIKH TEKMHPI $\Sigma Н$ ..... 201
15．XAPTEE－EXEAIA ..... 202
15．1．XAPTHL TIPOEANATOAIEMOY ..... 202
15．2．XAPTHट HEPIOXHL MEAETHE ..... 202
15．3．XAPTHE ENAAAAKTIK 2 N AYEESN ..... 202
15．4．ГE』＾OIIKOE XAPTHE ..... 202
15．5．XAPTH $\Sigma$ XPHLE $\Omega$ K KAI KAAYYHट IHL ..... 202
15．6．$\Sigma$ XEAIA TOY EPIOY H TH乏 $\triangle P A \Sigma T H P I O T H T A \Sigma$ ． ..... 202
15．7．XAPTEL ETIITTREE $\Omega$ N ..... 202
15．8．XAPTHЕ ПIPOIPAMMATOE ПAPAKOAOYOHLH亡 ..... 202
16．ПАРАРТНМА ..... 211
16．1．YTIEIONOAOГIKOI YПOАOГIEMOI THЕ E．E．$\Lambda$ ..... 212
16．2．ПTYXIO ME $\wedge E T H T H$ ..... 213
16．3．EIAIKH OIKO $\triangle$ OГIKH AЕIOДOГHटH ..... 214

## 1．EIइAГЛГH

 EПEEEPTA乏IA乏 KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \Lambda Y M A T \Omega N ~ I . ~ M . ~ E E N O Ф \Omega N T O \Sigma » ~ T O u ~ \varepsilon ́ p y o u ~ « E P T A ~$







 Kal tov N1650／1986．

## 1．1．TítAos épyou

To unó $\mu \varepsilon \lambda \varepsilon ̇ t \eta ~ u n o \varepsilon ́ p y o ~ \varepsilon ̇ \chi \varepsilon I ~ \omega ̧ ~ T i T \lambda o ~ « E P T A ~ E П E E E P T A \Sigma I A \Sigma ~ K A I ~ \triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~$ IEPA乏 MONH

## 1．2．Eídos каı $\mu \varepsilon ́ y \varepsilon Ө \circ \varsigma ~ \varepsilon ́ \rho ү o u ~$

Tо غ́pүo a甲орá бuvorтıка́ та парака̇тш：

## ПPOTEINOMENA EPTA

















## 



















## 1．3．1 Oと́oŋ



 عivaı бє ка入ウ่ ката́бтабף．





## 

 Форદ́aç Tou ह́pyou घivaı $\eta$ I $\varepsilon \rho a ́ ~ K o ı v o ́ t \eta T a ~ A y i o u ~ ' O p o u c ̧ ~ ' A \theta \omega . ~$

## 

## 




| Kんठıко̇¢̧ опиعiou | इuvtetayuėveç ETEA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| D． 0.0 （apx＇̇） | 514998，94 | 4456136，88 |
| D．0．2 | 515019，86 | 4456092，08 |
| A． 0 （Tغं入ОS） | 515067，80 | 4456079，46 |

## 




|  | ミuvtetayuėvec E［EA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| B． 4 （apx＇்） | 515239，17 | 4455997，38 |
| B． 3 | 515194，60 | 4456020，69 |
| B． 2 | 515173，20 | 4456035，58 |
| B． 1 | 515142，20 | 4456036，88 |
| B． 0 （Tغ่入OS） | 515121，22 | 4456043，78 |

##  пробартпиа́тшV




|  | इuvtetayuėveç EГГA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| B． 0 | 515121，22 | 4456043，78 |
| C．0．2 | 515105，67 | 4456067，78 |
| C．0．2 | 515081，40 | 4456078，64 |
|  | 515067，80 | 4456079，46 |

## 




|  | ミuvtetayuėvec ETEA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| A． 3 （apx＇்） | 515102，82 | 4456161，33 |
| A． 2 | 515095，63 | 4456127，28 |
| A． 1 | 515087，27 | 4456100，42 |
| A． 0 （Tغ่入OS） | 515067，80 | 4456079，46 |

## 1．3．3．5 হUИTETOVนÉVEC OKKOחह́סOU EE1

 515070，11 ка। $Y=4456065,34$ ．

## 




|  | ミuvtetayuėvec，EГEA 87 |  |
| :---: | :---: | :---: |
|  | X | Y |
| ＇Ȩ̧ōoc anó EE＾（C．1） | 515072，82 | 4456059，32 |
| ミпиعio סıáӨzons（C．0） | 515065，51 | 4456034，16 |

## 1．4．Катáта६̧п тои غ́pyou



 катата́ббоvтаı đع：
－ 12 Oนáठ̄ฮ̧ каı
－ 2 Катпүорі६६：
－ $1^{\eta}$ катпуоріа（A）$\mu \varepsilon$ ठи̉о uпокатпуорієऽ（A1 каı A2）каı
－ $2^{n}$ катпуоріа（B）

 арио́ठıєц архદ்¢．




| OMAAA $4^{n}$ ： 5 YETHMATA ПEPIBAAAONTIK 2 N YTOAOM 2 N |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| EIAOE EPROY＇H APAETHPIOTHTA乏 | YחOKATHIOPIA | $\underset{A Z}{\text { YחOKATHIOPIA }}$ | $\underset{\mathrm{B}}{\text { KATHIOPIA }}$ | TAPATHPHEEİ |
| a／a： 19 <br> Еүкатабта́бяя， घп६दॄpyaбias <br>  （по் $\lambda \varepsilon \omega \mathrm{v}$ ка। окєбрஸ்v）$\mu \varepsilon$ <br>  <br>  uүpळ̈v $\sigma \varepsilon$ епіцаvеіако́ <br>  <br>  | $\Pi \geq 100.000$ І．к． | $\Pi<100.000$ І．к． |  |  <br> П凤ПӨибนой（МІП） <br> a）$\Sigma u \mu п а р а б \dot{j} p o v t a ı \mu \varepsilon \pi \eta$ <br>  лuна̇тшv（EEN）： <br> －оІ кеvтрікоі апохєтعитткоі аүшүоі єкто்̧ бхहठiou <br>  <br> －о а аүшүoi ठıáधとळņ， <br> $\varepsilon п \varepsilon \xi \varepsilon p \gamma a \sigma \mu \dot{\varepsilon} v \omega v$ 入u $\mu a ́ t \omega v$ <br> в） 0 I EEへ ıбі $\omega т і к \dot{\omega}$ <br>  <br>  <br>  к．д．п．，бuцпарабùpovта। anó <br>  брабтпріттптея， <br> у）Гіа то єбштеріко́ ठіктио апохе்тєuønऽ ठєv anaıтеіта। <br>  |

 $1^{17}$ Kатпүорі́а каı Yттокатпүорі́а A2．


## KatátaEn katá ETAKOム 2008 kaı NACE Rev． 2

1． 37.00 Еп६そ̧pүаवia $\lambda u \mu a ́ т \omega v$

## 1．5．Форв́a





## 


$\Delta / v \neq \eta \quad: \quad$ Папа̇甲п 82，Өعбба入оviкп，Т．К． 54453
Tп入．єпикоıv $\omega$ viac ：$\quad 2310902321 / 6976801783$
e－mail ：skarageo＠gmail．com

## 2. MH TEXNIKH ПEPI^HЧH



## 3．$\Sigma Y N O \Pi T I K H ~ П Е Р І Г Р А Ф Н ~ T \Omega N ~ E P Г \Omega N ~$

## 3．1．Baбıкá бтоıхعia тоu घ́pyou

## 








 oTn Өá入aooo



## 


















 ovopaotik＇̆s ıбхúos， 0.90 kW















##  E.E.^.






| ПAPAMETPOE |  | ПАРОYЕA ФАЕН | ФAEH EXEAIAEMOY |
| :---: | :---: | :---: | :---: |
|  | Kat. | 320,00 | 420,00 |
|  | $\mathrm{m}^{3} / \mathrm{d}$ | 48,00 | 63,00 |
|  акаӨápтшv | m ${ }^{3} / \mathrm{d}$ | 72,00 | 94,50 |
|  | $\mathrm{m}^{3} / \mathrm{h}$ | 3,00 | 3,94 |
|  | $\mathrm{m}^{3} / \mathrm{h}$ | 10,80 | 14,18 |
| Eıठıкȯ Punavtıкȯ ¢ортio $\mathrm{BOD}_{5}$ | $\mathrm{gr} / \mathrm{kat} / \mathrm{d}$ | 60 | 60 |
|  | gr/kat | 70 | 70 |
| Elǒıкó Punavtikó ¢optio TN | gr/kat/d | 10 | 10 |
| Eıठıкó Puпavtıкó 甲ортіо TP | gr/Kar/d | 3 | 3 |
| Фортіо $\mathrm{BOD}_{5}$ бхદठıабиои่ | kg/d | 19,20 | 25,20 |
| Фортіо TSS охहరıабนои่ | kg/d | 22,40 | 29,40 |
|  | kg/d | 3,20 | 4,20 |
| Фортіо TP охहठІабนой | kg/d | 0,96 | 1,26 |










## 















 фúбह

## 



Фáon E＇：Eykatáotaon H／M हEon入ıouoủ






## 3．2．1 Пєрıүра甲ர் Авıтоируіая






































 ठіаперато்тпта UVT 70\%/cm.




 avt入ıootaoiou àpঠ̌euons.

##  aпоßАர்тшv

## 







－Kaтабкєบє́ц апó бкиро́ठ̄єца $75 \mathrm{~m}^{3}$ ．



## Xprion evépyeias



 бє пعріпои 27.740 kWh каı 76 kWh avtіттохха．

## Xpróon xпиккஸ்v



## 





## Kんठ̈ıко̇ৎ E．K．A．：19．08．05











Yypá anóß入nto








## Aغ́pia aпо́B入nta








 тіৎ атнобчаıрікє́ц оиvӨウ்кєц．








 eivaı ol aко̇入ouӨعc；

| Періүра甲ர் | Xpóvos Аеıтоupyias （h／غ̇тос） |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | co | NOX | $\mathrm{SO}_{2}$ | voc | PM10 | PM2．5 | $\mathrm{CO}_{2}$ |
| $\begin{gathered} H / Z \\ \text { (ıซxúç } 30 \\ \text { kVA) } \end{gathered}$ | 20 | 1，66 | 4，42 | 0，60 | 0，35 | 0，33 | 0，32 | 431，10 |



## 4．$\Sigma$ TOXO乏 KAI $\Sigma K O \Pi I M O T H T A ~ Y \Lambda O П O I H \Sigma H \Sigma ~ T O Y ~ E P Г O Y ~-~$ EYPYTEPE $\Sigma$ Y $\Sigma$ XETİEI乏

## 4．1．इто́хоя каı бкопиоо́тпта

## 
















##  ouvŋүopoúv unép Tnc uגonoinoņ tou غ̀pyou












## 










## 

























## 

### 4.3.1 Ектіцпоף бuvoגıкои่ проӥпоגоүıбцои่

 бદ 861.519,84 Eupஸ்.

## 




### 4.3.3 Тро́nоৎ хрпиатобо́тпопя

 проура́ниата.

## 

 'Opos.









## 5．इYMBATOTHTA TOY EPГOY ME OEEMOOETHMENE X $\Omega$ PIKE乏 KAI ПONEOAOMIKE乏 $\Delta E \Sigma M E Y \Sigma E I \Sigma ~ T H \Sigma ~$ ПEPIOXH乏

## 5．1．Oع́oŋ tou घ́pyou




## 5．1．1＇Opıa oıкıоцळ்v




## 5．1．2＇Орıa проотатєuóццvตv пعрıохळ்v





## 





## 

## 5．1．4．1 Оঠіко́ ঠіктио






 $\chi \omega \mu$ ато́броно．


## 

 İрıббои่ каı Tрипптті́s．

## 



## 5．1．4．4 AПохह́тعиणП





## 



## 





##  Tou غ́pyou



 uпобо~ん $\omega$ v.






### 5.2.1 ПроßАвंчєıя




 3.496 Pట்ooı, oı 286 Peuoúvoı, oı 307 Boúdyapoı, ol 16 £ $\dot{p} \beta$ oı kaı ol 51 Г $\varepsilon \omega$ pyıavoi. Ynápxouv

 $4 \%$ avá ठєкаєтіа.

### 5.2.2 Өعбрико́ каӨєотஸ்ৎ

 ГХООАП, ПЕРПО К.Т.А.).














- Пعрıохย̇ऽ проотабіаく тпऽ фúonऽ






## 













## 



## 6．ANANYTIKH ПEPIГРАФН ГXEAIA乏MOY TOY EPГOY

## 

## 













## 















 апотєฝоú

 ovouaotikn்s ıбxúos， 0.90 kW









 ovouaotıкウ่s ıбхப்oc 0.90 kW




## 







 515070，11 каІ $Y=4456065,34$ ．












 evepyoú عпı甲áveıaç $3400 \mathrm{~m}^{2}$ ．













$\lambda \cup \mu a ่ т \omega v$.






 ঠıапєрато́тпта UVT $70 \% / \mathrm{cm}$ ．







－Ефєठріко́ пХоноvшן

Пivaкас̧ 6．1．Парохघ́ц $\lambda \cup \mu a ́ t \omega v$

| TAPAMETPO乏 |  | ПАРОYЕА ФАЕH | ФAEH EXEAIAEMOY |
| :---: | :---: | :---: | :---: |
| Е६uпn | кат． | 320，00 | 420，00 |
|  | $\mathrm{m}^{3} / \mathrm{d}$ | 48，00 | 63，00 |
|  акаӨа́рт $\omega \mathrm{v}$ | $\mathrm{m}^{3} / \mathrm{d}$ | 72，00 | 94，50 |
|  | $\mathrm{m}^{3} / \mathrm{h}$ | 3，00 | 3，94 |
|  | $\mathrm{m}^{3} / \mathrm{h}$ | 10，80 | 14，18 |
| Eıठ̈кко́ Puпavtıкó 甲ортіо $\mathrm{BOD}_{5}$ | gr／kar／d | 60 | 60 |
| Eİııкó Punavtıкó 甲ортio TSS | gr／kat | 70 | 70 |
| Eıठıкó Punavtikó 甲ортio TN | gr／kat／d | 10 | 10 |
| Eıठıко̇ Punavtıкó 甲ортio TP | gr／kat／d | 3 | 3 |
| Фортіо $\mathrm{BOD}_{5}$ оХعठıабนоบ่ | kg／d | 19，20 | 25，20 |
|  | kg／d | 22，40 | 29，40 |
| Форті0 TN oxeठiaquoủ | kg／d | 3，20 | 4，20 |


|  | kg／d | 0，96 | 1，26 |
| :---: | :---: | :---: | :---: |








 ка入入ıврүєוळ்v




| Пара́нетроя | KYA 5673／400／97 | KYA 145116 －Пiv． 2 |
| :---: | :---: | :---: |
| Апоঠ̌̇кктワऽ | Епіч．иठ̈átiva бஸ்رата <br>  <br>  |  |
| $\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{l})$ | $\leq 25$ | $\leq 10$（80\％ठॄıуца́т ${ }^{\text {a }}$ ） |
| COD（mg／l） | $\leq 125$ |  |
| Alwpoúprva oteped̀（mg／l） | $\leq 35$ |  |
| Өо入о́тпта（NTU） |  | $\leq 2$（סıá $\mu$ ¢on тıй＇） |
| Eschericia Coli（E．coli） $(\mathrm{EC} / 100 \mathrm{ml})$ | ＊ |  |


 aठ̄єıоठотпи


##  
















 50 Hz ．

 єпદร६рүабіас，










## 




－इüotnua yєíwons
－Еүката́бта⿱㇒冋 аvтікєраиvıкйя проотабіая
－Перічраگ̇п каı Өúpa عıஎóठ̄ou


## 6．3．Enıuغ́pou̧ épya

## 6．3．1 Ктıрıака́ épya





 $\mu \eta$ Xavooráवıo．



каӨаро́ ú $\psi о \varsigma ~ п \varepsilon р і п о u ~ 3,10 \mu . . ~$

## 









## 



## 




## 











































## 6．3．4．2 Biodovikí हпعEEpvacia



 п入亢்pдऽ viтропоinon．





















 $\varepsilon \vee \tau o ́ \mu \omega v$ ．












 عпı甲áveiac,

















































 $\lambda u ́ \mu a т a ~ Ө a ~ \varepsilon i v a ı ~ a n o ́ ~ a v o \xi \varepsilon i ठ \omega т о ~ x a ́ \lambda u ß a . ~$














- Poulejáv
- Роб்̈̀гऽ,







## 







 Titley 2014).




 $8 \mathrm{~m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$ ．
























 прока日iそnons

## 6．3．4．4 Anohúmavan













ठıaпعрато́тŋта UVT $70 \% / \mathrm{cm}$ ．





 цікроорүа⿱⿱亠䒑日ібиш்v．






 TCP／IP，CANopen）．

## 









##  ката入арßáveта।





## 

## 








## 









## 












Фáon E': Eykatáotaon H/M عछ̇on入ıouoủ






### 6.4.3 Үпоотпрıктıкея вүкатаота̇бвıя катабквиท่я




























 єкпоvクӨzi.











 IKAO.

## 











## 









## 6．4．6 П＾हováそ̧vтa u＾ıкá

 $752 \mathrm{~m}^{3}$ ．






 عiठ̄ouç عpүađia．

## 





 ठıદúӨuvon avé $\mu \omega \mathrm{v}$ ）．







## 






－ 1 Мпعтоviย̇pa
－ 1 МпХаvіко́ц єкбкафєац





| Mпx ${ }^{\text {ajvınua }}$ | LWa dBA | Leq/LWa | Eúvodo |  |  |  | Аıápкııa |  |  | $\mathrm{dB}(\mathrm{A})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { Res.Laeq } \\ \text { dBA } \end{gathered}$ | Dist. Ratio | Equiv. On-time | Equiv. On-time | Active dur. | Corr. On-time | PNi |  |
| Ekokapżac 200 kW | 109 | Lwa | 61.00 | 4.00 | 0.32 | 0.32 | 8 | 21.6\% | 0.02 | 54 |
| Фортпуо́ипетоVіغ̇ра | 106 | Lwa | 58.00 | 4.00 | 0.32 | 0.32 | 8 | 21.6\% | 0.01 | 51 |
| Avatpenóuघvo 25Tv 120kw | 108 | Lwa | 60.00 | 4.00 | 0.32 | 0.32 | 8 | 21.6\% | 0.02 | 53 |
| Xроvікฑ் пєріобо¢¢: 8h |  |  |  |  |  |  |  |  |  |  |
| Combined (Leq): 59 dBA |  |  |  |  |  |  |  |  |  |  |




 П入єктропараүшүó そ\&úyoc, тПৎ EEA.






## 



## 

## 

 паройбаৎ $\mu \varepsilon \lambda$ ह̇тๆ̧.



## 

## Xprion evépyeias





| IIINAKA亡 KATANAA $\Omega \Sigma H \Sigma ~ H A E K T P I K H \Sigma ~ E N E P I E L A \Sigma ~ K A I A E I T O Y P I I K O ~ K O \Sigma T O \Sigma ~$ E．E．A．Iepúc Movic ヨevoøóvtoc |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A／A |  | Tequágue or 2arovpyia | Eywateantirivi Iaguig／rag． | Аторрофо́иекэ Inyiç／raq | $\qquad$ ехоррородиеv！ Iocis | Xpóroç 2ıarovprius | Ндеррํㅜㄹ Katavėino svípyas |
|  | пероурарі̣ | Ten． | kW | kW | kw | lid | kWh／d |
| 1 |  <br>  | 1 | 0，55 | 0，44 | 0,44 | 12 | 5，3 |
| 2 |  Broठionoov | 1 | 1，50 | 1，20 | 1，20 | 24 | 28，8 |
| 3 | Avèia r2ioms Prodionov | 2 | 0，55 | 0，44 | 0，88 | 2 | 1.8 |
| 4 |  | 1 | 0，18 | 0，14 | 0,14 | 2 | 0,3 |
| 5 |  | 1 | 0，90 | 0，72 | 0，72 | 2 | 1，4 |
| 6 | Avelia orporywiev | 1 | 0，90 | 0，72 | 0，72 | 2 | 1，4 |
| 7 |  | 1 | 0,44 | 0,35 | 0,35 | 12 | 4，2 |
| 8 | Yло $\beta$ poxazavtia <br>  | 1 | 0，90 | 0，72 | 0，72 | 12 | 8,6 |
| 9 | Yлоßpózia avthia avtinoataciod Avar． Просарртицaitoon | 1 | 0，90 | 0，72 | 0，72 | 12 | 8，6 |
| 10 | Aytoparaopós | 1 | 0，50 | 0，50 | 0，50 | 24 | 12，0 |
| 11 | Фenaçós | 1 | 0,25 | 0，25 | 0,25 | 12 | 3，0 |
|  | EYNOAO |  |  |  |  |  | 76 |

## Xpn்on Xпиікळ̈v



## 






## 





## К $\omega$ ठัıóç E．K．A．：19．08．05









 （

## 





 عival ol ако̇入ouӨє̧：

| Перıүра甲й | Xpóvos גеıтоupyias （h／غ̇тос） |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CO | NOx | $\mathrm{SO}_{2}$ | VOC | PM10 | PM2．5 | $\mathrm{CO}_{2}$ |
| $\begin{gathered} \text { H/Z } \\ \text { (IFXẊGS30 } \\ \text { kVA) } \end{gathered}$ | 20 | 1，66 | 4，42 | 0，60 | 0，35 | 0，33 | 0，32 | 431，10 |



## 


 П入єктропараүшүó Қвúyo̧ тПऽ EEA．






## 




## 6．6．Пaи́бП Аहוтоируias－апокатáбтабП

## 



















 $\varepsilon \xi$ пп入ıб

## 





 проц avaкu̇к $\lambda \omega \sigma\rceil$.

## 



 anó тŋ̣v Iعpá Mov'்.







## 


 плйр $\omega \varsigma$.



## 



## 



 апаıтвіта.

### 6.7.1.3 Дוакопí п\हктробо́тпопя





## 




- Aотохіа тпৎ $\lambda \varepsilon$ -

- Aотохіа тпऽ $\lambda \varepsilon$ -




 غ $\lambda \varepsilon ү \chi$ д̀ $\mu \varepsilon v o$.






 єпо் $£ \varepsilon$ vo кєфá入aıo.


## 6.8. Епіठрабп тои غ́рүои бє коітєऽ рєнáтшv









 áрঠ̄єuđๆ.





## 7．ENAMAKTIKE $\Lambda$ Y $\Sigma E I \Sigma$

## 

## 
















## 



－$\eta$ anóotaon anó та u甲ıбтáneva ктipıa
－$\eta$ סоцй тои об̈ıкои́ ठ̈кти̇ои




 anó TП Өz่on TПऽ E．E．＾．

－то үєш


 фúaņ，к久п）









## 

## 7．1．3．1 「Eviкó























1．ミuotinjuata Evepyoú I $\lambda$ ủos，
i．इu $\mu$ ßatikó oúotqua



3．$\Sigma$ úoтпп $\boldsymbol{\mu} \mu \mu ß \rho a v \dot{v}$（MBR－Membrane－Bio reactor）
4．Пєрıттрєфо́нєvoı ßıодоүıкоі ठібко



3．ミuơṅuara Eпıцаveıaкņ் Pon่s


ii．Үүровıо́топоו катако́ричпя pońs（SFS）







## 7．1．3．2 ミúotnua eveproú ıौúos

## ミuиßatikó oúotnua evepyoú i入úos




 uпа́рхєı прштоßáӨциа каӨỉூпп．




 kávovtaç aп入оúoт\＆ро то бúotnuа．

 нıкроорүаvіб




 пои ovoцáそ̧vтаı ßıокрокіঠєє，





 aпо́ то бúotпиа．



| $\begin{array}{\|l} \text { Aпора́криvōn } \\ \text { BOD }_{5}(\%) \end{array}$ | Opyavikí фо́ртїп （KgBOD ${ }_{5} / \mathrm{kg}$ ıגủoç $\eta \mu$ ह̇pa） |  | Aváuıкто uypó MLSS <br> （mg／lt） | Xpóvos Парацогท்я <br> （hr） | Avaкик入офоріа ı $\lambda$ ủoç | Xpóvos Параногท்я ıAủos （ $\eta \mu \varepsilon \dot{\rho} \varepsilon \varsigma$ ） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85－95 | 0．2－0．4 | 0．3－0．6 | 1500－3000 | 4－8 | 0．25－0．50 | 5－15 |

 Хацп入ои́ фортіои．


 $\mathrm{BOD}_{5}$（85－95\％）．
































 ı入ùos．






 тá $\xi \varepsilon \omega$ ¢ тои 10\％）．

## ミu̇otnua паратєтанغ̇vou aعpiouoú













 єпıтвuxӨzi kaı anoviтропоіңоך．








 паратвтанغ́vou aعpıбนou่．


| Aпоца́криvợ $\mathrm{BOD}_{5}$（\％） | Opyavıкท่ фо́ртїп （KgBOD ${ }_{5} / \mathrm{kg}$ <br>  |  | $\begin{aligned} & \text { Avápıкто } \\ & \text { UYpó } \\ & \text { MLSS } \\ & \text { (mg/lt) } \end{aligned}$ | Xpóvos Параиогท்s <br> （hr） | Avaкик入очоріа ıAủos， | Xpóvos Параиогท̀s ı̀̇̇os （ $п \mu \varepsilon \dot{\rho} \varepsilon \varsigma$ ） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85－95 | 0．05－0．15 | 0．16－0．4 | 3000－6000 | 18－36 | 0．95－1．50 | 20－30 |

 ர் $\mu \varepsilon \sigma а і а \varsigma ~ к \lambda і \mu а к а \varsigma, ~$

$\checkmark$ Y $\ddagger \eta \lambda$ ń anouáкриvơn opyaviкоú 甲ортiou．
$\checkmark$ Nітропоіпоп $\lambda и \mu a ́ т \omega v . ~$

 тои $\mu \varepsilon$ уà入ou Xpóvou aعpıбนoú．








 паратвтане́vou аєрıбиои́．













 тпऽ vitponoinons．









 ı入úos．




## 

















 прعціац отоv пuӨнદ̇va．


 ı入úoc．


























$\Theta c=300 / T \eta \mu \varepsilon \rho$.























 náxuvoŋ.




| Anopákpuvön $\mathrm{BOD}_{5}$ (\%) |  |  | $\begin{array}{\|c\|} \hline \text { Avápıктo } \\ \text { uypó } \\ \text { MLSS } \\ \text { (mg/It) } \end{array}$ | Xpóvoç Парароvŋ்я <br> (hr) | Avaкuклочоріа inúos | Xpóvos Параиогท்я ıไủos (пиغ่рє¢) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85-95 | 0.05-0.30 | 0.08-0.24 | 1500-5000 | 12-50 | - | - |








 аитоиवтопогітв.
甲орті $\omega$ v.









## 










乃оорі $\lambda \mu$.




































 (Rusten et al., "Upgrading to nitrogen removal with KMT moving bed biofilm process", Water Science







 Өвриокрабіа ото вúpos, $10-20^{\circ} \mathrm{C}$.

Пivaкас 7.3. Характпрıотıка́ биотท் $\mu$ атоৎ, MBBR

| Aпоца́криvön BOD 5 (\%) | Opyaviкர่ фо́pтїп (KgBOD ${ }_{5} / \mathrm{kg}$ <br>  |  | $\begin{array}{\|c\|} \hline \text { Aváuıктo } \\ \text { uypó } \\ \text { MLSS } \\ \text { (mg/It }) \end{array}$ | Xpóvos Парацоvŋ่я <br> (hr) | Avaкиклочоріа ıAủos | Xpóvos Параноvíc ıAúos (пนย่рє¢) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85-97 | 0,05-0,3 | - | 2-10.000 | 0.25-1.5 | 0.95-1.50 | 20-30 |













## 











 ı入úoç عivaı ta кàт $\omega \theta$ ו:






 $\mu \varepsilon ̇ ү \varepsilon Ө \circ \varsigma$.








 $\mu \varepsilon$ avtлıобта́бıo．








| Пара́рєтро̧ | Tıи＇ | Aıspyacia nou anaıteitaı |
| :---: | :---: | :---: |
| Єоло́тпта | ＜ 1 NTU |  |
| Aпо入újuavin | ＞LRV 5 |  |
| BOD | $<5 \mathrm{mg} / \mathrm{l}$ |  |
| А $\mu \mu \omega \mathrm{viaka}$ $\left[\mathrm{NH}_{4}\right]$ | ＜ $1 \mathrm{mg} / \mathrm{l}$ |  |
| О入ıко́ áz̧то | ＜ $5 \mathrm{mg} / \mathrm{l}$ |  $\mu \varepsilon \mu \beta$ pavळ்v |
| Одıко́s， фผ்б甲ороऽ | $<1 \mathrm{mg} / \mathrm{l}$ | Avaعрóßıa апочшбчо́ршon＋Aпоvitpoпоinon＋ <br>  |



| Апоцáкриvōn $\mathrm{BOD}_{5}$ (\%) | Opyavıк'் фо́pтion $\left(\mathrm{KgBOD}_{5} / \mathrm{kg}\right.$ <br>  |  | Aváuıкто uypó MLSS ( $\mathrm{mg} / \mathrm{lt}$ ) | Xpóvos Параиогท̆'s (hr) | Avaкиклочоріа IAúos, | Xpóvos Пlapapovì’ IAúos ( $\eta \mu \varepsilon \dot{\rho} \boldsymbol{\varepsilon}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95-99 | 0,02-0,06 | 0,2-0,4 | 5-15.000 | 6-30 | 3-5 | 20-50 |

















## 





















TП̧ हVعрүou่ ı入úoc，





 $\varepsilon \mathrm{v}$ о́ $\mu \omega \mathrm{v}$ ．












 $\mathrm{m}^{2}$ عпı甲áveıaç．


























 ГЕvıкá návт

 нוкрп்.






































|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Дєuтєровáधиıо | $\Delta \varepsilon \cup т \varepsilon \rho о \beta a ́ \theta \mu ı 0 \mu \varepsilon$ таито́хроvп viтропоіпбп | Дєитєроßа́өию $\mu \varepsilon$ <br>  <br>  |
| Үбраидıк் Фо́ртіоп $\left(m^{3} / m^{2} d\right)$ | 0．08－0．16 | 0．03－0．08 | 0．04－0．1 |
| Oруаviкí фо́ртіоп |  |  |  |
| －Kg SBOD $5 / m^{3} d$ | 0．003－0．01 | 0．002－0．007 | 0．0005－0．001 |
| －Kg TBOD $5 / m^{3} d$ | 0．01－0．017 | 0．007－0．015 | 0．001－0．003 |
| Мغ́yıотп Оруалікі́ фо́ртап ото прผ́то бты́бо |  |  |  |
| －Kg SBOD $5 / m^{3} d$ | 0．02－0．03 | 0．02－0．03 |  |
| －Kg TBOD $5 / m^{3} d$ | 0．04－0．06 | 0．04－0．06 |  |
|  |  | 0．0007－0．0015 | 0．001－0．002 |
| YбраиАıко́¢ хоо́vа¢ паранои＇̆¢（hr） | 0．7－1．5 | 1．5－4 | 1．2－2．9 |
| BODs $E \xi \dot{\circ} \bar{\sigma} O U$（ $\mathrm{mg} / \mathrm{lt}$ ） | 15－30 | 7－15 | 7－15 |
| A $\mu \mu \omega v i a \operatorname{E\zeta } \dot{\delta} \bar{\delta} o u$（mg／t） |  | $<2$ | 1－2 |


$\checkmark$ Мікрク่ anarтои́ $\mu \varepsilon v \eta$ ह̇ктаoŋ．
$\checkmark$ Ап入о́тпта 入єाтоupyiac．
$\checkmark$ Хацп入̀́ лвıтоирүіко́ ко́отос，

$\checkmark$ பuvatótпта vitponoinons．

 орүаviкои́ фортіои．



 ठібкんv．
＊Про́ßлпиа обнळ்v．
 oxहסІaఠนou่．

## 7．1．4 Фиоıка́ оиоті̇ната







## 7．1．4．1















 є甲арноүйs．










 ßaбiкoús Túnouc：



 тоछًкой．





|  |  |  |
| :---: | :---: | :---: |
|  | Aрঠعvaŋ¢ | $\Delta \eta j \theta \eta \sigma \eta$ S |
|  |  $\mu \varepsilon ́ \theta \circ \delta \circ$ เ |  $\mu$ 合 0 oठot |
|  | 0．60－2．00 | 1．70－6．00 |
|  $\left(\sigma \tau \rho \cdot / 10^{3} m^{3} d\right)$ | 170－550 | 56－200 |
|  |  |  |
|  | Алаитвit\％ | Алаитвітんи |


 ß入áotnonc．










 ка入入ıвंрувıас，





$\checkmark$ Гoviرonoinon हס̈ápouc，











## 























 ঠıако́пттета। үіа 6－20 пие்рес．






| Пара́цеєтроя， | Фóption （Kg／orp．n <br> н） | Ba日uós anóठoonŋs <br> （\％） | Паратпрர்бвıя |
| :---: | :---: | :---: | :---: |
| BODs | 4．50－18．0 | 86－100 |  <br>  |
| A 3 ¢ $\omega$ To | 0．33－4．10 | 10－93 | Е६артàtaı aпо́： <br> －To धпіппбо проєпєछॄруатіая <br> - Tqv ava入oyia BOD／N <br> - Tov кúk入o גहाтоupүias <br> - То иб́раu入ıкס̇ чортіо |


| Фw\％¢ópos， | 0．11－1．34 | 29－99 |  ঠıоброиท่я |
| :---: | :---: | :---: | :---: |
| Ко入оßактпрıвıӧ＇ |  | 2－6 ¢оре̇ऽ |  <br>  <br>  <br> －Tпи періодо ६п́pavans |














＊$\Sigma T \eta \vee \mu \varepsilon ̇ т \rho ı a ~ a п о \mu a ́ k \rho u v o ŋ ~ T \omega v ~ п a Ө o ү o ́ v \omega v . ~$



## 7．1．4．3 ミиатп́иата Eпו甲аveıaкíc Poís




















кaı $\varepsilon \mu \varphi a v i \zeta ६ ı ~ \sigma u x v a ́ ~ \varepsilon ́ k \lambda u \sigma \eta ~ \varepsilon ́ v T o v \omega v ~ o \sigma \mu \omega ่ v . ~$

 غ̇ХモI：



 kal：






## 7．1．4．4 Tехиптоі Yүоовіо́топоі




 （фutà tou үદ̇vouc Typha）．



 фибıкоі uүроßıо́топол．





 Өрєптіка́ каı фитофа́риака．

## 



 T $\omega \mathrm{v}$ рún $\omega \mathrm{v}$ ．


















 $\mu \varepsilon$ тіц $\mu о р ф \varepsilon ́ ц ~ а द ̧ \dot{т о и . ~}$





 aпع $\ell \varepsilon \cup Ө \varepsilon \rho \omega \dot{v \varepsilon т a I ~ I o ́ v t a ~ a \mu \mu \omega v i o u ~}\left(\mathrm{NH}_{4}{ }^{+}\right)$.




















































## Yypoßı́топоі впіраvعıакйs ponis（FWS）
















Ta aı

 ß入áotпons．







 бтยрळ́v.










## Yypoßıótonol катако́pu甲pns pońc (SWS)


































 uүроßıо்топ $\omega \mathrm{v}$.
 opyaviкой фортiou

| Пара́цвтроt бдво̇tабцои์ | Mováőes | $\Sigma$ v́өтŋци FWS | $\Sigma \mathrm{v}$ ¢tılua SFS |
| :---: | :---: | :---: | :---: |
|  | $\eta \mu \hat{\rho} \rho \Xi ¢$ | 5-14 | 5-14 |
| Bứoç vepoú | m | 0.1-0.5 | 0.3-0.8 |
|  | kgBOD/бтр.d | 8 | 8 |
|  | $\mathrm{m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}$ | 0.01-0.06 | 0.01-0.06 |
|  | $\sigma \tau \rho / \mathrm{m}^{3} . \mathrm{d}$ | $0.02-0.14$ | 0.02-0.14 |
|  | - | 2:1-10:1 | $<1$ |
| Eheryoç kouvourtóov | - | Aлоатвíca |  |
|  $\beta \lambda \alpha ́ \sigma t \eta \sigma \eta \varsigma$ | yr | 3-5 | 1-2 |

## 








 aı

 биотп́ната хшріそоvтаı бє：

1．Aعpóßıa（ $\mu \eta$ aعpı̧̧̇ $\mu \varepsilon v a$ ），

3．єпацчотвріそоvта avaعро́ßıа．








入єıтоupyn்oouv $\mu \varepsilon$ uшП入á opyaviкá фортia．













 tóvous，
 єпıплદ்ovtа 甲uтд́．

| Пара́лвтроі |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  aєро́ßıo | B＇$^{\prime}$ Báध $\boldsymbol{\prime}$ ıo aعрı弓̆́нєvo | Аеро́ßıas Апона́криvaп̧ （xwpis аєргбні） | इиoтriцata $\mu \varepsilon$ фитá tп̧ oikoyéveiaç Lemnaceae |
| Тодıкд́ крıті́pıа $\sigma \chi \varepsilon \delta \iota \alpha \sigma \mu o \dot{~}$ |  |  |  |  |
| Anaínon Провпє६ерүатіая | Eoxápoon ர் KäiZnon | Eoxáp $\omega$ on ì KäiZnon | $B^{\prime} \beta$ ®à $\theta$ uıa | Eкpor̀ anó єпаиротяріъоибєऽ入ipves |
| BODs عIÓ̇ठou （ $\mathrm{mg} / \mathrm{lt}$ ） | 130－180 | 130－180 | 30 | 40 |


| Opvaviкi фо́ртіпп（Kg $B O D_{s} /$ OTp．d） | 4．5－9．0 | 16．8－33．6 | 1．12－4．50 | 2．24－3．36 |
| :---: | :---: | :---: | :---: | :---: |
| BáOoç vepoú（m） | 0．5－1．0 | 1．0－1．22 | 0．6－1．0 | 1．22－1．83 |
| Xoóvos параноvп́s（d） | 10－36 | 4－8 | 6－18 | 20－25 |
| Yбраидıко́ фортіо （ $m^{3} / m^{2} d$ ） | $\begin{aligned} & 0.019- \\ & 0.056 \end{aligned}$ | 0．094－0．28 | 0．037－0．15 | 0．056－0．084 |
| －espиокрабіа лuдát $\omega v\left({ }^{\circ} C\right)$ | ＞10 | ＞10 | ＞10 | ＞7 |
| Про́vраниа биукоиибія | Eпохıак่ <br>  | $\triangle$ ப்o ழ๐рモ்ऽ <br>  ouvexढ̈s |  $\mu \mathfrak{i n v a} \dot{\varepsilon} \omega \varsigma$ ouvexüc， |  unviaia |
| Avauevóuevn пою́́тпта вкроѓs |  |  |  |  |
| $\begin{aligned} & \text { BODs } \varepsilon I \sigma \dot{\partial} \sigma o u \\ & (\mathrm{mg} / \mathrm{lt}) \end{aligned}$ | ＜20 | ＜15 | ＜10 | ＜30 |
| SS（mg／t） | $<20$ | ＜15 | $<10$ | ＜30 |
| TN（ $\mathrm{mg} / \mathrm{lt}$ ） | $<15$ | ＜15 | $<5$ | $<15$ |
| TP（mg／t） | $<6$ | ＜1－6 | ＜2－5 | ＜6 |


$\checkmark$ То ханп入ó ко́отоц катабквиท்я．
$\checkmark$ То ханп入ó 入егтоирүіко́ ко́отос，








## 














 tou aпóß $\lambda$ птои otף $\lambda i \mu v \eta$.




$\checkmark$ To хवцŋ入ó катабквиаотıкó ко̇отоৎ,









## 

### 7.1.5.1 ГEviкá



 апобغ்ктยऽ)





## 






каІ 甲шळ甲ópou．

## 





## Enavaxpnaımonoinon via ápठ̌uon










 проб̈ıаүрарйv Tпऽ KYA 5673／400／1997．

 про́бßапп．







 $\left.\mu \varepsilon \mu \varepsilon \mu ß \rho^{\prime} v \varepsilon \varsigma\right)$ Kaı ano入ú $\mu a v o \not \eta$ ．















 апоррофŋтікой ßо́Өроu.

## 

##  عछॄта́бтŋкаv

## 



 2).







ENAA. OESH 1


ENAA. OEEH 2


##  inc vótiac anóAnenc kaı tou ueporáuevou（ppeatiou（ENAA．OEEH 2）．







## 

ミuußatikd̆ ouotńuata evepvoú i入úoc \＆napatetauĖvou aعpiouoú







 عпıßàpuvoŋ．









## 




 отаठі $\omega \mathrm{V}$ घп६६६pyaoiac，


 عпıßápuvon．









## ミüotnua aibpoúuzvou Biohovikoú pi入 $\mu$（MBBR－Moving Bed Bio Reactor）

 Reactor），$\lambda$ óy $\omega$ ：




 عпıßápuvon．




 auद̆ávouv touç kivठ̈v̉vouç ox入ṅбદ



 ло́y $\omega$ ：



 हva入入актıкд́ биотர்цата．

 єпıßápuvaŋ．






## 





－$\varepsilon \mu \varphi a ́ v i \sigma \eta \varsigma ~ п \rho о \beta \lambda \eta \mu a ́ т \omega v ~ о \sigma \mu \omega ் v, ~ \varepsilon v т о ́ \mu \omega v . ~$



## 






－$\varepsilon \mu \varphi a ́ v i o n \varsigma ~ п \rho о \beta \lambda п \mu a ́ т \omega v ~ о \sigma \mu \omega ่ v, ~ \varepsilon v т о ́ \mu \omega v . ~$



## ミuotńuata eпा甲aveiakńs pońs



 touc，





## 


 touc．



## TEXVnTÉc 入iuvec otärponoinons


 touc．




##   













 oTnv періохウ்．
 то xpóvo）
 цікро́ßıa тшv גu $\mu a ́ t \omega v$ ．



－МЕүá入п ап入о́тпта ото хвıрıбио́．



－Euко入ia пробарноүйя бє $\mu$ нкро́ хஸ்ро．

## 











 そんウ่я，к．入．п．）．











## 



















## 













 ораотпріо́тптея.
入єкávŋ.
 uठ̈át $\omega$ v
 поІо́тПтаৎ̧ T $\omega \mathrm{V}$ Uठ́áт $\omega \mathrm{V}$ тои
 иппрєбієऽ



















- То параквінєvо рغ́на
























 перıóठ̄ouc avá ह̇тoc (En


##  




##  




 Moví $\mu \varepsilon$ по入ú $\mu$ нкро́тєро оптіко́ пєठїо.
 हпіाт $\omega \sigma \eta$.







 пยрıாтஸ்ซદıఁ．

 Н入єктронаүvクтіка́ пєঠia ठєv unápXouv．




## 8．YФIミTAMENH KATA乏TA乏H ПEPIBAMNONTO乏

## 






 $\mu \varepsilon$ TпV YA 5980／16－10－1965－ФЕК 714／B／29－10－1965．

## 



 фữкn่ $\beta$ 人áotnon．






Eıкóva 8．1：H пعрıох＇̆ $\sigma \varepsilon$ aктiva $500 \mu \varepsilon ่ т \rho \omega v$.



### 8.1.2 ミпиعıакó غ̇рүо



### 8.1.3 Katnyopia غ̇pyou



### 8.1.4 Проотатєио́иعvŋ пєрıохй







### 8.1.5 Үүротопик'் періохй



## 

 tou $A \theta \omega$.

## 8.2. КДıиатоДоүıка́ каı ßıокДıнатıка́ характпрıотıка́











 НпєІр $\omega$ тіко்-Мєбєиршпаїко่.







 avغ்pхєта। $\sigma \varepsilon 16-17^{\circ} \mathrm{C}$.
























 впıкратоúvT $\omega$ v av



| $\begin{array}{\|l\|} \hline \text { Пعріоб̄оৎ } \\ 1978-2004 \end{array}$ |  Xapaктпріотікண்v |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Mrivas | $\begin{gathered} \text { Oءриокрабіа } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | 'Үшоя Bpoxńs |  | $\begin{gathered} \text { Ȩ̧áтиıō } \\ (\mathrm{mm}) \end{gathered}$ |
| Iavouápıos | 2,6 | 47 | 85 | 21 |
| Феßpouápıos | 3,4 | 55 | 83 | 21 |
| Ма́pтіоऽ | 6,5 | 50 | 80 | 34 |
| Апріліоя, | 11,0 | 51 | 73 | 51 |
| Máos, | 16,2 | 50 | 71 | 59 |
| Ioúvios, | 20,9 | 41 | 66 | 76 |
| Ioúdios | 22,9 | 54 | 65 | 84 |
| Aúyouotoc, | 22,3 | 38 | 67 | SO |
| इєпте̇นßрı¢ | 18,6 | 31 | 72 | 63 |
| ОктФ்ßрıя, | 13,3 | 56 | 80 | 40 |


| Noغ́यßpıos | 7，6 | 84 | 85 | 20 |
| :---: | :---: | :---: | :---: | :---: |
| Дккغ่цßріо¢ | 4，7 | 90 | 86 | 23 |
| Mżō（0Аıкท่） | 12，5 | 649 | 76 | 568 |

Eıкóva 8．2．OиßpoӨгриıкȯ ठıáypauца M．乏．Apvaiac，


## 8．3．МорчоАоүıка́ каı топıоһоүıка́ характпрıттıќ

## 8．3．1 Катаүра甲ற் топiou ava甲opá̧







## 8．3．2 Eupwnaïkr่ oú $\mu$ ßaoŋ топiou
















 проотатعن்ยта। anó autó.

## 




 tou $A \theta \omega$.

## 









 ठ̄入aס̈ń Quercion fraineto $\langle\omega \mathrm{\omega v}$.

















## 

### 8.4.1 Гઘшдоүка́ характпрıотıка́











 Пcnoviaç, Pa: Zồn Пä̀ikou, Al: Zôvn




Pk: Zívn Пapvacooù-Г káovas,
P: Zavn Пivóov,

I: Iovoç Kovr,

Eu: Evótupu «Toléa óp - rheax́ósecs












 O＾OKAINO）



 IOYPAEIKO）




 TPIA $\triangle I K O$ ）




12．Мहта入入віа．


## 8．4．2 Eठัафолоүıка́ Характпрıотıка́




 ото＇Аүıо＇Ороఢ̧（I．Г．M．E．1978，NTá甲ク̧ к．á 1999）．

## IZnиатоуعvń петрஸ்иата














## ＇Eठа甲оs

















 хоvб̈ро́коккоı，$\mu \varepsilon \mu \varepsilon ү व ் \lambda \eta ~ б к \lambda п р о ́ т п т а . ~$



 охпиатוбнои̇ Beptiokou.



 1:50.000)




### 8.4.3 Tعктоviкá характпрıттка́





H ava oxદ்ఠŋः:

$$
A=a . g
$$

'Onou: $\quad$ g: عпıráxuvon ßapútŋтая каı



NEO $~ X A P T H \Sigma ~ \Sigma E I \Sigma M I K H \Sigma ~ E \cap I K I N \triangle Y N O T H T A \Sigma ~$


## 

### 8.5.1 Гeviká otoryeia











## 



र $\lambda \omega$ рiza























Anहi入oúueva kaı поootareuóusva عïn



 (Мпацпаגف̇vac 1998).






| a/a |  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | Abies cephalonica |  | X |  |  |
| 2 | Aethionema <br> orbiculatum |  | X |  |  |
| 3 | Antehemis sibthorpii |  |  | V |  |
| 4 | Asperula aristata ssp. thessala |  | X |  |  |


| 5 | Astragalus thracicus ssp．monochorum |  | X |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Atropa belladona | $\Gamma$ |  |  | A $\Delta$ |
| 7 | Aubrieta erubescens |  |  | R |  |
| 8 | Beta nana |  | X | R |  |
| 9 | Campanula lavrensis |  | X |  |  |
| 10 | Centaurea pannosa |  | X |  | A |
| 11 | Centaurea peucedanifolia | A |  |  | A |
| 12 | Cephalanthera longifolia | B |  |  | A |
| 13 | Cyclamen persicum | B |  | V | A |
| 14 | Digitalis leucophaea |  | X |  | A $\triangle$ |
| 15 | Fritillaria euboeica |  | X | R |  |
| 16 | Fritillaria graeca |  | X |  | A $\triangle$ |
| 17 | Helichrysum sibthorpii |  |  | V |  |
| 18 | Hypericum athoum |  | X |  |  |
| 19 | Isatis tinctoria ssp．athoa |  | X |  | A $\triangle$ |
| 20 | Limodorum abortivum | B |  |  | A |
| 21 | Linum leucanthum |  | X |  |  |
| 22 | Linum olympicum ssp．athoum |  | X |  |  |
| 23 | Neotinea maculata | B |  |  |  |
| 24 | Neottia nidus－avis | B |  |  |  |
| 25 | Polygonum icaricum |  | X |  | A |
| 26 | Silene echinosperma |  | X |  |  |
| 27 | Silene multicaulis ssp．genistifolia |  | X |  |  |
| 28 | Silene orphanidis | A |  | V |  |
| 29 | Viola athois |  | X |  | A $\triangle$ |

## EnをEпทท்னعıs


 Проєठ̄ріко̇ ठ̈а́таүиа 67／80．
2．Evठัпиıко́．Nai：$X$ ．
 عiठ̄oc［（V）］，A5：इnávio عiठठoৎ（R）．
 к．à．（1998）

## Пovióa





 K．Поїраそiōn（Nтá甲ŋ̧，1992a）．




















## 

 пара́yра甲о．

EIIIKA XAPAKTHPI乏TIKA：EIAH TH乏 ПPO乏TATEYOMENH $\Sigma$ ПEPIOXH $\Sigma-G R ~ 1270003$ EZД XEPEONHEO AOS


－$\Delta ı a п \lambda a ́ \sigma \varepsilon ı \varsigma ~ А р к \varepsilon \cup ̇ Ө \omega v ~ 5210 ~$
－$\Theta a \mu v \omega ் v \varepsilon \varsigma ~ \mu \varepsilon$ Laurus nobilis 5230


－Фpúyava Sarcopoterium spinosum 5420
－Aбßعбтои́xоı а入пıкоi $\lambda \varepsilon ı \mu \omega ் v \varepsilon \varsigma ~ 6170 ~$






－EMAnviká סáan o६ıás $\mu \varepsilon$ Abies borisii－regis 92701 C C B C
－$\Delta$ áon o $\xi$ íć $\mu \varepsilon$ Quercus frainetto 92805 B B A A


－$\quad \Delta \mathrm{d} \sigma \eta \eta \varepsilon$ Quercus brochyphylla otףV Крíтт 9310
－$\Delta$ áon $\mu \varepsilon$ Quercus ilex 934025 A B A B
－$\Delta$ áon $\mu \varepsilon$ Quercus macrolepis 9350
 Pinus mugo kaı Pinus leucodermis 7 B C B B


（ava甲орá oтŋv парака̇ть 入ioта）：

## Eión Bגáornons

Abies borisii－reqis（Маквठ̄оviкó ह̇ $\lambda a$ то）
Abies cephalonica
Acinos alpinus nomismophyllus

Aethionema orbiculatum
Allium guttatum sardoum
Allium moschatum
Allium chamaespathum
Alyssoides utriculata

Anthemis sibthorpii
Anthyllis montana jacquinii
Anthyllis vulneraria pulchella
Arabis brvoides
Arctostaphylos uva-ursi (Арктоотáqu入os)
Arenaria biflora
Asperula aristata nestia
Asperula suberosa
Astragalus thracicus monachorum
Atropa bella-dorma
Aubrieta erubescens
Aurinia corymbosa
Beta nana
Berberis cretica (Bepßepis п крптıкп்)
Bromus cappadocicus cappadocicus
Buxus sempervirens (Пu६óc)
Calamintha hirta
Campanula albanica sancta
Campanula chalcidica
Campanula lavrensis
Campanula orphanidea
Centaurea athoa athoa
Centaurea chalcidicaea
Centaurea huliakii
Centaurea pannosa
Centaurea peucedanifolia
Cephalaria flava flava
Cephalanthera Iongifolia
Cephalanthera damasonium
Cerastium banaticum speciosum

Colchicum doerfleri
Convallaria maialis
Coronilla varia
Corydalis integra
Crepis athoa
Cruciata glabra
Cruciata pedemontana
Cyclamen graecum graecum
Cyclamen persicum
Danthonia alpina
Delphinium fissum
Dianthus gracilis gracilis
Dianthus pinifolius pinifolius
Dianthus stefanoffii
Digitalis leucophaea
Erysimum calycinum
Erysimum drenowskii
Euphorbia amygdaloides amygdaloides
Euphorbia deflexa
Festucopsis sancta
Fritillaria euboeica
Fritillaria graeca
Fumana procumbens（Фounáva $\eta$ ह̇pnouđa）
Gagea bohemica
Gagea pusilla
Gagea villosa
Galium asparagifolium
Galium demissum
Galium incanum incanum
Galium insularae
Galium pyenotrichum
Genista lydia（Гعviota Tņ＾uठíac）
Geocarvum capillifolium
Globularia bisnagarica
Helianthemum nitidum（H入ıávӨع $\mu \mathrm{O}$ ）
Helichrysum sibthorpii
Heracleum humile（Hра́к $\lambda \varepsilon ı$ то то ханпло́）
Heracleum sphondylium ternatum
Hypericum athoum
Hypericum cerastoides
Hypericum montbretii
Hypericum rumeliacum rumeliacum
Hypericum vesiculosum
Isatis tinctoria athoa
Juniperus communis hemisphaerica (Bouvóкєठоро то пиибфаıрıко)
Juniperus foetidissima (Bouvokuпп́pıбסo)
Linum elegans
Linum olvmpicum athoum
Matthiola fruticulosa valesiaca
Melica nutans
Neotinea maculata
Neottia nidus-avis Onosma paradoxum
Qphioglossum vulgatum
Orobanche purpurea
Qrthilia secunda
Paeonia peregrina
Platanthera bifolia
Platanthera chlorantha
Phyllitis scolopendrium
Pimpinella tragium polyclada
Pinus brutia (Tpaxعia пعúkn)
Pinus nigra pallasiana (Avaтоגıкó $\mu$ аиро́пєuко)
Poa compressa
Poa hybrida
Poa thessala
Polygala nicaeensis mediterranea
Potentilla speciosa
Pterocephalus perrenis perrenis
Rhamnus saxatilis prunifolius (Pá $\mu v o \varsigma$ о п проuvóqu $\lambda \lambda о$ )
Polygonum icaricum

Satureia parnassica athoa
Saxifraga juniperifolia sancta
Saxifraga sempervivum
Scorzonera cana
Sedum cepaea
Sedum grisebachii grisebachii
Sedum reflexum
Sideritis perfoliata athoa
Silene compacta
Silene flavescens thessalonica
Silene multicaulis genistifolia
Silene orphanidis
Silene vulgaris prostrata
Sorbus aria cretica（Крптікウ் aonпиоборбі́á）
Sorbus aucuparia aucuparia（Aypıooopßıá）
Sorbus chamaemespilus（Xaцаıцદ்ळпı入оৎ）
Sorbus umbellata（Мıкрர் aбпүоборঠ̄ıá）
Stachvs leucoglossa
Taxus baccata（＇ITaHoc）
Tephroseris integrifolia aucheri
Teucrium divaricatum athoum
Thymus praecox iankae
Thymus thracicus
Vaccinium mvitillus（Baккivıo o $\mu$ úpti\גос）
Veronica barrelieri
Valeriana alliariifolia
Veronica chamaedrys chamaedrys
Veronica officinalis
Vicia cracca stenophylla
Viola arvensis
Viola athois
Viola delphinantha
Viola orphanidis orphanidisViola reichenbachianaViola sieheana
Eiōn Onגaотıкஸ்v
Canis lupus（ $\Lambda$ úkoc）
Sus scrofa（Aypioyoúpouvo）
Mustela nivalis
Felis silvestris
Capreolus capreolus
Eiön AupıBi $\omega v$
Bombina variegata
Triturus karelinii
Triturus alpestris
Eiōn عのпยтஸ்y
Podarcis muralis
Lacerta viridis
Testudo graeca
Testudo hermanni
Eiön opvıOonaviōas
Accipiter brevipes（ （aîvi）
Accipiter nisus nisus（Tбıx入оүध́рако）
Apus melba melba（ $\Sigma$ кєтıapvác）
Aquila chrysaetos chrysaetos（Хрибaعтóc）
Bubo bubo bubo（Mпоúqoc）
Buteo buteo buteo（Гعракiva）
Caprimulgus europaeus（Гuס̄оßuそ̧áxтpa）
Ciconia nigra（Maupone入apyóc）
Circaetus gallicus（Ф।ठ̄aहтóc）
Columba livia livia（Aүpıппєріотвро）
Corvus corax corax（Кỏpaкас）
Delichon urbica urbica（ $\Sigma$ nıroxe入ióovo）
Emberiza cirlus（ $\Sigma$ ip $\lambda$ otorix $\lambda$ ovo）
Erithacus rubecula rubecula（Koккıvoגai $\eta$ Пs）
Falco eleonorae（Mauponعтрітпऽ）
Fringilla coelebs coelebs（ $\sum$ nivos）
Garrulus glandarius atricapillus（Kiбซa $\mu$ аupoкغ่甲a入n）
Hieraaetus fasciatus（ $\sum n ı$ व̧عтóc）
Lullula arborea arborea（ $\triangle \varepsilon v \tau \rho о \sigma т a \rho \eta \dot{\theta} \theta \rho a)$
Phalacrocorax aristotelis（Өa入аббоко́ракац）Tetrao urogallus（Aypiokoupvóc）

## 





##  92／43／EOK

1150 Пара́ктієৎ，$\lambda ı \mu v o$ Өá $\lambda a \sigma \sigma \varepsilon \varsigma$－OXI


1410 Мєбоүعıaкá a入iп६ঠठа（Juncetalia maritimi）－OXI



2190 Үүре́ऽ коІ入óтクтєऽ $\mu \varepsilon т а ६ u ̉ ~ T \omega v ~ Ө i v \omega ่ v ~-~ O X I ~$
2220 Oiveऽ $\mu \varepsilon$ Euphorbia terracina－OXI






92A0 $\Sigma$ тоغ́ऽ $\mu \varepsilon$ Salix alba kaı Populus alba－OXI



## 




 m．








 ६u入ока́pßouva．

















### 8.5.3.1 Xарактп́paц tnc ह́ктаänc tou ह́pvou









## 




## 

## 















 каı тоv п入クӨибцо́ đє акєраıо́тŋта．

## 



## 

## 







## 8．6．1．1 Y甲Iणтánevec xpriaeic vns





 uпа́pXouv тонвіс，параүшүıко̇тптая，

## 










 Халкіб̈ккп̆с．

## 








## 

 'Opous عival hovaxoi.



 Moví.

### 8.6.2.2 Пооотатеио́иеvа тип́иата



 10-1965.

## 


 ĖXouv.

### 8.6.3 Поגтпотнки் кגпроvopıá














### 8.6.3.1 Apxaiolovikoí xஸ́pol- ̧áves








## 


 714/B/29-10-1965.



## 8.7. Коıvตvıкó каı оıкоvонıко́ перıßáגМоv

### 8.7.1 Апиоүрафикп் ката́отаоп!



 Ayiou 'Opous.



 tı̧ I İpદ́¢, Movéc.















### 8.7.2 Параүшүıк门่ ठ̄ı́рӨрюоŋ



### 8.7.2.1 Параvшуाкоі тонві'

$\Delta \varepsilon v$ unápxouv параүшүıкоі тонвіс,

## 

$\Delta \varepsilon v$ uпápXouv параүшүікоі тонвія.

## 



## 



## 

### 8.8.1 Үпоборц்я нєтафорஸ்v








 каı oı пहріпатоı عivaı бuxvó $\mu \varepsilon ̇ \sigma o ~ \mu \varepsilon т а 甲 о р a ́ s, ~$

## 




 $\Delta \varepsilon v$ unápxouv ठikтua $\Delta E H$.





## 



## 





## 




## 





## 8．10．Атноочааııко́ перıßáлАоv－Поıо́тпта aย́ра






| Характпрıоцо்я <br>  púnavoñs | $\begin{gathered} \text { CO } \\ (8 \omega \rho \varepsilon \varsigma, \text { тı} \mu \varepsilon, \\ \left.\mathrm{mg} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} \text { Kanvós } \\ (24 \omega \rho \varepsilon \varsigma \\ \left.T \\| \varepsilon \varepsilon_{,} \mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} \mathrm{SO}_{2} \\ (24 \omega \rho \varepsilon \varsigma \\ \mathrm{T} \mu \dot{\varepsilon} \mathrm{c}, \\ \left.\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ |  | $\begin{gathered} \mathrm{NO}_{2} \\ (\omega \text { Iai } \\ \left.\mathrm{T} \mu \mathrm{\varepsilon} \varsigma, \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Xauп入à | $<15$ | ＜250 | ＜200 | ＜180 | ＜200 |
| Мغ̇тpıa | $>15 \leq 20$ | $>250 \leq 275$ | $>200 \leq 250$ | $>180 \leq 250$ | $>200 \leq 350$ |
| Y $\psi$ П $\lambda$ ả | $>20 \leq 25$ | $>275 \leq 300$ | $>250 \leq 300$ | $>250 \leq 360$ | $>350 \leq 500$ |
| По入ủ uщๆ入á | ＞25 | ＞300 | ＞300 | ＞360 | ＞500 |

## 







## 




## 



## 8．11．Акочотıкó перıßá\Аоv каı סоvฑ்бвıৎ

## 8．11．1 Ппүモ̇с， Oopúßou $^{\text {® }}$


 латрвитікє்，к．д．п．）．


##  перıßá入入оитоৎ

 піvака тои ápӨpou 2 пар． 5 тои П．$\Delta .1180 / 81$（ФЕК－293 А＇）．


| a／a | Пєрıохй（Xpウ̇णп үп¢） | Avต்тато ópıo Oopúßou $\sigma \varepsilon$ dBA |
| :---: | :---: | :---: |
| 1 |  | 70 |
| 2 |  Bıоппхаvіко́ | 65 |
| 3 |  <br>  | 55 |
| 4 |  | 50 |
| 5 |  | 45 |

## 


 Өо́pußo．

## 8．12．НАєктронаүvптıкá пєठía




## 



##  unóßaӨpou



### 8.13. 'Үठата








## 



 $\lambda u ́ \mu$ aтa.

## 




## 




## 




### 8.13.2 Eпıраvعıaкá úठ̄aта








## 8．13．2．1 ПЕрІура甲！́ иঠооура甲ікой ঠІктйои




## 


－Yбெعuan
－Apठ桘




## 



## 

 otŋv katavà $\omega \omega$ on $\mu$ дóvo．

$\Delta \varepsilon v$ unápxモı $\eta$ пароưia ßıounxavikக்v pún $\omega v$


## 8．13．3 Yпóүघıa úठata









－Aпó tпv пतе $\frac{1}{}$ ．

## 

 перıхй่ร．









## 


－Yס́рєữ
－＇Apঠ̄عuon

## 



## 

 катаvà̀ $\omega$ ō $\mu$ óvo．
$\Delta \varepsilon v$ uпápxદı púnavon anó проїóvта фитопроотабias，
$\Delta \varepsilon v$ unápXeı $\eta$ пapoưia ßıounXavıкढ̉v pún $\omega v$


##   катабтрочผ́v





ү．Eпıßapпиغ́va arióß入пта


















## 








## 






## 

 норфолоүіка́ уєш৯оүіка́ характпрібтіка́ тпя.

 актіvOßо入iઘ,.


## 9．EKTIMH乏H KAI AEIO＾OГHEH ПEPIBANAONTIK $\Omega$ ЕПIПTREERN

## 9．1．МعӨобоАоүıкє́ц апаıтர்бєıऽ

















 घпıாтஸ்ఠع $\omega$ v．





 оиర̈દ்тદро૬．
ii．ПıӨavótпта ع $\mu$ 甲ávions，





 unápxouv．









 ＇Epyou：
－Фáon Kатабквuņ̃，
－Фáon＾عाтoupyiac



##  характпріотіка́

## 





##  




## 

## 9．2．3．1 Фáoп катабкеит́s

 ако入ои்Ө $\omega$ ¢：


| Eiöoc púnou | $\mathbf{C O}_{\mathbf{2}}$ |
| :--- | :---: |
| $\mathbf{g} / \mathbf{H P}-\mathrm{hr}$ | 587,3 |




|  | $\mathrm{CO}_{2}$ |  |
| :---: | :---: | :---: |
|  | $\mathrm{Kg} / \mathrm{d}$ | tn／y |
| $\begin{aligned} & \text { Eкока甲е́ac 200kW } \\ & (286.5 \mathrm{HP}) \end{aligned}$ | 1346.1 | 40 |
| Фортпүо்－यпетоиів̇ра 100 kw （ 134.5 HP ） | 632 | 19 |
| Avatpenóuعvo 120 kw （ 161 HP ） | 756 | 23 |

 غ́pyov．

## 9．2．3．2 Фáon 入हıтоupvias


 каı $\theta \varepsilon \omega$ рои́vтаı а $\mu \varepsilon \lambda \eta т \varepsilon ่ \varepsilon \varsigma, ~$




|  | $76 \mathrm{kWh} / \eta \mu \varepsilon \dot{\varepsilon} \mathrm{pa}$ |
| :---: | :---: |
|  плєктропараүшүп் | $0.855 \mathrm{~kg} / \mathrm{kWh}$ |
|  | $65 \mathrm{~kg} / \mathrm{d}=0.065 \mathrm{tn} / \mathrm{d}$ ウ $23.7 \mathrm{tn} / \mathrm{y}$ |

## 9．3．Епıптต்бвıс бта норчолоүıка́ каı топוоДоүıка́ характпрıотıка́

## 9．3．1 Ектіцпоך каı аद̆ıдо́үпоך








## 9．3．2 TопıХоүıке̇я $\mu \varepsilon т а ß о \lambda \varepsilon ́ с, ~$




## 



## 







 Movíc).

## 









##  характпріотіка́

## 

## 





 $\mu$ мкра́ $\mu \varepsilon ү \varepsilon ̇ \theta \eta$.

## 




## 



## 






## 




## 




## 




## 9.5. Епıптஸ்бعıऽ ото чибıкó перıßádMov

## 










## 

## X $\lambda \omega$ рібд






## Пavióa





 $\mu \varepsilon т а к і v \eta ் \sigma \varepsilon \omega V ~ T \omega V ~ \zeta \omega ं \omega V$


## 

## Eiön Bláotnons




## Eiōn $\theta n \lambda a \sigma T ı k \dot{\omega} v$



 вүката́otaons.







## Eiön Aupißıa каı Eiön عoпधтळ̈v







## 










## Enumтஸ்oॄıc tou ह́pyou otnv nepıoxń Natura

Мع тПV катабкєиท่ тоu غ́pyou:
















## 




## 



## 



## 



## 

## 
















 т $\omega \mathrm{V}$ то́п $\omega \mathrm{V}$ Нотокіас, клп.

## 

$\Delta \varepsilon v$ uпápxモı єпદ̇رß

## 

## 

## 



о́пшऽ проаvафє́рӨПкє（то по入u่ $100 \mathrm{~m}^{2}$ ）．

## 9．6．1．2 Eпıாтஸ்бع।s




 uyıEIvク̇c．
 тпи проотабіа тои періßа̀ $\lambda$ 人оитоц，

## 





## 




## 9．6．2．2 பıáaпаनп поһعобоиикои́ ıтти́







 перıохウ்．

## 9．6．3 ПоАıпотикฑ่ кגпроvоииа́







## 9．6．3．1 Eпиாтஸ்øع।s



 вүката́бтабŋ．






## 

$\Delta \varepsilon v$ uпáp



## 9．6．3．3 Eidikí EKTiunon



## 

## 




## 





## 9．7．3 Ożozıç हрүaơias




## 



## 9．7．5 Поьо́ттта そюท่я




## 


 ouvtńpクõ va عпعктаӨвi ото $\mu \varepsilon \dot{\lambda} \lambda$ 人ov．

## 

## 9．8．1 Eпиптஸ்бعıя









## 9．8．2 Enápкєıa










## 

## 





 каı 入оıпn̆ऽ ठраотпріо́тптая．

## 





## 

## 9．10．1 Enurrí்oェィৎ






 $100 \mathrm{mg} / \mathrm{m}^{3}$ ，пои каӨоріद६таı anó то d́pӨро 2 парау．ठ тои П．$\Delta$ ．1180／81（ФЕК 293／A／6－10－1981）．



 T $\omega \vee ~ \mu \eta \chi a v \eta \mu a ́ T \omega \vee ~ a u t \dot{v}$ ．





 ठєка́ठєऽ ppm）．























 ßıо入оүıкク่ऽ єпє६६рүабіас，


## 



 autoкіvクтшv．

## 



## 

## 




 293／A／6－10－1981）．


 גहाтоupyia touद，
 aпóoтaøך











 ठivetaı anó tnv عछiowoŋ：
$\mathrm{L}_{\mathrm{P}}=\mathrm{L}_{\mathrm{N}}-10 \log _{10}\left(4 \cdot \pi \cdot \mathrm{r}^{2}\right)$
ónou：


 غ̇хочнع $\mu \varepsilon i \omega \sigma \eta$ auтоú ката́ $6 \mathrm{~dB}(\mathrm{~A})$ ．

## 9．11．2 Eпıாтஸ்テェıя




## 

## 9．12．1 Enurim்णョic




## 9．12．2 ПıӨavóттта

$\Delta \varepsilon v$ uпápXouv $\eta \lambda \varepsilon к т \rho о \mu a ү v \eta т і к а ́ ~ п \varepsilon ঠ i ́ a . ~$

## 9．13．Епıптஸ்бвıৎ бта и́סата

## 







## 

## 9．13．2．1 Епıттш்бधıс ото ঠіктио




 пара入iac．




## 

 катабкєиท̆ऽ（ $\mu \eta$ баиіvદ่ц，побо́тПтєৎ）．

## 9．13．2．3 Eктіипоп ивтаßо入а́v







## 


 á $\mu \varepsilon \sigma a$ каı $\mu \varepsilon \lambda$ 入оvтıкà．

## 







## 

## Фáon karaokeuńs


 вivaı по入ú $\mu$ ıкра́（ 2 － 2,5 нغ்тра）．

## 







 ठıаррош́v．



## 





## 




## 9．13．3．4 Eктіuпоп нहтаßо入áv

 $\lambda u \mu a ́ t \omega v ~ \sigma \varepsilon ~ a u t a ́ . ~$

## 





##   Ао́үш атихпна́тшv каı катабтрофа́v

## Фáon катабкеun่s





## $\Phi$ áon $\lambda$ हıाтoupvias















## 



2.

3. KOKKINH ENAEIEH वvтıoтoıxEi oع APNHTIKH EПIחTT $\Omega \Sigma H$


| ФAEH EPROY | ПEPIBAMAONTIKO ETOIXEIO | enimigeeis |  |  |  | BAPYTHTA |  |  | AIAPKEIA |  | ANAETPE世IMH |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{2}{2}$ | W్H | 충 | ¢ | 亭 |  | $\frac{\text { }}{\text { 폳 }}$ | $\begin{aligned} & \sum_{2}^{T} \\ & \frac{0}{0} \\ & \hline \end{aligned}$ |  | 药 | W 立 宸 | $\frac{1}{2}$ |
|  |  |  | $\checkmark$ |  |  | $\sqrt{ }$ |  |  |  | $\sqrt{ }$ | $\checkmark$ |  |  |
|  | Морфоגоүıка́ каı топо入оүıка характпрıөтıка่ |  | $\sqrt{ }$ |  |  |  | $\sqrt{ }$ |  |  | $\sqrt{ }$ |  |  | $\sqrt{ }$ |
|  | Гєш入оүіка́，тєктоуіка́ каı єбачодоүıкд характпрітттка |  |  | $\sqrt{ }$ |  |  |  |  |  |  |  |  |  |
|  | Фuбıк̇ перıßà入入ov |  | $\checkmark$ |  |  |  | $\sqrt{ }$ |  |  | $\checkmark$ |  |  | $\checkmark$ |
|  |  |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  |  | $\checkmark$ |  |  |  |
|  | TEXVIKદ̇ऽ unoठo |  | $\checkmark$ |  |  |  |  | $\checkmark$ |  | $\checkmark$ |  |  | $\checkmark$ |
|  |  |  |  | $\sqrt{ }$ |  |  |  |  |  |  |  |  |  |
|  | Поıо́тŋта тои аغ́pa | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  | $\sqrt{ }$ |  |
|  |  | $\checkmark$ |  |  |  |  | $\checkmark$ |  |  | $\checkmark$ |  | $\checkmark$ |  |
|  | Н入єкроиаүvๆтіка́ пеठia |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  | ＇Yбата |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  | $\sqrt{ }$ |  |

[^1]EPTO ：«EPTA ETEEEPTAITAL KAI $\triangle I A O E \Sigma H L ~ A \Sigma T I K S N ~ A ~ Y M A T S N ~ I T O ~ A T I O N ~ O P O \Sigma " ~$

| ФAEH EPROY | ПEPIBAMAONTIKO ETOIXEIO | emintazeis |  |  | BAPYTHTA |  |  |  | AIAPKEIA |  | ANAETPE ${ }^{\text {I }}$ IMH |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{\mathrm{z}}{2}$ | W్凶్凶入 | 등 |  | $\frac{\text { S }}{\text { L }}$ |  |  | $\sum_{\text {E }}^{\text {² }}$ | 들 듬 员 | 밍 |  | K |
|  |  |  | $\sqrt{ }$ |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ |  |
|  | Мор甲олоүıка́ каı топо入оүіка́ характпрıттіка́ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  характпріотіка́ |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  |  |
|  |  | $\sqrt{ }$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  |  |
|  |  | $\sqrt{ }$ |  |  | $\sqrt{ }$ |  |  |  | $\checkmark$ |  |  |  |  |
|  |  |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  |  |
|  | ПоוótᄁTа тои аह́pa | $\checkmark$ |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  | $\checkmark$ |
|  |  | $\sqrt{ }$ |  |  |  |  | $\checkmark$ |  | $\checkmark$ |  |  |  | $\checkmark$ |
|  | Н入екроиаүvๆтіка̇ пеठia |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |
|  | ＇Yסата | $\sqrt{ }$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  |  |
|  |  | $\sqrt{ }$ |  |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  | $\checkmark$ |  |

## 

## 

## 



 ото П．$\Delta .1180 / 81$（ФЕК 293／А／81）каı عІठІкк்тعра то àpӨро 2 autoú：


 тои перıßà Моитос．








## 

## 

 ако்入ouӨa：

 єкбкафш்v．


 періß⿺辶入入лоитос，

 та проß入єпо́ $\mu \varepsilon v a ~ о т і қ: ~$
－YA A5／2375／78（ФЕК 689／B／78）
－YA 56206／1613／86（ФЕK 570B／86）
－YA 69001／1921／88（ФЕK 751／B／88）
－YA 765／91（ФЕК 81／B／91）








 (EK 801ß/74), KYA 5673/400/1997, KYA 145116/2011 каӨ ̈́ц каІ ото П. $\Delta .1180 / 81$.


 apxŋ́s.















 праүнатопоппөві.




 тПऽ бко́vŋऽ:







## Фáon \eitoupvias
















##  клıнатıка́ каı ßıокДıнатıка́ характпрıотıка́

## Фáon катабквuís

 ०入ок入ṅpшon тоu غ́pyou．

## هáon $\lambda$ हitoupvias







##  

## Фáon катабкहuís








## Фáon deitoupvias









##  

## Фáon катабкеиர́s

























|  |  <br>  |
| :---: | :---: |
|  Екбка甲ウ่ऽ |  <br>  <br>  |

## Фáon \eitoupvias




##  фибוкó перıßá入入ov

## фáбп катабкеии́s





## $\beta \lambda a ́ ß \eta ~ \sigma \varepsilon ~ a u t i n ̀ v ~$











 aחó Tఇv $\mu \varepsilon \lambda \varepsilon ̇ t \eta$.

 паviठ̄a Өa $\mu п о р о и ́ \sigma \varepsilon ~ v a ~ п а ү ı ठ ̄ \varepsilon u т \varepsilon i . ~$.



 OTףV KYA 71560/3053, ФEK 665/B/85.
 Фáon \eitoupvias



##  



## Фáon катабкعuís



 бкиро́ঠєца.










 тои غ́pyou．






## Фáon $\lambda$ हitoupvias




##  

## Фáon катабкеuи́s



 перıßà̀入lov モivaı：









## Фáon גहוтoupvias




##  теХขІкє́ц ипобонє́я

## фáon катабкहu＇̃́s














| Katackzun่ unozouف்v |  |
| :---: | :---: |

## Фáon 入हitoupvias




##  

## Фáon катабкहий́s



 браотпріттптая

## Фáon \eıtoupvias




##  отпи поі́тпта тои аغ́ра

## Фáon катабквиѓs









 $\mathrm{mg} / \mathrm{m}^{3}$ ，пои каӨорі६६таı апо́ то àpӨро 2 параү．ठ́ тои П．$\Delta$ ．1180／81（ФЕК 293／А／6－10－1981）．

Атرоофаıрıкй рúпavaŋ






Фáon deltoupvias










 ßıо入оүікп̆ऽ єпє६६рүаवiac，


##  

## Фáのп катабкеиர்ऽ



 проßגєпо́нєva aпó тŋv KYA 37393／2028／2003（ФЕК 1418／B／1－10－2003）«Мغ்тра каı ópoı үıа


 та проßגєпо́нєva aпо́ то ПА 1180／1981（ФЕК 293／A／81）．
 17252／1992（ФЕК 395B／29－06－1992）ópıa Өopúßou．
－Aпауорعúغтаı $\eta$ пара $\quad$ оv













| Өópußos，anó тŋv кivŋon охпиáтшv каІ та <br>  |  <br>  <br>  <br>  <br>  <br>  <br>  <br>  |
| :---: | :---: |

## Фáon גEIToupvias





##  

$\Delta \varepsilon v$ uпápXouv $\eta \lambda \varepsilon к т р о \mu а ү v \eta т ו к а ́ ~ п \varepsilon ঠ i a . ~$

##  ப́бата

## Фáon катаокहuŕs







 ठıарров́ऽ，




## هáon 入eitoupvias





## 10．14．Мغ́тра апоката́бтабпя каı аутинетஸ்пıопя  

## Фáon катаокеиŕs





## Фáon へeıroupvias







## 10．15．АпотєАвонатıко́тпта нє́трюv

## 

Ta $\mu$ غ́тpa пapouđiáそ̧vтаı đє $\mu$ ор甲ท́ пivaka．
Пivaкас 10．1．Мغ́тра тЕХvıкळ̈v Характпрюбтıкळ゙v．
Фáon катабкеuris

| Драотпрıо்тпта－паре́иßабп |  |
| :---: | :---: |
| Өópußoc anó тqv kivnon <br>  катабкєиаотікд̇ غ̇pүа |  <br>  |
|  |  <br>  |
|  |  <br>  |
| Kataok\＆uñ opuypàtwv <br>  |  <br>  <br>  |
|  єкбкафウ่я |  |


| Фu大iкó перıß̇̀MOV |  <br>  <br>  <br>  <br>  <br>  <br>  |
| :---: | :---: |

## Фáon \eוtoupvias

| पрабтпріо́тпта－ парธ́ $\beta$ абп |  |
| :---: | :---: |
| Xprion yns | Н перıохウ் тои घ́pyou каı то окко்пбठัо ото onoio $\theta$ а <br>  <br>  <br>  |
|  ouvtripnons |  <br>  періохйя． |
| Еүкатáotaon غ̇pyou |  <br>  <br>  ठєvб̄рочи́тєuō |
|  |  <br>  <br>  |
| Граниє́є，цєтачора́я， <br>  |  <br>  |

## Ефıкто́тпта це்тр $\omega \mathbf{y}$



 TOU．
 tov unعúӨuvo tņ Movíc．



## 



 TOU．


Фáon катабквuर́s

| Драотпрıо́тпта－паре́цßaбך |  |
| :---: | :---: |
| Өópußos，anó тпv кivŋon oxпuát $\omega \mathrm{V}$ каІ тa катабкєиаотіка́ ह́pүа |  <br>  <br>  <br>  перıорıбцஸ்v Өopúßou． |
| Атноб¢аıрıкก่ púnavon |  <br>  <br>  <br>  <br>  <br>  |
|  |  <br>  <br>  <br>  oтaӨuou่． |
|  |  <br>  <br>  |
|  єкбка甲ท்я |  |
| Фưıко́ перıßà入入ov |  <br>  <br>  <br>  <br>  <br>  <br>  عпıто́пıo غ่ $\lambda \varepsilon ү \chi$ ． |
| ＇Y ${ }^{\text {¢ }}$ |  <br>  <br>  |

Фáon $\lambda$ हitoupvias

| Араотпріоттта－ парغ́цßaøп |  |
| :---: | :---: |
| Xpion yns |  <br>  <br>  KaI KoIvшvikغ̧̇ $\omega థ \dot{\lambda} \lambda \varepsilon \varepsilon \varepsilon$ ， |
| Oठоі проопغ்えаonऽ－ ouvtripnons |  <br>  пยріохйs． |
| Eүкато̇oraon غ̇pyou |  <br>  <br>  <br>  |
|  |  <br>  <br>  |
| Граниغ்̧ нєтачора́я П入єктрıкп்̧ عvغ̇pyモă̧ |  <br>  |



 $\mu \varepsilon i \omega \sigma \eta$ тПऽ عпıßápuvoņ т $\quad$ чи



 145116／2011

## 


（Пఇүウं：aпóчaon 171914 ФEK 3072／B 3－11－13）

 anó трітоия．






 12，пар． 2 тпऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каı $\beta$ ）ота عпикіvб̈uva aпóß入пта
 287 B＇／07）．







## B．Фáon катабкеuís




 Кגпроvouıá̧»（A＇153）ón





























 бтغүaбuغ̇vouc Xढ̈pouc.













 тоиа










## А

 та ако́入оиөа:




 ع入áxıтo ठuvató



## 

































## Oópußos - סovṅozis




 Кат' દ入áxıотоv va тпроúvтаı та ако́̀оuӨa:





































## Фáon \Eitoupvías

















 проßлпиатт $\omega v$ ．
 غ̇үкаıрך каІ тактıкウ் апокоцıठ̈ท் тоиц．








¿uүкєкрıиغ́va va үiveтal：




 тПऽ عүката́бтаоךя





 avtippúnavons．













## Yypá Aпóß入nto







 үוa Tı, aváyк६¢ тоu غ̇pyou.























 тПऽ періохウ่я


 ( $B^{\prime}$ 1909) каı ото N. 4042/2012 (A' 24), о́n $\omega \varsigma ~ \varepsilon к а ́ \sigma т о т \varepsilon ~ ı б x u ́ o u v . ~$





 єка́ототє ıбúvouv.



























 о́n $\omega \varsigma$ عка́ототє ІбXúouv.






$\Delta .3 .2$ Ta גúuata Өa oठ̄nүoúvtaı үıa ano入úfavon.





















## ミтереव่ Aпóß入nта




 （ФЕК 24／A＇／2012）．













 41624／2057／E103／10（ФЕК 1625 B＇）ónwఢ ıбxúouv．









 （ФEK $81 \mathrm{~A}^{\prime}$ ）．

 1312 B＇）ón $\omega$ ç ıбXúદા．
 13588／725／28．3．06（ФЕК 383 В＇），24944／1159／30．6．06（ФЕК 791 В＇），8668／2．3．07（ФЕК 287 B＇）каı









 10xủouv.
 oTףV KYA 114218/1997 (ФЕK 1016 B'/17-11-1997).






























 Eүкик入i $\omega$ v.





 Пєрıßà入入оитоऽ







## 

Фáon oxeסIaOuoú







 xpóvo．
 12，пар． 2 тпऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каı ß）ота घпıкіvठuva aпóß入пта
 $287 \mathrm{~B}^{\prime} / 07$ ）．







## 















































 врүабієс,


 тоua^ह่тعৎ.










## 

 та ако́入оиӨа：




 ह\áxıロто ठuvató



## Yypá kal oteped anóß入nta

































## Oópußos - סovṅǫıs


 ठ̄ıaтáदॄઘı, п६pi Өopúßou









 бІата́そॄıс ( $п \chi$ опєта́वиата клп.).




























## Фáon \eitoupvias





 фaivó $\mu \varepsilon v a$ п $\lambda п \mu \mu u \rho \omega ่ v ~$







## A $\varepsilon$ ṕa Aпóß $\lambda n$ по





 проß入пис́тшv.
 غ̇үкаıрク каІ тактькท่ апокоцıб̈ท் тоиц.








¿uүкєкрı॥غ̇va va үіveтal:




 тПऽ عүката́бтаoŋя，





 avtippúnavons．


 Eup $\omega$ паїкоu Koıvoßou入iou каı тоu इu









## Yypá Aпóß入nto

 праүнатопоьвітаı $\mu \varepsilon$ ßäon та ако̀入оuӨa：




 үוа тіৎ aváyке¢ тоu غ́pyou．























 тクऽ перıохウ்ऽ


 ( $B^{\prime}$ 1909) каı ото N. 4042/2012 (A' 24), о்п $\omega \varsigma ~ \varepsilon к а ் \sigma т о т \varepsilon ~ ı б х и ̆ o u v . ~$





 єка́ототє ІоXúouv.




































## 






















## ミтерعá Aпóß入nта




 （ФЕK 24／A＇／2012）．

 NoноӨعбіас，ЕІбıко́твра：










 41624/2057/E103/10 (ФЕК 1625 B') òn $\omega \varsigma$ Iбxúouv.









 (ФEK 81 A').

 1312 B') óп $\omega$ ¢ ıбхúعו.
 13588/725/28.3.06 (ФЕК 383 B' $^{\prime}$ ), 24944/1159/30.6.06 (ФЕК 791 B'), 8668/2.3.07 (ФЕK 287 B') ка।









 Ioxúouv.
 oाఇv KYA 114218/1997 (ФЕК 1016 B'/17-11-1997).


















 $\Delta / v \sigma \varepsilon \omega v$ T $\omega v$ бuvap $\langle\dot{\delta} \delta i \omega v$ Yпоupyघi $\omega v$ ．










 Еүкик入і $\omega$ v．





 Пєріßд́入лоитоя，




 o入ок入ńp $\omega$ on touc．

## Maúan 入eitoupvias










## 


EPTO ：«EPTA ETEEEPTAIIAL KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ \Sigma T O ~ A I T O N ~ O P O \Sigma » ~$

| ФAEH EPIOY | IEPIBAAAONTIKO ETOIXEIO | Enintaseis |  |  | BAPYTHTA |  |  |  | DIAPKEIA |  | ANAETPE世IMH |  |  | ПAPATHPHEEIE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{1}{2}$ | W్ | 증 | $\frac{\text { r }}{\frac{5}{5}}$ | $\frac{\Sigma}{\frac{L}{L}}$ |  |  | $\sum_{\text {2 }}^{\text {²，}}$ | 들 긍 首 | 중 |  | $\frac{4}{2}$ |  |
|  | Клıатіка́ каı ßıоклıиатіка́ характпріттка́ |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\sqrt{ }$ | $\checkmark$ |  |  |  <br>  апо́ та $\mu \eta \chi a v \grave{\mu} \mu$ ата катабкеuท̆s |
|  | Морфолоүіка̇ каı тополоүіка характпрıттка́ |  | $\checkmark$ |  |  |  | $\sqrt{ }$ |  |  | $\sqrt{ }$ |  |  | $\checkmark$ | Перıopizovtaı ol <br>  <br>  عкбка甲ळंv． |
|  |  єбачолоүіка́ характпріттіка́ |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |  |
|  | Фưıко́ перıßà入入ov |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |  |
|  |  перıßàlıov | $\checkmark$ |  |  | $\checkmark$ |  |  |  |  | $\sqrt{ }$ |  |  |  |  |
|  |  |  | $\checkmark$ |  |  |  |  | $\sqrt{ }$ |  | $\sqrt{ }$ |  |  | $\sqrt{ }$ | Yпоүعıопоinon тuxóv vह̇ $\omega \mathrm{V}$ ठ̈ктù $\omega \mathrm{V}$ ． ミuvtóuદữ Xpóvou катабквиท்с． |
|  |  <br>  |  |  | $\sqrt{ }$ |  |  |  |  |  |  |  |  |  |  |
|  | По๐о̇тทта тои аغ̇pa | $\checkmark$ |  |  |  | $\sqrt{ }$ |  |  |  | $\checkmark$ |  | $\sqrt{ }$ |  |  <br>  апо் та unхаvŋ̀uата катабквuท̆c．Eпıスоүท் <br>  |

EPTO：«EPTA ETEEEPTAエIA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S Z N ~ \Sigma T O ~ A I T O N ~ O P O \Sigma » ~$

| ФAEH EPROY | TEPIBAMAONTIKO ETOIXEIO | enintazeis |  |  | BAPYTHTA |  |  |  | AIAPKEIA |  | ANAETPE世IMH |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{3}{2}$ | W్甘 | 딩 | $\begin{aligned} & \frac{I}{5} \\ & \frac{1}{3} \\ & \hline \end{aligned}$ | $\frac{\Sigma}{\frac{L}{2}}$ |  |  |  | 플 근 읃 | 징 | $\begin{aligned} & \text { W } \\ & \text { y } \\ & \text { y } \\ & \text { 폴 } \end{aligned}$ | $\frac{2}{2}$ | RAPATHPHEEIE |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | нєтафора́s абраvஸ்v． $\Delta ı \beta p o x \dot{1} \sigma \omega \rho \dot{\omega} v$ $\chi \omega \mu a ́ t \omega v$ ка৷ $\mu \varepsilon т \dot{\omega} п \omega v$ єкбкафळ́v |
|  | Oópußos кaı ס̄оvท̇б㇒⿺𠃊 | $\sqrt{ }$ |  |  |  |  | $\checkmark$ |  |  | $\checkmark$ |  | $\sqrt{ }$ |  |  $\theta$ $\quad$ рúßou anó тa <br>  Tìpクon opi $\omega \mathrm{v}$ voноӨعбiac anó тоuя epyo入àßouc． |
|  | Н入екронаүvワтіка̇ пеठia |  |  | $\sqrt{ }$ |  |  |  |  |  |  |  |  |  |  |
|  | ＇Yסата |  |  | $\checkmark$ |  |  |  |  |  |  |  |  |  |  |
|  |  катаотрорє́я |  |  | $\sqrt{ }$ |  |  |  |  |  |  |  |  |  |  |
| W | Клıаттіка́ каı ßıокдıиатіка́ характпрıөтіка́ |  | $\checkmark$ |  |  |  |  | $\sqrt{ }$ | $\sqrt{ }$ |  |  | $\sqrt{ }$ |  | Перıорıбио́s т $\omega \mathrm{V}$ <br>  àvӨрака $\mu \varepsilon$ є甲ариоү门் биотй $\mu$ атоऽ аuтонатопоіпбпऽ ка। тактккウ்я бuvтற்pクons $\varepsilon \xi$ опतıбиоu் |
|  | Морфолоүіка́ ка। топофоүіка́ характпріттка் |  |  |  |  |  |  | $v$ | v |  |  |  |  | Мє та $\mu$ غ்ра пои протвіvоитаı пєрьоріदєта। ठраотіка́ $\eta$ оптікர் óx入поп． |

EPFO ：«EPГA EПE＝EPГASIAI KAI $\triangle I A G E \Sigma H \Sigma ~ A \Sigma T I K S N ~ A Y M A T S 2 N ~ \Sigma T O ~ A I T O N ~ O P O \Sigma » ~$

| ©AEH EPTOY | ПEPIBAAAONTIKO ETOIXEIO | EHIITMEEIE |  |  | BAPYTHTA |  |  |  | AIAPKEIA |  | ANAETPEYIMH |  |  | ПAPATHPHEEIE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ¿ | W | 8 | 2 | S | $\frac{\text { ² }}{\substack{\text { ² }}}$ |  | $\sum_{\text {E }}^{\text {I }}$ |  | $\stackrel{\text { He }}{6}$ | $\begin{aligned} & \text { W } \\ & \text { y } \\ & \text { I } \\ & \text { 포 } \end{aligned}$ | $\stackrel{y}{\Sigma}$ |  |
|  | Гєш入оүіка́，тєктоvıка́ каı єбачолоүіка́ характпріотіка́ |  |  | $\sqrt{ }$ |  |  |  |  |  |  |  |  |  |  |
|  |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  |  |  |
|  | AvӨрюпоүєvह̇¢，перıßà入入ov | $\sqrt{ }$ |  |  | $\checkmark$ |  |  |  | $\checkmark$ |  |  |  |  |  |
|  |  періßа́入入ov | $\sqrt{ }$ |  |  | $\sqrt{ }$ |  |  |  | $\checkmark$ |  |  |  |  |  |
|  | TEXVIкદ่ৎ unoठ̃ouéऽ |  |  | $\sqrt{ }$ |  |  |  |  |  |  |  |  |  |  |
|  | AvӨрんпоүЕvદic пıદ̇бદı̧， ото перıßà $\lambda$ 人оv | $\sqrt{ }$ |  |  | $\sqrt{ }$ |  |  |  | $\sqrt{ }$ |  |  |  |  |  |
|  | Поıотттта тоu aغ́pa | $\checkmark$ |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  | $\sqrt{ }$ |  |
|  | Єópußо¢，каı боvท̇бعı¢ | $\sqrt{ }$ |  |  |  |  | $\sqrt{ }$ |  | $\checkmark$ |  |  |  | $\sqrt{ }$ |  ПДєктропараүшүо́ ̧દủyoc． |
|  | Нлєкронаүvๆтіка̉ пєठї |  |  | $\sqrt{ }$ |  |  |  |  |  |  |  |  |  |  |
|  | ${ }^{\text {＇Yס́ata }}$ | $\sqrt{ }$ |  |  | $\sqrt{ }$ |  |  |  | $\checkmark$ |  |  |  |  |  |
|  | ¿оßара́ атихŋ்цата ท் катаотроре்я | $\sqrt{ }$ |  |  |  | $\sqrt{ }$ |  |  |  | $\sqrt{ }$ |  | $\checkmark$ |  |  |



Tク入．： 2310902321
Email：skarageo＠gmail．com
¿фраүіठа－Үпоүра甲ர่

KAPATESPIIOY A．EYETPATIOE ДIПАЛМ．ХНМIKOZ МНХANIKOE A．П．Ө． MEAOE T．E．E．APIOMOE MHTPתOY 87022



Orбaa入ovikn $14 / 041$ 20．28
CIA TON E AETXO
O EПIBムEחЛN TH MEAETH
Móvxos Tojnaくtótrs هабодо́үоऽ $\mu \varepsilon$ A＇$\beta$ ．

## EAETXOHKE

Өrooanoviкп ．．．．．．14／．04／．．20．2？
O TPOÏ乏TAMENOE
TMHMATOE $\triangle A E Q N$ \＆MEPIBAMNONTOE

$\triangle 000 \lambda 0 \gamma 0 ¢ \mu \varepsilon A^{\circ} \beta$


## 11．ПEPIBAMNONTIKH $\triangle I A X E I P I \Sigma H ~ K A I ~ П A P A K O \Lambda O Y O H \Sigma H ~$

## 

 Plan（EMP）zivaı：







 ava日 $\omega \omega$ คウ் $\sigma \varepsilon \omega \mathrm{v}$

入außávouv x ј́pa





## 

## 

## 




## 




## 

－Opia xஸ்pou EEA
－Opıa ктıpíwv Movís

## 




## 







## 

## 







|  | Пара́иетроऽ | Mếoōos |  oukloyis |  бегүца́тшу | Xpóvos mapapovís |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | E¢аүшүүй | Avaduuan |
| Eiooǒoç EछобоS | BOD-5 | MCAWW <br> Method <br> 405.1 | One $500-\mathrm{mL}$ amber gliss jar with TeffonTM-lined cap | Store at $4^{\circ} \mathrm{C}$ | 48 hours | 5 days |
|  | COD | MCAWW <br> Method <br> 410.4 | One $500-\mathrm{mL}$ amber glss jar with Teflon ${ }^{\text {TM }}$-lined cap | $\mathrm{H}_{2} \mathrm{SO}_{4}$; store at $4^{\circ} \mathrm{C}$ | NA | 28 days |
|  | TSS | MCAWW <br> Method <br> 160.2 | One $500-\mathrm{mL}$. polyethylene bottle | Store at $4^{\circ} \mathrm{C}$ | NA | 7 days |
|  | O\&G | MCAWW <br> Method <br> 413.2 | One 1-L amber glass jar with Teflon ${ }^{T \mathrm{TL}}$. lined cap | HCl ; store at $4^{\circ} \mathrm{C}$ | 28 days | 40 days |
|  | Chloride and sulfate | MCAWW <br> Method $300$ | One 250-mL. polyethylene bottle | Store at $4^{\circ} \mathrm{C}$ | NA | 28 days |
|  | Micobiolog. parameters |  | $120-\mathrm{mL}$. sterilized borosilicate glass bottle | Store at $4^{\circ} \mathrm{C}$ | 1 hr | 48 hours |
|  | DO | MCAWW <br> Method <br> 360.1 | One $250-\mathrm{mL}$. polyethylene bottle | Store at $4^{\circ} \mathrm{C}$ | NA | 24 hours |
|  | pH | MCAWW <br> Method <br> 150.1 | One $250-\mathrm{mL}$ polyethylene bottle | Store at $4^{\circ} \mathrm{C}$ | NA | 24 hours |




 घं $ఢ \circ \bar{\circ}$.

## 




| ПAPAMETPOE | EIEOAOE | E＝OLOE | INYE | $\triangle E I T M A$ | ПAPATHPHEEİ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Парохй |  | ＋ |  |  |  |
| $\mathrm{BOD}_{5}$ | \＃ | \＃ |  | M．H |  |
| COD | \＃ | \＃ |  | M．H |  |
| SS | \＃ | \＃ |  | M．H |  |
| А $\mu \mu \omega \mathrm{viaka}$ ，$\quad$ vitp $\omega \bar{\delta} \eta$ ， vitpıкá | \＃ | \＃ |  | M．H |  |
| TP | \＃ | \＃ |  | M．H |  |


\＃：Пєрıоठıка́（п．х．1－2／$\mu$ пиıаi $\omega \varsigma)$
＊：ミпораб̈ıка́


## 

－$\Omega \varsigma$ аv $\omega$ т $\dot{\rho} \rho \omega$ пivaкая

## 

| ПAPAMETPOE | £YTKENTPתEH |
| :---: | :---: |
| $\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{lt})$ | $<10$ |
| COD（mg／lt） | $<100$ |
| Al $\omega$ роú $\mu$ vva orepeà，SS（mg／lt） | $\leq 10$ |
| Oa\átita | $<2$ |

## 




## 



## 



## 


－Opıa ктірі $\omega$ v Movŋ́s

## 

－＇YпарЕп סıарроळ்v


## 11．2．4 Парако入ои்Өпоп Өори́ßou





## 



## 



## 

－＇Opıa xळ́pou EEN
－＇Opıa ктірі $\omega$ v Movn̄s

## 



## 11．2．5 Паракоגои̇Өпŋŋ ооцผ்v






 avti入nпाтés．








## 

 हvóтптє६：

## 




## 


KaӨapiouós－さuvtripnon




## 



## 

－KaӨnuepivá

## 

－Opia xल́pou EEA
－Opıa ктıрі $\omega$ v Movís

## 

## 11．3．1 Eıоаүшүท่



 aпоठ̄モ̇ктๆ．




## 


 перıохウ́ каı та vepà．










## 11．3．3 Evepyonoinon tou ミxeठiou




a．Аıакопй Н入єктрікои́ Pعúйтоऽ，





阝．Екठ̀ǹ $\lambda \omega$ ö пиркаүıás

－Aцغ்え̇દıa
－YпєрӨغ́puavoп


## ү．Епıßарпиغ̇va aпо́ß入пта









 $\varepsilon \varphi \varepsilon$ бікои่ є६оп入ıбノой．
















 апоß入йт $\omega \mathrm{v}$ ．




 Acquisition or SCADA）каı ठєıүнато入n $\psi i \varepsilon \varsigma-a v a \lambda u ́ \sigma \varepsilon ı \varsigma . ~$







## 11．3．4 Anevepyonoinol tou Exeठiou







##  

Nai Oxı










 о̄ıаборои́́ т $\omega \mathrm{V}$ аттоß入ர́т $\omega \mathrm{V}$


 к．$\lambda . \pi$ ．




Г．Мદ́бa єктákтou aváykŋŋs




－Пробס̃ıрıб












## 



## 



## 






##  апоß入ท่ттv



##  IIA THN EГKPI乏H חEPIBAMAONTIK

## 
















## 




## 12．2．1 Karáraछ̆ท غ̇pyou







 2703／B75－10－12）．
 1931B／27－12－2004）．
 3－2007）．

KatátaEn кaтá ミTAKOД 2008 ка। NACE Rev． 2
37.00 Епह६६pyaøia $\lambda u \mu a \dot{т} \omega v$

## 

## 




|  | ミuvterayuėveç E［EA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| D．0．0（apx＇̇） | 514998，94 | 4456136，88 |
| D．0．2 | 515019，86 | 4456092，08 |
|  | 515067，80 | 4456079，46 |

## 




|  | £uvtetayuėvec ETEA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| B． 4 （apx＇̇） | 515239，17 | 4455997，38 |
| B． 3 | 515194，60 | 4456020，69 |
| B． 2 | 515173，20 | 4456035，58 |
| B． 1 | 515142，20 | 4456036，88 |
|  | 515121，22 | 4456043，78 |

##  прооартпиаттшV




|  | ミuvtetayużvec，ET乏A 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| B． 0 | 515121，22 | 4456043，78 |
| C．0．2 | 515105，67 | 4456067，78 |
| C．0．2 | 515081，40 | 4456078，64 |
|  | 515067，80 | 4456079，46 |

## 




|  | ミuvtetaypėvec EГГA 87 |  |
| :---: | :---: | :---: |
|  | X | X |
| A． 3 （apx＇̇） | 515102，82 | 4456161，33 |
| A． 2 | 515095，63 | 4456127，28 |
| A． 1 | 515087，27 | 4456100，42 |
| A． 0 （Tغं入OS） | 515067，80 | 4456079，46 |

## 

 515070,11 каı $Y=4456065,34$.

## 




|  | इuvtetayuėvec ETEA 87 |  |
| :---: | :---: | :---: |
|  | X | Y |
| 'EEOŌOc, anó EE^ (C.1) | 515072,82 | 4456059,32 |
|  | 515065,51 | 4456034,16 |

### 12.2.3 Пврıүрачй 'Epyou

## Anoxeteutiká ठіктug








 oti Өá入aoóa



 m , va oठँпүoúvтaı $\sigma \varepsilon$ v














 ovouaotikn่s ıбхи̇os 0.90 kW















## Eyкatáotaon eneEzpyaoiac Auиát $\omega v$ (E.E.A.)













| ПAPAMETPOE |  | ПАРОYЕA ФAEH | ФAEH EXEAIAEMOY |
| :---: | :---: | :---: | :---: |
|  | кат. | 320,00 | 420,00 |
|  | $\mathrm{m}^{3} / \mathrm{d}$ | 48,00 | 63,00 |
|  акаӨд́pтшv | $\mathrm{m}^{3} / \mathrm{d}$ | 72,00 | 94,50 |
|  | $\mathrm{m}^{3} / \mathrm{h}$ | 3,00 | 3,94 |


|  | $\mathrm{m}^{3} / \mathrm{h}$ | 10，80 | 14，18 |
| :---: | :---: | :---: | :---: |
| Eıठıкó Punavtikó ¢0ptio $\mathrm{BOD}_{5}$ | gr／Kat／d | 60 | 60 |
| Eıठıкó Punavtıкó фортio TSS | gr／kat | 70 | 70 |
| Eıठıкó Punavtikó 甲ортio TN | gr／kar／d | 10 | 10 |
| Eıठıкó Punavtikó ¢ортio TP | gr／kar／d | 3 | 3 |
| Фортіо $\mathrm{BOD}_{5}$ бXहסıабนои่ | kg／d | 19，20 | 25，20 |
|  | kg／d | 22，40 | 29，40 |
| ФортіО TN охहঠıабнои่ | kg／d | 3，20 | 4，20 |
| Фортіо TP охहঠıабнои́ | kg／d | 0，96 | 1，26 |



Kんठัıкóç E．K．A．：19．08．05
Пєріпои 14 m³／غ่тоऽ





 غ̇xモા $\omega \varsigma$ ßаఠાкоú̧ đкопоúç：






 145116／2011．

##  







##  

## 

 ঠıата́そॄıя：





 KoIVOT！itwv．




 ópı $T \omega \vee 100 \mathrm{mg} / \mathrm{m}^{3}$ ，пои каӨоріदॄтаı aпо́ то d́рӨро 2 парáy．ठ＇тои П．$\Delta$ ．1180／1981




## 12．2．5．2 Yура́ апо́ßіпта







мaرßávovtaç uпóчף ：





 KYA）


| ПAPAMETPO | ェYTKENTP $\boldsymbol{\Omega} \mathbf{\Sigma H}$ |
| :--- | :---: |
| $\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{lt})$ | $\leq 10$ |
| COD $(\mathrm{mg} / \mathrm{lt})$ | $\leq 100$ |


|  | $\leq 10$ |
| :---: | :---: |
| O入ıка̇ ко入оßактпрıвıठัன |  |
| Єолоттпта | $<2$ |
| pH | 5，5－8，5 |


 Пара́ртпиа 1 тПऽ KYA 5673／400／97．

##  










 81／1051／EOK ка।


 $\mu$ оváס̄as．

##   Eпиாтळ்テecov

## 











12, пар. 2 тпऽ К.Y.А. Н.П. 50910/2727/03 (ФЕК 1909 В'/03) каı ß) бта घпıкivठ̄uva anóß入nta
 $287 B^{\prime} / 07$ ).







## 






























 xஸ்pouc.
























## 

 ако่入оиӨа：




 ع入áxıтто ठuvató



## Yypá каI णтepeá anóß入nta




















 апорріциатт v ．









## Oópußoc ōovṅoeıs




 ع久áxıotov va тпроúvтаı та aкó̀оuӨa：
































 koivn่s nouxias,





- Aпаүорعúधтаı $\eta$ vuxtepıvŋ் $\varepsilon p y a \sigma i a . ~$







### 12.2.7.3 Katá tn फáon ^eitoupviac:





 фaivó $\mu \varepsilon v a$ п плп $\mu u \rho \omega ่ v ~$










 проßлпиатт $\omega v$.
 غ̇үкаıр каІ тактıкウ่ апокоцıб̈ர் тоиц,








¿uүкєкрıщغ́va va үiveтal：




 тПऽ عүката́бта⿱㇒冋я









 ठиvaтர் єкпоипп் рúnढv．

## Yypá AnóßAnto

 праүцатопоıіітаı $\mu \varepsilon$ ßáō та ако́入оиӨа：





















 4042/2012 (A' 24), о́пமऽ عка́бтотع ıoxủouv.


















## ミteped́ Anóß nпta $^{\text {a }}$




 24/A72012).

 NоноӨعбіас, Еіб̈кко்тєра:










 41624／2057／E103／10（ФЕК 1625 B＇）ónw̧，IOXúouv．







 òn $\omega \varsigma$ เбXU̇ยા．



 13588／725／28．3．06（ФЕК 383 В＇），24944／1159／30．6．06（ФЕК 791 В＇），8668／2．3．07（ФЕК 287 B＇）ка।









 Ioxủouv．
 KYA 114218／1997（ФЕК 1016 B＇／17－11－1997）．






























 Еүкик入і $\omega v$.





 Пєрıßа́Моитоя






## 




 катабкєUш்v.

##   




## 13．ПPO乏OETA इTOIXEIA

## 


2．Yүıвıvoגоүікоі uпо入оүıбноі

## 13．2．ПроßАர́ната єкпо́vпбпऽ



## 14. ФЛТОГРАФІКН TЕКМНРI $\Omega \Sigma \mathrm{H}$





Хผ́poç катабкєиท்ৎ Е.E.^.

## 15. XAPTE - $\Sigma X E \Delta I A$

## 15.1.Хápтпя пробаvатоАıбиои́



15.4.ГвшАоүіко́я Хápтクя





### 15.1 Xápтп̧ пробаvaтоגıơой



## 




## 

## 

O



## 

 парако入ои́Өŋопя．

O

## 16. ПАРАРТНMA

0

O

### 16.1. YГIEIONOАOГIKOI YПОАОГIEMOI THЕ E.E.А.

0

IEPA KOINOTHTA
AГIOY OPOY乏
$A \Theta \Omega$

## ЕРГО：«EPГA EПEEEPTA乏IA乏 KAI $\operatorname{\Delta IAOE\Sigma H~A\Sigma TIK\Omega N~}$ AYMATRN $\Sigma T O$ AГION OPO乏»

| ANA $\triangle O X O \Sigma$ | EYГTPATIOE A．KАРАГЕОРГIOY <br> Пarráqך 82，T．K．54453，ӨEEEAへONIKH <br> TПА．：2310－902321 \＆ 6976801783 <br> Email：skarageo＠gmail．com |
| :---: | :---: |

## ПAPAPTHMA A： <br> YГIEIONOAOГIKOT YПOAOГI工MOI EГКАTAЕTAEHE EПEEEPTAEIAE AYMATRN I．M．三ENOФRNTOE

## חEPIEXOMENA

1．EİAT $\Omega$ RH ..... 2
2．ПAPAMETPOI इXEAIA乏MOY EE ..... 2
2.1 Парохघ́，каı Фортіа＾uиáтшv ..... 2
2.2 Поі́тпта Екроウ́я ..... 2
2.3 ¿uvoптікก் Пєрічрачи́ EEへ ..... 3
3．$\triangle I A \Sigma T A \Sigma I O \wedge O \Gamma H \Sigma H ~ M O N A \triangle \Omega N$ ..... 4
 ..... 4
 ..... 4
 ..... 5
 ..... 5
 ..... 6
3．3．1 Гєvıка́ ..... 6
 ..... 7
 ..... 8
3．4．1 Eıбवушү＇̆－перıура甲ர் ..... 8
 ..... 9
3．4．3 Дıаотабіодо́үпоп－Үподоүıбиоі ..... 13
3.5 ธIú入ıロワ ..... 14
3．5．1 Eıбаүшүण் ..... 14
 ..... 14
3．6 Aпо入úuavon． ..... 15
3．6．1 Eıбаушүウ் ..... 15
 ..... 16
 ..... 18

## 1．EIEAГRГН

 İрác，Movウ̇ऽ ミєvo甲óvтоऽ．

## 2．ПAPAMETPOL EXEALAEMOY EEA

## 2.1 ПароХદ̧̧́ каı Фортіа Аицáтаレ

| ПAPAMETPO乏 |  | ПAPOYミA ФAミH | ФAइH ミXEAIAEMOY |
| :---: | :---: | :---: | :---: |
|  | кат． | 320，00 | 420，00 |
|  | $\mathrm{m}^{3} / \mathrm{d}$ | 48，00 | 63，00 |
|  | $\mathrm{m}^{3} / \mathrm{d}$ | 72，00 | 94，50 |
|  | $\mathrm{m}^{3} / \mathrm{h}$ | 3，00 | 3，94 |
| Парохض் аххиท்¢ $\mathrm{Q}_{p}$ | $\mathrm{m}^{3} / \mathrm{h}$ | 10，80 | 14，18 |
| Eıర̆ıкȯ Punavtıkó ¢ортio BOD ${ }_{\text {s }}$ | $\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$ | 60 | 60 |
| Eıठıко̇ Punavtıк⿺尢丶 ¢ортіо TSS | $\mathrm{gr} / \mathrm{KOT}$ | 70 | 70 |
| Eıठ̈ıкó Punavtikó ¢ортio TN | gr／kat／d | 10 | 10 |
| Eıठ̈ıкȯ Puпavtikȯ ¢ортio TP | gr／kat／d | 3 | 3 |
|  | kg／d | 19，20 | 25，20 |
|  | kg／d | 22，40 | 29，40 |
|  | kg／d | 3，20 | 4，20 |
|  | kg／d | 0，96 | 1，26 |

## 2.2 Поо́ттта Eкроர́я









| ПAPAMETPO乏 |  | OPIA |  |
| :---: | :---: | :---: | :---: |
| Oגıко́ $\mathrm{BOD}_{5}$ | $\mathrm{mg} / \mathrm{lt}$ | $\leq$ | 10＊ |
|  | $\mathrm{mg} / \mathrm{lt}$ | $\leq$ | $10^{*}$ |
| О入ıко́ á̧んто（TN） | $\mathrm{mg} / \mathrm{lt}$ | $\leq$ | 45 |



| ПAPAMETPOE |  | OPIA |
| :---: | :---: | :---: |
| Eschericia coli（E．coli） | EC／100ml | $\leq$ |
|  |  | $50^{* *}$ |




## 

 оріदятаı отоv Пivaка 2 тП̧ КYА 145．116／2011．











## 3. AIAETAEIOAOLHEH MONAARN

##  (Аицátшv I. Movís)













## 





$3 \times[(100 \times 225) /(1000 \times 24)] \times 1.2=3.38 \mathrm{~m}^{3} / \mathrm{h} \dot{\mathrm{n}} 0.94 \mathrm{I} / \mathrm{s}$




$V=0.9 \cdot \frac{Q_{p m}}{z}$
onou :
$\mathrm{v}=$ uypóc óvkoc or $^{\mathrm{m}}$
Qpm = парохй, סع $1 / 5$


$V=0.9 \cdot \frac{0.94}{6}=0.141 \mathrm{~m} \quad 3$


##  прогартпиа́тши







То avt







## 





$3 \times[(50 \times 225) /(1000 \times 24)] \times 1.2=1.69 \mathrm{~m}^{3} / \mathrm{h} \eta \dot{\eta} 0.47 \mathrm{I} / \mathrm{s}$





$$
v=0.9 \cdot \frac{Q_{\mathrm{om}}}{z}
$$

ónou :
$\mathrm{V}=$ uүро́s о́үкоৎ $\sigma \varepsilon \mathrm{m}^{3}$
Qpm $=$ парохウ่, бє I/s



$$
V=0.9 \cdot \frac{0.47}{6}=0.070 \mathrm{~m}
$$



## 

### 3.3.1 Гeviká







 oтعрعळ்v.









 Өa入áuouç каӨiZnoņ घival $2,10 \mathrm{~m}$.














## 

 oxモ̇ఠך:

$$
\mathrm{q}=\mathrm{Q}_{\mathrm{d}, \mathrm{~m}} / \mathrm{A}
$$



| ПAPAMETPOE | MONA 4 | TIMH |
| :---: | :---: | :---: |
|  | $\mathrm{m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$ | 0,65 |
|  | $\mathrm{m}^{3} / \mathrm{hr}$ | 14,18 |
|  | $\mathrm{m}^{2}$ | 21,82 |









 $48 \mathrm{~m}^{3}$.


| ПAPAMETPOE | MONADA | TIMH |
| :---: | :---: | :---: |
|  | $\mathrm{m}^{3} / \mathrm{hr}$ | 3,94 |
|  | $\mathrm{m}^{3}$ | 11,81 |
|  | $\mathrm{m}^{3}$ | 45,00 |
|  | hr | 12,18 |
|  | hr | 3,39 |




 аб甲á $\lambda \varepsilon ı a ~ \omega \varsigma ~ а к о \lambda о u ́ Ө \omega \varsigma ~(A T V-H a n d b u c h, ~ M e c h a n i s c h e ~ A b w a s s e r r e i n i g u n g, 1996): ~$


| ПAPAMETPOE | MONADA | TIMH |
| :---: | :---: | :---: |
| $\mathrm{BOD}_{5}$ | \％ | 25 |
| COD | \％ | 25 |
| Alwpoủ | \％ | 60 |
| О入ıко̇ á̧んто | \％ | 10 |
| Фஸ்ø¢оро¢ | \％ | 9 |





| ПAPAMETPOE | MONADA | TIMH |
| :---: | :---: | :---: |
| BOD5 | mg／l | 300，00 |
|  | kg／d | 18，90 |
| COD | mg／l | 540，00 |
|  | kg／d | 34，02 |
| Alwpoúhzva otepeá SS | $\mathrm{mg} / \mathrm{l}$ | 186，67 |
|  | kg／d | 11，76 |
| O入ıко̇ áz ${ }^{\text {ato }}$ | mg／l | 60，00 |
|  | kg／d | 3，78 |
| Фஸ்ఠ¢оро¢， | $\mathrm{mg} / \mathrm{l}$ | 18，20 |
|  | kg／d | 1，15 |

## 3．4 BıoAoyıкrí Eneद̧epyaaia

## 3．4．1 Еıбаүшүர்－пергүрачи்













## 

## 






















 ı入úos,





















 $0.0049 \mathrm{~m}^{3} / \mathrm{m}^{2}$ عпицáveıac.






































 пuкvótŋта Tんv al























 $\mu \varepsilon$ катабтро甲ท́ тои $\mu \eta \chi$ Хаvıб













|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  $\mu \varepsilon$ таuто́хроиๆ vitponoinon | $\Delta \varepsilon \cup т \varepsilon \rho о \beta \dot{\text { á }} \boldsymbol{\mu}$ ио $\mu \varepsilon$ vitporioínon бє छєxшріото́ ота́ठı |
| Үठраидıкท் фо́ртіюп $\left(\mathrm{m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)$ | 0.08-0.16 | 0.03-0.08 | 0.04-0.1 |
| Opyaviкí ¢óption |  |  |  |
| $\mathrm{Kg} \mathrm{SBOD} 5 / \mathrm{m}^{2} . \mathrm{d}$ | 0.003-0.01 | 0.002-0.007 | 0.0005-0.001 |
| $\mathrm{Kg} \mathrm{TBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$ | 0.01-0.017 | 0.007-0.015 | 0.001-0.003 |
| Mह̇yıơTク Opүवviкர่ фо́ртıбп ото прळ́то oтáठıo |  |  |  |
| $\mathrm{Kg} \mathrm{SBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$ | 0.02-0.03 | 0.02-0.03 |  |
| $\mathrm{Kg} \mathrm{TBOD} 5 / \mathrm{m}^{2} . \mathrm{d}$ | 0.04-0.06 | 0.04-0.06 |  |
| $\begin{aligned} & \text { Фо́ртıпп а а } \mu \omega v i a c ~(K g ~ \\ & \left.N H^{3} / \mathrm{m}^{2} . \mathrm{d}\right) \end{aligned}$ |  | 0.0007-0.0015 | 0.001-0.002 |
| Yסраu入ıко́s Xpóvos параноvท்¢ (hr) | 0.7-1.5 | 1.5-4 | 1.2-2.9 |
| $\mathrm{BOD}_{5} \mathrm{E}$ ¢'ठंठоu (mg/t) | 15-30 | 7-15 | 7-15 |
|  |  | <2 | 1-2 |

## 3．4．3 Аıаотабıо入óyпоп－Ynoגоүıбиоі

## 

|  | （mg／l） | （ $\mathrm{Kg} / \mathrm{d}$ ） |
| :---: | :---: | :---: |
| $\mathrm{BOD}_{5}$ | 300，00 | 18，90 |
| COD | 540，00 | 34，02 |
| SS（aı $\omega$ рои́нघva oreped） | 186，67 | 11，76 |
| O＾ıко́ à̧̧што（оруаviкó N ， $\mathrm{NO}_{3}-\mathrm{N}, \quad \mathrm{NH}_{4}-\mathrm{N}$ ） | 60，00 | 3，78 |
|  | 18，20 | 1，15 |
| Өєриокрабіа | $12-20{ }^{\circ} \mathrm{C}$ |  |
| pH | 7，5 |  |

## 




## 

$\mathrm{BOD}_{5} \leq 20 \mathrm{mg} / \mathrm{l}$

COD
$\leq 125 \mathrm{mg} / \mathrm{l}$
Aıఱрои́ $\mu \varepsilon v a ~ व т \varepsilon р \varepsilon a ́ ~(S S) ~$
$\leq 25 \mathrm{mg} / \mathrm{l}$

## 




ApıӨرós $\eta \lambda \varepsilon к т \rho о к і v \eta т п ் \rho \omega v$

$6 \mathrm{~g} /\left(\mathrm{m}^{2} \mathrm{xd}\right)$
$18,90 \times 1000 / 6=3150 \mathrm{~m}^{2}$
$3400 \mathrm{~m}^{2}$
1
1，50 kW

## 

O入ıкウ่ ยпı̣ávยıa $3400 \mathrm{~m}^{2}$

## 3．4．3．6 $\quad$ Параушуர் ıAćos






$17,64 \mathrm{~kg} / \mathrm{d}$
 $\mathrm{kg} \cdot \mathrm{SS} / \mathrm{kg} \cdot \mathrm{BOD}_{5}$ апоцакричо́нгvo．
 апоиакриvóuzvo．



ミuvoגıkń параүшүク̆ ıגủos，
$18,90 \mathrm{~kg} / \mathrm{d}$
$20 \times 63 / 1000=1,26 \mathrm{~kg} / \mathrm{d}$
0,55 ＊$(18,90-1,26)=9,70 \mathrm{~kg} / \mathrm{d}$
$17,64+9,70=27,34 \mathrm{~kg} / \mathrm{d}$

## 3.5 ムıÚAıส！

## 3．5．1 Eıбаүшуท่






 （Andreadakis 2003，Metcalf \＆Eddy 2003，Titley 2014）．




## 


8
$\mathrm{m}^{3} /\left(\mathrm{m}^{2} \mathrm{xh}\right)$

|  | 1,77 |  |
| :---: | :---: | :---: |
|  | 6 | $\mathrm{m}^{2}$ |
|  | 2,36 | $\mathrm{m}^{3} /\left(\mathrm{m}^{2} \mathrm{xh}\right)$ |





 $\mathrm{mg} / \mathrm{l}$.


$B_{\text {SS }}=0,65 * 1,42 * 0,68 * S S$
ónou :


$B O D_{5, \text { eff }}=B O D_{5, \text { in }}-B O D_{s s}$
ónou :

Мє аvтіката́бтаoŋ проки̇ாтєı:
$B O D_{5 \text {,eff }}=9,96 \mathrm{mg} / \mathrm{l}$

### 3.6 Ano月úцavaŋ

### 3.6.1 Eıбаүшүท่



 $\mu п о р о u ̉ v ~ v a ~ a v a n a p a x Ө o u ́ v ~ к a ı ~ v a ~ Ө \varepsilon \omega \rho о u ̉ v т а ı ~ п р а к т ı к а ́ ~ \omega ̧ ̧ ~ п \varepsilon Ө a \mu \varepsilon ̇ v a . ~$





 паранغ́троия：
$\Rightarrow$ Поіо́тПта тоu vepoù

－Aiwpoú $\varepsilon$ va otepeá




$\Rightarrow$ Ba日رós anoגú $\mu$ avons

## 









 $\mu \varepsilon ү а \lambda u ́ t \varepsilon \rho \eta ~ a п о ் ~ 70 \% . ~$
 $10^{7} \mathrm{FC} / 100 \mathrm{ml}$ ．

 Disposal Reuse，1979，p．287）：

Eoxáp $\omega$ on
Effscn $=10-20 \%$
E६á $\mu \mu \omega \sigma \eta$
Eff $_{\text {SF }}=10-25 \%$
Вıо入оүıки̇ ßаӨніб̈а

$$
\text { Eff }_{B B}=90-98 \%
$$


ПрокаӨiそnon

$$
\mathrm{Eff}_{\mathrm{pc}}=10 \%
$$

Вıолоүıкй ßаӨиіб̈а

$$
\mathrm{Eff}_{\mathrm{BB}}=90 \%
$$

 проки́птєІ aпо́ тоv тúпо：

Colifeff $=$ Colifin $_{\text {in }} *\left(1-\right.$ Effp $\left._{\mathrm{C}}\right) *\left(1-\mathrm{Eff}_{\mathrm{BB}}\right)$
Мع avтıката́бтаön проки́rття। :
Colifeff $=10^{7}(1-0.10) *(1-0.90)$
Colifetf $=9 \times 10^{5} / 100 \mathrm{ml}$
 $\lambda$ даßảveraı iön $\mu \varepsilon 10^{6} / 100 \mathrm{ml}$.





$$
N / N_{0}=e^{-k . i . t}
$$

ónou,

> № : o apxıко́s apıӨиós TC

N: о телıко́s арıӨцо́s TC
k : oraӨ̨pá
i : П ह̇vтaon tףऽ актıvoßо入iac ( $\mathrm{mW} / \mathrm{cm}^{2}$ )



$$
-k^{*} i^{*} t=\ln \left(10^{-5}\right)=-11,51
$$


$i^{*} \mathrm{t}=11,51 \mathrm{mWsec} / \mathrm{cm}^{2}$











## 















## 16．2．ITYXIO MEЛETHTH

## ПTYXIO ME $\triangle$ ТТНTH <br> П 4 138／2009／N． $3316 / 2005$

## AP．MHTP $\Omega O Y$ ：

А．Ф．М．：
A．O．Y．：

ELI』NYMO：
ONOMA：
ONOMA ПATPOE：
EIAIKOTHTA：
EAPA NOMOL：
ЕПАГГ．ЕАРА：
Katoikia：

19558
119767005

## гT＇©E $\Sigma A A O N I K H \Sigma$

KAPAFEQPIIOY
EyETPATIOE
anapeaz
XHMIKOL MHX．
©EL／NIKHE
ПАПАФН 82 ӨЕट／NIKH TK 54453
ПАПІАФН 82 ӨEE／NIKH TK 54453

KATHTOPIE MEAETRN
a．KATHIOPIA YП＇API＠．．．．．．．．．．．．．．．．．．．．．． 18
ß．KATHI．．．．．．．．


TAEH $\qquad$ A

TA $\Xi \mathrm{H}$ $\qquad$ A
Е $\omega \varsigma, . . . . . . . . . . . .22 / 02 / 2026$

0

### 16.3. EIUIKH ОIКОЛОГIKH АЕIOЛОГНЕН



## EIAIKH OIKONOГIKH AミIONOГH乏H

## TEYXO乏 ПAPAPTHMATO乏 MEЛETH乏 ПEPIBAANONTIKДN EПIПTת乏E EPRON EПEEEPTAEIA乏 KAI $\operatorname{\Delta IAOE\Sigma H\Sigma ~A\Sigma TIK\Omega N~AYMAT\Omega N~I.~M.~\Xi ENOФQNTO\Sigma ~}$



ANADOXOE
EYETPATIOE KAPATE RPIIOY

ПАПАФН 82， 54453 ЄEโさAMONIKH
email：skarageo＠gmail．com

IOYNIOE 2021
$\bigcirc$
Пívaкац $\pi \varepsilon \rho เ \varepsilon \chi о \mu \varepsilon ́ v \omega \nu$
EIIAI®ГH－ПEPIOXH MEЛETH乏． ..... 3
1．YФI¿TAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBAM $\cap O N T O \Sigma$ ..... 4
 MEлETH乏 ..... 4
 ..... 4
 ..... 5
 ..... 6
 ..... 10
 ПEPIOXH MEAETH乏 ..... 33
 ..... 33
1.4 Ф$\Omega$ TOГРАФІКН TEKMHPI $\Omega \Sigma H$ ..... 33
1.5 KATAIPAФH TH乏 KATA乏TA乏H乏 TOY ФY乏IKOY ПEPIBA＾MONTO $\Sigma T H N ~ П E P I O X H ~ T O Y ~ \triangle I K T Y O Y ~$ NATURA 2000 ..... 34
 ..... 34
  ..... 35
 ..... 41
 ..... 41
 ..... 42
 ..... 46
2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O \wedge O F H \Sigma H ~ T Q N ~ E П I \Pi T Q \Sigma E \Omega N$. ..... 46
3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma T \Omega N ~ \Pi I \Theta A N \Omega N$ EПIחT $\Omega \Sigma E \Omega N$ ..... 48
4．ANTILTAOMIETIKA METPA ..... 52
 4014／2011 ..... 52
 ..... 52
 ..... 53
  ..... 54
5．ПРОГРАММА ПАРАКОЛОҮӨНГНГ ..... 55
6．$\Sigma Ү N O \Psi H ~ \Sigma Y M \Pi E P A \Sigma M A T \Omega N$ ..... 59
7．BIB＾IOTPAФIKE ПHIE ..... 61
8．OMA $\triangle A$ ME $\triangle E T H \Sigma$ ..... 65
ПАРАРТНМА I ..... 66

## EİAГیГН－ПEPIOXH MEЛETH乏




























 ठпиıоирүoúvtat ató to épyo



 єлє〔єрүүоiac）





 عival $\sigma \varepsilon$ к $\alpha \lambda \eta \dot{\prime}$ ката́бтабף．


Eukóva 1．Пepıoxŋ́ Mèétnç，ópıa repıoxŋ̧́ Natura 2000 GR1270003（EZZ）

## 1．YФI乏TAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBA＾MONTO乏

##  MEAETHE

## 


















 Kotvotıkoú Evסıaфépovtoc) (S.C.I.: Special Community Interest) $\mu \varepsilon \kappa \omega \delta$ ккó apı $\theta \mu$ ó GR1270003.

 коtvotıкó סíktuo Natura 2000.

Гєшүрафıки́ өє́бๆः E: $23^{\circ} 87^{\prime} 69^{\prime \prime} \mathrm{N}: 40^{\circ} 08^{\prime} 44^{\prime \prime}$
'Eктабп: 33.567,80ha



## 

















 (Млацла入а́vaç 1998).



 тпऽ เঠıо
















 عival $\sigma \varepsilon$ к $\alpha \lambda \dot{\prime}$ катáotaon.




## 

## 


 үЕ


Sm：इepßopaxpobovki $\mu \dot{\alpha} \zeta \alpha$,






Pk：ZÁvŋ Пapvacooù－Fkóvas，
P：Zôvn Пivóou，




 Kovics















 охпиатıбиои́ Beptíбкои．






 aroppoŕs tou＇A $\theta \omega$（EL1043），$\mu \varepsilon$ モ́ктабף 239，44 km²．

## 
















 tou $24 \dot{\omega}$ pou.






## 






 $\delta \rho \alpha ́ \sigma \eta \varsigma \tau \omega v \chi \varepsilon \mu \mu \dot{\rho} \rho \rho \omega v$.



















 лои үivetal otnv леріохŋ́ autท́.

 avartuү




## 

## X $\wedge$ คPI $\Delta A$








 $\pi \lambda \alpha \nmid \omega \dot{v} \mathrm{k} \alpha \mathrm{\tau} \tau \eta$ фúoŋ $\tau \omega \mathrm{v} \pi \varepsilon \tau \rho \omega \mu \alpha \dot{\tau} \omega \mathrm{v}$.


















 lentiscetum.




 $\eta \mu i \theta \alpha \mu v o l$, ó $\pi \omega \varsigma$ сотоıßí $\alpha$ (Sarcopoterium spinosum), veviot $\alpha$ (Genista acanthoclada), v $\alpha \lambda \alpha \tau \sigma \dot{\delta} \varepsilon \varsigma$
 (Phlomis fruticosa), orapáypı (Asparagus aphyllus), $\alpha \lambda$ оүо $\quad$ ú $\mu \alpha \rho$ (Anthyllis hermaniae)к $\lambda \pi$.
 (Pistacia lentiscus), ot ápкعuӨot (Juniperus sp.), $\tau \alpha \rho \varepsilon$ ékı $\alpha$ (Erica spp.) к $\lambda \pi$.




























 к $\lambda$ дцатикєя.


 confertae (frainetto)-cerris $\mu \varepsilon$ фu $\lambda \lambda \circ \beta \dot{o} \lambda \alpha \alpha$ ס́án $\delta \rho \cup \omega \dot{v}$ aró Quercus frainetto, Quercus pubescens,

 Év $\quad$ on.


 $\mu \varepsilon \mu \iota \alpha$ бєוрд́ $\varepsilon v \omega \dot{\sigma} \varepsilon \omega v$ ón $\omega \varsigma$ to Quercetum cocciferae ń Cocciferetum, to Coccifero-Carpinetum каı to Carpinetum orientalis.

 $\mu \varepsilon \tau \varepsilon ́ x o u v \tau \alpha \xi u \lambda \omega \dot{\delta} \eta$ عí§ Ilex aquifolium, Fraxinus ornus, Sambucus nigra, Clematis vitalba, Rosa canina, Hedera helix, Sorbus aucuparia, Sorbus torminalis, Quercus conferta,Alnus glutinosa ( $\sigma$ 就












 вivaı ta $\chi \alpha \mu$ ореікıа (Erica manipuliflora) каı то лоupvápı (Quercus coccifera).










 ккаvолоџŋтик $\omega \varsigma$ u $\downarrow \lambda \lambda \alpha ́$.












Піvакая 1: Ei $\delta \eta$ х $\lambda \omega \rho$ рi $\delta \alpha \varsigma$,

## EiSn B Aáotnons


Aethionema orbiculatum / $\Sigma \pi \dot{\alpha} v i o$
Allium chamaespathum / Mapóv
Anthemis sibthorpii / $\Sigma \pi \alpha \dot{v}$ vo
Arabis bryoides / Пapóv
Arctostaphylos uva-ursi / Mapóv
Asperula aristata ssp. nestia / П $\alpha \rho o ́ v$
Asperula aristata ssp. thessala / П $\alpha$ oóv
Astragalus thracicus ssp. monochorum / $\Sigma \pi \alpha \dot{v i v o}$
Atropa bella-donna / ミrávio
Aubrieta erubescens / Mapóv
Beta nana / $\Sigma \pi \alpha ́ v i o$

Campanula lavrensis／Mapóv
Centaurea pannosa／Mapóv
Cephalanthera damasonium／Пa
Cephalanthera longifolia／Mapóv
Colchicum doerfieri／Mapóv
Convallaria majalis／Mapóv
Corydalis integra／$\pi$ návio
Cyclamen persicum／Пapóv
Cystoseira spp／П $\alpha \rho o ́ v$
Dianthus petraeus ssp．orbelicus／Пapóv
Digitalis leucophaea／$\Sigma \pi \alpha \dot{v}$ o
Erysimum drenowskii／Mapóv
Fritillaria euboeica／Пo入ú इrávio
Fritillaria graeca／Mapóv
Helichrysum sibthorpii／Mo入ú $\Sigma \pi \alpha ́ v n o ~$
Heracleum humile／חарóv
Hypericum athoum／Endंvio
Isatis tinctoria ssp．athoa／$\Sigma \pi \alpha \dot{v}$ lo
Limodorum abortivum／Пapóv
Linum leucanthum इ̇́vクษ๕६
Linum olympicum ssp．athoum／Пoגú $\Sigma \pi \alpha \dot{v}$ Io
Neotinea maculata／ח $\alpha \rho o ́ v$
Neottia nidus－avis／Hapóv
Ophioglossum vulgatum／Парóv
Osmunda regalis／Mapóv
Oxytropis purpurea／£návio
Platanthera bifolia／Mapóv
Platanthera chlorantha／П $\alpha \rho o ́ v$
Poa thessala さúvnưes
Polygonum icaricum／£návio
Saxifraga juniperifolia ssp．sancta／Mapóv

Silene echinosperma／Пapóv<br>Silene multicaulis ssp．genistifolia／Mapóv<br>Sorbus chamaemespilus／£nd́vio<br>Stachys leucoglossa／Пapóv<br>Thymus thracicus／Mapóv<br>Valeriana alliariifolia／Enávio<br>Viola athois／Hodú इnávio<br>\section*{Zerynthia polyxena}



 immanuelis－loewii，Centaurea peucedanifolia，Silene orphanidis，Viola delphinantha，Viola athois，
 $\pi \alpha \rho \alpha ́ \rho \tau \eta \mu \alpha$ 3．3．13），$\varepsilon v \dot{\omega} \tau \alpha \varepsilon(\delta \eta$ Arctostaphylos uva－ursi，Atropa bella－donna，Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．orbelicus，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus $\pi \rho$ обт $\alpha \tau \varepsilon$ úovt $\alpha \iota \alpha \pi$ о́ to $\Pi \Delta 67 / 1981$ ．T $\alpha$ Heracleum humile，Saxifraga juniperifolia ssp．sancta，Ophioglossum vulgatum عívat orávı $\alpha$ otqv E $\lambda \lambda \alpha ́ \delta \alpha$ ŋ́ k $\alpha t$


 т $\mu \boldsymbol{\eta} \mu \alpha$ тทs．











－$\Delta \varepsilon v \delta \rho o \varepsilon เ \delta \dot{\eta}$ Matorrals $\mu \varepsilon$ Juniperus spp．（Arborescent matorral with Juniperus spp．）－ 5210
－$\Delta \varepsilon v \delta \rho o \varepsilon เ \delta \tilde{n}$ Matorrals $\mu \varepsilon$ Laurus nobilis－ 5230


－Фpúyava aró Sarcopoterium spinosum－ 5420

－Aıө̛́ves tņ Avatoגıkńs Meøoүعiou－ 8140
－$\Delta \dot{\alpha} \sigma \eta$ o $\cup$ úç aró Luzulo－Fagetum－9110


－$\Delta \alpha \dot{\alpha} \sigma \eta \mu \varepsilon$ Castanea sativa－ 9260
－Eג入Пৃviká $\delta \alpha ́ \sigma \eta$ o̧ıác $\mu \varepsilon$ Abies borisii－regis－ 9270
－$\Delta \alpha ́ \sigma \eta$ o $̧$ tác $\mu \varepsilon$ Quercus frainetto－ 9280
 Xepoovírou（Securinegion tinctoriae）－92D0
－$\Delta$ áaŋ $\delta$ puóç tou Alyaiou $\mu \varepsilon$ Quercus brachyphyllo－ 9310
－$\quad \Delta a ́ o \eta \eta \varepsilon$ Quercus ilex к $\alpha \iota$ Quercus rotundifolia－ 9340
－$\Delta \alpha ́ o n ~ \mu \varepsilon$ Quercus macrolepis－ 9350





 $\theta \alpha \lambda \alpha ́ \sigma \sigma t \alpha \varsigma \beta \lambda \alpha \dot{\alpha} \eta \sigma \eta \varsigma \mu \varepsilon$ Posidonia．




N16－П $\lambda \alpha \tau \cup ́ ф \cup \lambda \lambda \alpha ~ ф и \lambda \lambda о \beta o ́ \lambda \alpha ~ \delta \alpha ́ \sigma ך \eta ~(24,38 \%) ~$
N17－$\Delta$ áaŋ к $\omega v$ офо́ $\rho \omega v(10,03 \%)$
N18－Asíфu $\lambda \lambda \alpha$ ס $\alpha \sigma \eta ~(20,42 \%)$






 үع $\omega \chi \omega \rho t \kappa \dot{\omega} v \pi \lambda \eta \rho \circ ф о \rho t \omega ́ v$ đє $\mu \circ \rho \phi \grave{~ \chi \alpha \rho \tau \omega ́ v ~(h t t p: / / m a p s p o r t a l . y p e n . g r /), ~ o ́ \sigma o v ~ \alpha ф о \rho \alpha ́ ~ ф \alpha เ v o ́ \mu \varepsilon v \alpha ~}$
 фаivovtat otov đáptn tou ПАРАРТНMATO 1.




 аvtiototxoúv otov eupútepo kw



## CORINE $32.7 \Psi \varepsilon u \delta$ оиаккі．Kんбıко́s 5350.



 Quercus coccifera，Juniperus oxucedrus，Quercus trojana，Carpinus orientalis，Ostrya carpinifolia， Pistacia terebinthus，Buxus sempervirens，Jasminus fruticans，Fraxinus ornus，Cercis siliquastrum （Coccifero－Carpinetum Honvat）．








 $\pi \lambda$ оиơótepoc．

## 

 eupatoria，Acer campestre，Carpinus orientalis，Chrysopogon gryllus，Silene italica，Juniperus oxycedrus，Ballota acetabulosa，Trifolium repens，Fraxinus ornus，Berberis cretica，Ostrya carpinifolia， к．$\dot{\text { a }}$ ．



 frainetto．


## 







Eíßn фutáv rou erukpatoúv عivaı ta: Quercus frainetto, Fagus sylvatica, Fagus moesiaca, Carpinus orientalis, Pteridium aquilinum, Coryllus avellana, Poa nemoralis, Quercus petraea, Quercus petraea ssp., Sorbus torminalis, Fagus sylvatica ssp. sylvatica, k. $\dot{\alpha}$.

## 







 ouví $\theta \omega$ ç 70-90\%) (Cakiletea maritimae).


 кинатıб
 Tétota eivau ta:

Salsola kali, Cakile maritima, Xanthium strumarium, Euphorbia peplis, Atriplex tatarica, Cynodon dactylon, Atriplex hastata, Polygonum maritimum к.d́.

## Oıкодоүוкés $\sigma u v \theta$ ńkes




 $\pi \alpha \rho \alpha \theta \varepsilon \rho เ \sigma \varepsilon$ е́ऽ.

Cakile maritima, Salsola kali, Euphorbia peplis, Atriplex prostrata, Matthiola tricuspidata, Xanthium italicum, Xanthium strumarium, Polygonum maritimum, Suaeda spledens, Spergularia salina, Salsola soda, Zygophyllum album, Glaucium flavum, Beta vulgaris ssp. maritima, Anthemis tomentosa, Atriplex recurva, Medicago litoralis, Plantago weldenii, Hordeum marinum, Chenopodium
ambrosioides，Chamaesyce peplis，Parapholis incurva，Lotus cytisoides，Anthemis tomentosa，Silene colorata，Medicago littoralis，Echium arenarium，Silene sartorii，Hordeum murinum， Mesembrianthemun nodiflorum，Pseudorlaya pumila．

## 

Про́кعเтаи үı $\alpha$ 人






















 avoukoסó $\mu \eta$ пп



















 tou $\mu$ हбоүвıакои́ оккобибти́ $\mu \alpha$ тоৎ

## ПANI $\triangle \mathrm{A}$












## Opvivిoravi $\delta \alpha$




 Handrinos and Akriotis (1996), Birdlife Intenational (2004) кає Mroúбuroupaç (2009), $\eta$


 (Xpuøartóc), Bubo bubo (Mлои́фо¢), Buteo buteo (「عракiva), Caprimulgus europaeus


 peregrinus (ПЕтpitns), Fringilla coelebs ( $\Sigma \pi i v o s), ~ G a r r u l u s ~ g l a n d a r i u s ~ a t r i c a p i l l u s ~(K i \sigma \sigma \alpha ~$

 Tetrao urogallus (Aypıókoupkoç).










 Elסıко́тєра：

$\Phi=\Phi \theta \mathrm{tvó} \mathrm{\pi} \boldsymbol{\omega} \rho \mathrm{o}$

$A=A v o t \xi \eta$
$K=K \alpha \lambda o к \alpha i p t$
2）Katпүорі́є̧＂Kóккıvou Bı $\beta \lambda$ íou＂：
$K 1=K ı v \delta u v e u ́ o u v \alpha \dot{\alpha} \mu \varepsilon \sigma \alpha$
$K 2=K ı v \delta u v \varepsilon u ́ o u v$
$T P=T \rho \omega \tau \alpha$
$\Sigma=\Sigma \pi \dot{\alpha} v i \alpha$
$\mathrm{A} \Gamma=\mathrm{Ave} \mathrm{\pi} \alpha \rho \kappa \dot{\omega} \varsigma \gamma^{\gamma} \nu \omega \sigma \tau \alpha$
$\mathrm{A}=\mathrm{Ar} \mathrm{\rho o} \mathrm{\sigma} \mathrm{\delta}$ เópıбт $\alpha$



BON．$=\Sigma$ и́ $\mu \beta \alpha$ Øп Bóvvŋ¢，о́лои：
1． $\mathrm{SPEC}=\mathrm{E} \hat{\delta} \delta \eta \chi \rho \hat{\eta} \zeta$ ovt $\alpha \pi \rho o \sigma \tau \alpha \sigma i \alpha c:$






| EIAH |  | （1） | X | A | K | K．BIBA． | 79／409 | BEP． | BON． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Koıví Ovopuáía | Ertơпп） |  |  |  |  |  |  |  |  |
| ＾аитроßои́ть | Gavia arctica |  |  | ＋ |  |  | 11 | II | 3 |
| ミкоuфоßoutnxtápt | Podiceps cristatus |  | ＋ | ＋ |  |  |  |  |  |


| EIAH |  | （1） | X | A | K | K． $\mathrm{BI}^{\text {B }}$ A． |  | 79／409 | BEP． | BON． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kotví Ovouãia | Ertorquovıkı́ Ovouんбía |  |  |  |  |  |  |  |  |  |
| Kokкıvoßoutn\tápt | Podiceps grisegena |  | ＋ |  |  | A |  | 11 | 11 |  |
| MaupoßoutnXtápt | Podiceps nigricoilis |  | ＋ |  |  | $A \Gamma$ |  | 11 |  |  |
| Apté $\dagger$ ¢ | Caionectris diomedea | ＋ |  | ＋ | ＋ |  |  | II |  | 2 |
| Múxos | Puffinus yeikouan | ＋ | ＋ | ＋ | ＋ |  | ＊ | 11 |  |  |
| Kopuopávos | Phalacrocorax carbo | ＋ |  |  |  |  |  |  |  |  |
| Өалаббоко́рака¢， | Phaiacrocrax aristoteiis | ＋ |  |  |  | TP | ＊ | II |  |  |
| Kрилтотоıкviá¢ | Ardeoia raiioides |  |  |  |  |  | ＊ | II |  | 3 |
| ＾eukotoukviás | Egretta garzetta | ＋ |  |  |  |  | ＊ | 11 |  |  |
| ミtaxtotoukviás | Ardea cinerea | ＋ |  |  |  |  |  |  |  |  |
| Mauporz入apyós | Ciconia nigra | ＋ |  | ＋ | ＋ |  | ＊ | 11 | II | 3 |
| Пе入аруós | Ciconia ciconia | ＋ |  |  |  |  | ＊ | 11 | II | 2 |
| Воиßо́кикхоя | Cygnus oior |  | ＋ |  |  |  |  |  | II |  |
| B $\alpha \rho \beta$ áp ${ }^{\text {a }}$ | Tadorna tadorna |  | ＋ |  |  | TP |  | 11 | 11 |  |
|  | Anas piatyrhynchos | ＋ | ＋ |  |  |  |  |  | 11 |  |
|  | Anas querqueduia | $+$ |  | $+$ |  | $A \Gamma$ |  |  | II | 3 |
| ¿фпк⿺а́рп¢ | Pernis apivorus | ＋ |  | $+$ | ＋ |  | ＊ | II | 11 |  |
| Toíфтп | Miivus migrans | $+$ |  |  |  | K1 | ＊ | II | II | 3 |
| Aотропর̇pns | Neophron percnopterus | ＋ |  |  |  | TP | ＊ | II | 11 | 3 |
| Фiઠ́ztó¢ | Circaetus gallicus | ＋ |  | $+$ | $+$ |  | ＊ | 11 | 11 | 3 |
| Калацо́кьрко¢ | Circus aeruginosus | ＋ |  |  |  | TP | ＊ | 11 | 11 |  |
| ¿тепо́кıркоऽ | Circus macrourus | ＋ |  |  |  |  |  | II | 11 |  |
| ＾＾ßабо́кьрко¢ | Curcus pygargus | ＋ |  | $+$ |  | K1 | ＊ | II | 11 |  |
| $\Delta u$ troodivo | Accipiter gentiiis | ＋ | $+$ | ＋ | ＋ |  |  | 11 | 11 |  |
| Тбıх入оуе்рако | Accipiter nisus | ＋ | $+$ |  | ＋ |  |  | 11 | 11 |  |
| Eaivt | Accipiter brevipes | ＋ |  |  | ＋ |  | ＊ | 11 | 11 | 2 |
| 「еракіvа | Buteo buteo | ＋ | ＋ | ＋ | ＋ |  |  | 11 | II |  |
| Xıovovepakiva | Buteo lagopus |  | $+$ |  |  |  |  | 11 | 11 |  |
| Kpauyaztó¢ | Aquilia pomarina | ＋ |  |  |  | TP | ＊ | II | 11 | 2 |
| Xpuadetó¢ | Aquiia chrysaetos | ＋ | ＋ | ＋ | $+$ | TP | ＊ | II | 11 | 3 |
| こru̧actó¢ | Hieraaetus fasciatus | ＋ | $+$ | $+$ | ＋ | TP | ＊ | 11 | 11 | 3 |
| ミtaupaetós | Hieraaetus pennatus | ＋ |  |  |  | TP | ＊ | II | 11 | 3 |
| Kıркıvȩ́， | Fa／co naumanni | ＋ |  | ＋ |  | TP | ＊ | il | 1／11 | 1 |
| Врахокıркіvє̧̧ | Fa／co tinnuncuius | ＋ | ＋ | ＋ | ＋ |  |  | 11 | 11 | 3 |


| EISH |  | （1） | X | A | K | K．BIBA． |  | 79／409 | BEP． | BON． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kotví Ovopuaía |  |  |  |  |  |  |  |  |  |  |
| Маирокıркіvє̧̧o | Fa／co vespertinus |  |  | $+$ |  |  |  | 11 | II |  |
| $\Delta \varepsilon v \tau$ ¢оүе́рако | Fa／co subbuteo | ＋ |  |  |  |  |  | II | II |  |
| Mauporetpitns | Fa／co eieonorae | ＋ |  |  |  | Ar | ＊ | 11 | 11 | 2 |
| хрибоуе́рако | Fa／co biarmicus |  | ＋ |  |  | TP | ＊ | II | 11 | 3 |
| Петрitn¢ | Fa／co peregrinus | ＋ |  |  |  | Ar | ＊ | 11 | 11 |  |
| Aуptókoupkos | Tetrao urogaiius | ＋ | ＋ | ＋ | $+$ | $\Sigma$ |  | II |  |  |
| Пєтропе̇рбıка | Aiectoris graeca | ＋ | $+$ | $+$ | $+$ |  |  |  |  | 2 |
| Oprúkı | Coturnix coturnix | ＋ |  | ＋ | ＋ | Ar |  |  | 11 | 3 |
| Nepóкота | Gailinuia chioropus | ＋ | ＋ | ＋ | ＋ |  |  |  |  |  |
|  | Fuilica atra |  | $+$ |  |  |  |  |  | II |  |
| Потацобфирихти́s | Charadrius dubius | ＋ |  |  |  |  |  | 11 | II |  |
|  | Charadrius aiexandrinus | ＋ | ＋ |  |  |  |  | 11 | 11 | 3 |
|  | Vanellus vane／us |  | ＋ |  |  |  |  |  | 11 | 2 |
| Mпек $\alpha$ тб $\alpha$ | Scoiopax rusticoia |  | $+$ |  |  |  |  |  | 11 | 3 |
| Потацо́триүүа¢， | Actitis hypoieucos | ＋ | ＋ |  |  |  |  | II | II | 3 |
| ミтеркори́рıos | Stercorarius parasiticus |  |  | $+$ |  |  |  |  |  |  |
| Маироке́фо入о̧ | Larus meianocephaius |  | ＋ |  |  | TP | ＊ | II | 11 |  |
| Navóy入1apos， | Larus minutus | ＋ |  |  |  |  |  | II |  | 3 |
| Kаотаvокв́фа入оく | Larus ridibundus | $+$ | ＋ |  |  |  |  |  |  |  |
| ＾етто́раифо¢ | Larus genei |  | ＋ |  |  | K2 | ＊ | II | II | 3 |
| Aıpaıóy $\lambda \alpha \rho o s$ ， | Larus audouinii |  |  | ＋ |  | K2 | ＊ | II | 1／11 | 1 |
|  | Larus cacchinans | ＋ | ＋ | $+$ | ＋ |  |  |  |  |  |
| 「Е入оү入ápovo | Gelochelidon ni／otica | $+$ |  |  |  | K1 | ＊ | II | II | 3 |
|  | Sterna sandvicensis |  | ＋ |  |  | A | ＊ | II | II | 2 |
| Потацоү入а́povo | Sterna hirundo |  |  | ＋ |  |  | ＊ | II | II |  |
| Aүрıотвріотеро | Co／umba iivia | ＋ | ＋ | ＋ | ＋ |  |  |  |  |  |
| Фабоотері́твро | Co／umba oenas | ＋ | ＋ | ＋ | ＋ | $\Sigma$ |  |  |  |  |
| Фáoó | Co／umba pa／umbus | $+$ | ＋ | $+$ | $+$ |  |  |  |  |  |
| Фекохтои́ра | Streptopelia decaocto | ＋ | ＋ | $+$ | ＋ |  |  |  |  |  |
| Tpuyóve | Streptopelia turtur | ＋ |  | $+$ | ＋ |  |  |  |  | 3 |
| Koúкoç | Cucu／us canorus | $+$ |  | $+$ | $+$ |  |  |  |  |  |
| Tutw่ | Tyto alba | ＋ | ＋ | ＋ | ＋ |  |  | II |  | 3 |
| 「кıธ่vク¢ | Otus scops | ＋ |  |  | ＋ |  |  | II |  | 2 |

 IEPA乏 MONHE $\equiv$ ENOD $\Omega$ NTO乏

| EIAH |  | © | X | A | K | K．BIBA． |  | 79／409 | BEP． | BON． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kotví Ovopucía | Erıoтпиоvıки́ Ovoцんбоía |  |  |  |  |  |  |  |  |  |
| Мтои́фо¢ | Bubo bubo | ＋ | ＋ | ＋ | ＋ |  | ＊ | 11 |  | 3 |
| Koukoußáyıa | Athene noctua | ＋ | ＋ | ＋ | ＋ |  |  | II |  | 3 |
| Xouxouptotic | Strix aluco | $+$ | ＋ | ＋ | ＋ |  |  | II |  |  |
| Navóигоифо¢ | Asio otus | ＋ | ＋ | ＋ | ＋ |  |  | II |  |  |
| 「LסoßúZ， | Caprimulgus europaeus |  |  | ＋ | ＋ |  | ＊ | 11 |  | 2 |
| ₹т $\alpha$ т $\alpha$ ¢ $\alpha$ | Apus a pus |  |  | ＋ | ＋ |  |  |  |  |  |
| ミкعларvá¢， | Apus melba | ＋ |  | ＋ | ＋ |  |  | II |  |  |
| A入kuóva | Alcedo atthis | ＋ | ＋ |  |  |  | ＊ | 11 |  | 3 |
| Мı入ııооофа́үos | Merops a piaster |  |  | ＋ | ＋ |  |  | II | 11 | 3 |
| X $\alpha \lambda$ кокоироúv $\alpha$ | Coracias garrulus |  |  | ＋ | ＋ | TP | ＊ | 11 | 11 | 2 |
|  | Upupa epops |  |  | ＋ | ＋ |  |  | 11 |  | 3 |
| £траßо入аіцךऽ | Jynx torquilla |  |  | ＋ |  |  |  | 11 |  | 3 |
| B $\lambda_{\text {Kкаvotoıк } \lambda_{\text {ıt }} \text { ápa }}$ | Dendrocopos syriacus | $+$ |  |  |  |  | $*$ | 11 |  |  |
| 「 $\alpha \lambda$ ıávtp $\alpha$ | Melanocoryha calandra |  |  | $+$ |  |  | ＊ | 11 |  | 3 |
| Katoou入tépn¢ | Galerida cristata | $+$ | ＋ | ＋ | ＋ |  |  |  |  | 3 |
| $\Delta \varepsilon v \tau \rho \circ \sigma \tau \alpha \rho \dot{\theta} \theta \rho \alpha$ | Lululla arborea | ＋ | ＋ |  |  |  | ＊ |  |  | 2 |
| इт $\alpha \rho \dot{\theta}$ Ө $\rho \alpha$ | A／auda arvensis |  | ＋ | ＋ |  |  |  |  |  | 3 |
|  | Riparia riparia | $+$ |  | ＋ |  |  |  | II |  | 3 |
| Bpaxoxe入íoovo | Ptyonoprogne rupestris | $+$ |  |  | $+$ |  |  | 11 |  |  |
| Xe入ıరóvt | Hirundo rustics | ＋ |  | ＋ | $+$ |  |  | 11 |  | 3 |
| －Evtpoxe入iSovo | Hirundo daurica | ＋ |  | ＋ | $+$ |  |  | 11 |  |  |
| Erutoxe入iSovo | Delichon urbica | ＋ |  | ＋ | $+$ |  |  | 11 |  | 3 |
|  | Anthus triviaiis |  |  | ＋ | ＋ |  |  | 11 |  |  |
| Kıtpivooouooupá $\bar{\alpha}$ | Motaciiia fiava | $+$ |  | ＋ | ＋ |  |  | II |  |  |
| ミтахтобouooupá $\delta \alpha$ | Motaciila cinerea | ＋ |  | ＋ | $+$ |  |  | II |  |  |
| ＾عuкooouđoupá $\delta$ 人 | Motaciiia alba | ＋ | ＋ | ＋ |  |  |  | 11 |  |  |
| Nepoкótбuфа¢ | Cinc／us cinc／us | ＋ | $+$ | ＋ | $+$ |  |  | 11 |  |  |
| Tpuroфpáxtrs | Troglodytes troglodytes | $+$ | ＋ |  |  |  |  | 11 |  |  |
|  | Prunella modularis |  | ＋ |  |  |  |  | 11 |  |  |
| Xıovo廿d́入trns | Prunella collaris | $+$ | ＋ | ＋ | $+$ |  |  | 11 |  |  |
| Kouфanбóvi | Cercotrichas galactotes | $+$ |  | ＋ | ＋ |  |  | 11 | 11 | 3 |
| Kоккıvo入aiphs | Erithacus rubecula | $+$ | ＋ | $+$ |  |  |  | 11 | 11 |  |
| Anöóv | Luscinia megarhynchos | $+$ |  | ＋ | ＋ |  |  | 11 | II |  |


| EIAH |  | © | X | A | K | K．BIBA． | 79／409 | BEP． | BON． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kotví Ovopucia |  |  |  |  |  |  |  |  |  |
| Kapßouviáṗs | Phoenicurus ochruros | $+$ | ＋ |  | $+$ |  | II | 11 |  |
| Kokkıvoúpņ | Phoenicurus phoenicurus | ＋ |  | $+$ | ＋ |  | 11 | 11 | 2 |
| Kaotavohaiuns | Saxicola rubetra | ＋ |  | $+$ |  |  | II | 11 |  |
| Maupo入aiu7¢ | Saxicola torquata | $+$ |  |  |  |  | II | 11 |  |
| ¿тахтопетро́к入лร | Oenanthe oenanthe | ＋ |  | $+$ |  |  | II | 11 | 3 |
| Аотрокढ́入 $\alpha$ | Oenanthe hispanica | $+$ |  | ＋ |  |  | 11 | 11 | 2 |
| Петроко்тоифа¢， | Monticola saxatilis | $+$ |  | ＋ | ＋ |  | 11 | ॥ |  |
| 「а入аदоко́тоифа¢ | Monticola solitarius | ＋ | ＋ | $+$ | ＋ |  | II | II | 3 |
| Kótruфas | Turd us merula | $+$ | ＋ | $+$ | ＋ |  |  | 11 |  |
| Tбíx $\lambda \alpha$ | Turd us philomelos | ＋ | ＋ | $+$ | ＋ |  |  | II |  |
| Toaptoápa | Turd us viscivorus | $+$ | ＋ |  |  |  |  | II |  |
| Weutanరóvi | Cettia cetti | $+$ |  |  |  |  | II | 11 |  |
| K 2 スa | Locuste／a luscinioides | ＋ |  | ＋ |  |  | II | 11 |  |
| Tотхлопот $\alpha \mu$ i $\delta \alpha$ | Acrocephalus | ＋ |  | ＋ |  |  | 11 | II |  |
| Лरpootpıtoi $\delta \alpha$ | Hippolais pallida | $+$ |  | ＋ | ＋ |  | II | II | 3 |
| 八ıотрıтбi $\bar{\alpha}$ | Hippolais olivetorum | $+$ |  | ＋ | $+$ | ＊ | II | 11 | 2 |
| Kıtplvootpıroi $\delta$ 人 | Hippolais icterina | ＋ |  |  |  |  | II | II |  |
|  | Sy／via cantillans |  |  | ＋ |  |  | 11 | 11 |  |
| Маиротбиро弓а̇коऽ | Sy／via melanocephala |  | ＋ |  |  |  | 11 | 11 |  |
| \еvтротоироßর̆ко¢ | Sy／via hortensis | ＋ |  | ＋ | ＋ |  | 11 | 11 | 3 |
| лалототроßর́коя | Sy／via curruca | $+$ |  | ＋ | ＋ |  | 11 | 11 |  |
| Өapvototpoßákos | Sy／via communis | $+$ |  | ＋ | ＋ |  | 11 | 1 |  |
| Kппототроßа́ко¢ | Sy／via borin | ＋ |  |  |  |  | 11 | 11 |  |
| Maupoбкои́ф\¢ | Sy／via atricapilia | ＋ | ＋ |  |  |  | 11 | 11 |  |
| Bouvoфu入入обкóros | Phyloscopus boneiil | $+$ |  | ＋ | ＋ |  | II | II | 2 |
| Аегтрофи入入обко́лоя | Phyloscopus coiilybita | ＋ | ＋ | $+$ |  |  | 11 | 11 |  |
| Өациофид入обко́rо¢ | Phyloscopus trochiius | ＋ |  |  |  |  | II | 11 |  |
| хрибоßаби入íкоя | Regu／us reguius | ＋ |  | $+$ |  |  | II | II |  |
| Baбu入íко¢ | Regu／us ignicapiiius | ＋ | ＋ |  |  |  | 11 | II |  |
| Muyoxáфtn¢ | Muscicapa striata | $+$ |  | ＋ | $+$ |  | 11 | 11 | 3 |
| Navouиүохव́фтп¢ | Ficeduia parva | ＋ |  |  |  | ＊ | II | 11 |  |
| Maupouvyoxáфṫs | Ficeduia hypoieuca | ＋ |  |  |  |  | 11 | II |  |
|  | Aegithaios caudatus | $+$ | ＋ | ＋ | ＋ |  | 11 |  |  |

 IEPA乏 MONH

| EIAH |  | （1） | X | A | K | K．BIBA． |  | 79／409 | BEP． | BON． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kotvin Ovouaơia | Eruornuovikí Ovouacia |  |  |  |  |  |  |  |  |  |
|  | Parus pa／ustris | ＋ | ＋ | ＋ | ＋ |  |  | 11 |  |  |
| K入еıరWvá¢ | Parus Iugubris | ＋ | ＋ | ＋ | ＋ |  |  | 11 |  |  |
| ＾офопалабітоа | Parus cristatus | ＋ | ＋ | $+$ | ＋ |  |  | II |  |  |
|  | Parus ater | ＋ | ＋ | ＋ | ＋ |  |  | II |  |  |
| 「 $\alpha \lambda \alpha$ ¢опал $\alpha \delta i t \sigma \alpha$ | Parus caeruieus | $+$ | ＋ | ＋ | ＋ |  |  | 11 |  |  |
| Ka入óyepos | Parus major | ＋ | $+$ | ＋ | ＋ |  |  | II |  |  |
|  | Certhia brachydactyia | ＋ | $+$ | ＋ | ＋ |  |  | 11 |  |  |
| \evtpotoonavákos | Sitta europaea | ＋ | $+$ | ＋ | ＋ |  |  | 11 |  |  |
| Bpaxotoonavákos | Sitta neumayer | ＋ | ＋ | ＋ | ＋ |  |  | II |  |  |
|  | Tichodroma muraria |  | ＋ |  |  | $\Sigma$ |  | II |  |  |
| ¿Uкофа́үoş | Orioius orioius | ＋ |  | $+$ | $+$ |  |  | II |  |  |
| Aहтона́хоऽ | Lanius coilurio | ＋ |  | ＋ | ＋ |  | ＊ | 11 |  | 3 |
| Гаıбоирокефа入а́s， | Lanius minor | ＋ |  | ＋ | ＋ | Ar | ＊ | II |  | 2 |
| Kоккเvоквфа入入́s | Lanius senator | ＋ |  | ＋ | ＋ |  |  | 11 |  | 2 |
|  | Lanius nubicus | ＋ |  |  |  | $\Sigma$ |  | 11 |  | 2 |
| Kioou | Garruius giandarius | ＋ | ＋ | ＋ | ＋ |  |  |  |  |  |
| K＜paká\} ${ }^{\text {a }}$ | Pica pica | ＋ | ＋ | ＋ | ＋ |  |  |  |  |  |
| K＜́pүıа | Corvus moneduia | ＋ | ＋ | ＋ | ＋ |  |  |  |  |  |
| Koupoúva | Corvus corone | ＋ | ＋ | ＋ | ＋ |  |  |  |  |  |
| Kópakas | Corvus corax | ＋ | ＋ | ＋ | ＋ |  |  |  |  |  |
| Wapóvt | Sturnus vulgaris | ＋ | ＋ | ＋ | $+$ |  |  |  |  | 3 |
| Emoupyitns | Passer domesticus | ＋ | ＋ | $+$ | $+$ |  |  |  |  | 3 |
| Xwpaфоопоирүitns | Passer hispaniolensis | ＋ |  | ＋ | $+$ |  |  |  |  |  |
| Петробтоирүitns | Petronia petronia | ＋ | ＋ | ＋ | ＋ |  |  | II |  |  |
| Хеıumvóorivos | Fringilla montifringilla |  | ＋ |  |  |  |  |  |  |  |
| Erivos | Fringilla coe／ebs | ＋ | ＋ | ＋ | ＋ |  |  | 11 |  |  |
| ミкapӨákı | Serinus serinus |  | ＋ |  |  |  |  | 11 |  |  |
| Ф入ف́pos | Cardueils chioris | $+$ | ＋ | $+$ | ＋ |  |  | 11 |  |  |
| Kарберiv ${ }^{\text {\％}}$ | Cardueilis cardueiis | ＋ | $+$ | ＋ | ＋ |  |  | 11 |  |  |
| ＾óuyapo | Cardueilis spinus |  | ＋ |  |  |  |  | 11 |  |  |
| Фavėto | Cardueils cannabina | $+$ | $+$ |  |  |  |  | 11 |  | 2 |
| Xovtpouútns | Coccothraustes | $+$ | ＋ | $+$ | $+$ |  |  | II |  |  |
|  | Emberiza cirius | ＋ | ＋ |  |  |  |  | 11 |  |  |


| EISH |  | © | X | A | K | K．BIB＾． |  | 79／409 | BEP． | BON． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Koıví Ovopuaia |  |  |  |  |  |  |  |  |  |  |
| Bouvotoix ${ }^{\text {a }}$ | Emberiza cia | $+$ |  | $+$ | $+$ |  |  | 11 |  | 3 |
| B入র̇хоৎ | Emberiza hortuiana | $+$ |  | $+$ | $+$ |  | ＊ | 11 |  | 2 |
|  | Emberiza caesia | ＋ |  | ＋ | ＋ |  | ＊ | II |  |  |
| Aurèoupyós | Emberiza meianocephaia | ＋ |  | ＋ | ＋ |  |  | 11 |  | 2 |
| Tou¢tás | Miliaria calandra | ＋ |  | $+$ |  |  |  |  |  | 2 |
| ¿úvo入o： | 173 |  |  |  |  | 29 | 40 | 134 | 81 | 68 |

## 

Өалаббоко́ракаく（Phalacrocorax aristotelis）

## 





 （Handrinos \＆Akriotis 1997）．O $\alpha v \alpha \pi \alpha \rho \alpha ү o ́ \mu \varepsilon v o \varsigma ~ \pi \lambda \eta \theta u \sigma \mu o ́ \varsigma ~ t o u ~ \sigma t \eta \nu ~ E \lambda \lambda \alpha ́ \delta \alpha ~ \varepsilon ́ \chi \varepsilon เ ~ u \pi о \lambda о ү เ \sigma \tau \varepsilon ́ ~ o \varepsilon ~$


## Оєколоүіа







## Artei入éৎ






## ミmıZąтós（Hieraaetus fasciatus）

К $\alpha \vartheta \varepsilon \sigma \tau \dot{\omega} \varsigma ~ \pi \alpha \rho о \cup \sigma i \alpha \varsigma \varsigma-\pi \lambda \eta \vartheta \vartheta v \sigma \mu o ́ s ~$



 ектцŋӨвí $\sigma \varepsilon$ 100－140 そвuүápıа（Bourdakis \＆Xirouchakis 2008）．

## Oıколоүіа







## Atel入és





 к $\alpha \iota \eta \eta \lambda \varepsilon к т \rho о \pi \lambda \eta \xi i \alpha$ ．

## Фı $\delta a \varepsilon t o ́ s$（Circaetus gallicus）

K $\alpha \vartheta \varepsilon \sigma \dot{\omega} \varsigma$ п $\alpha \rho о \cup \sigma i \alpha \varsigma$－$\pi \lambda \eta \vartheta ้ v \sigma \mu o ́ \varsigma ~$










## Oıкодоүіа









## Алєєле́ऽ





 $\delta \alpha \sigma о к \alpha ́ \lambda u \Psi \eta$.

## Xpuoartóc（Aquila chrysaetos）



 oт $\alpha$ סutık tou Avtıá $\theta \omega v \alpha$ ．








 そcuүápıa（Tucker \＆Heath 1994，BirdLife International 2004）．

## Ouко入оүіа








 ákpeç t $\omega v \delta \alpha \sigma \omega ́ v$.

## Aтєı入દ́ऽ



 проотатعúбouv та Өпра́ $\mu \alpha$ тд́ тоия．








 to $\varepsilon$ íSoc．



## Петрitns（Falco peregrinus）






 $\mu \varepsilon \tau \alpha \xi \cup ́ 100$ каı 250 \}عuүápı $\alpha$（Tucker \＆Heath 1994）．

## Оєколоріа






 aغ́pa．

## Алєѝе́ऽ






## Bouvootaxtáp $\alpha$（Apus melba）

K $\alpha \vartheta \varepsilon \sigma \tau \omega ́ \varsigma ~ \pi \alpha \rho о \cup \sigma i \alpha \varsigma ~-~ \pi \lambda \eta \vartheta v \sigma \mu o ́ \varsigma ~, ~$



## Оเкодоріа








## 





## On入人otik $\alpha$









 （Erinaceus concolor），$\eta$ vavouvүа入i $\delta \alpha$（Sorex minutus），$\eta$ к $\eta \pi о \mu \nu ү \alpha \lambda i \delta \alpha$（Crosidua suaveolens），$\eta$
 citelus），о $\mu$ кротифлопóvtıкац̧（Spalax leucodon），о тpavorovtккós（Spalax mikrophthalmus），o
 бaбorovtıкó（Sylvaemys sylvaticus），o apoupaioç（Microtus arvalis），o $\beta$ paxorovtıoó（Apodemys ystacinus）．



 $\lambda \alpha ф ı \alpha ́ t \varepsilon \varsigma($ Elaphe quatuorlineata），баitєৎ（Coluber najadum），$\delta \varepsilon v \delta \rho о ү \dot{\alpha} \lambda \iota \varepsilon \varsigma$ ，（Coluber gemonensis），



 （Murr．）Barr，ouv．Endothia parasitica（Murr．）Anderson к $\alpha \iota$ éx $\varepsilon \iota ~ \varepsilon ү к \alpha \tau \alpha \sigma \tau \alpha \theta \varepsilon i ~ к \alpha \iota ~ \varepsilon \pi \varepsilon к т \alpha \theta \varepsilon i ~ \sigma \not ̄ \eta v$
























 arudinaceum, Apiospora montagnei, Porpolomyces farinosus, Microthyrium ilicinum каı по $\lambda \lambda \omega$ v

 Amanita virosa, Paxillus panuoides ( $\Pi \alpha \dot{\xi} \iota \lambda \lambda o \varsigma$ ० $\pi \eta v \imath o ́ \mu \circ \phi \circ \varsigma)$, Suillus collinitus, Mycena atrocyanea

 катаүрафєí ot otáviot $\alpha \sigma \kappa о \mu u ́ k \eta \tau \varepsilon \varsigma ~ M o l l i s i a ~ c i n e r e a, ~ C i b o r i a ~ a m e r i c a n a, ~ L a n z i a ~ e c h i n c e p h a l a, ~$ Rustroemia firma, R. sydowiana, Sarcoscypha coccinea ( $\Sigma \alpha \rho к о б к u ́ \phi \eta ~ \eta ~ к о ́ к к ı v \eta) ~ к . ~ \alpha . ~ М \varepsilon \tau \alpha ६ u ́ ~ t \omega v ~$
 $\phi \alpha \lambda \lambda о \varepsilon เ \delta \dot{\eta} \varsigma)$, Cortinarius purpurascens (Koptıvápıoç o порфи рóç), C. Trivialis (Koptıvápto̧̧ o кotvóc), Laccaria amethystea ( $\wedge \alpha \kappa \alpha ́ \rho ı \alpha \eta \alpha \mu \varepsilon \theta$ úctıvŋ), Spaerobolus stellatus ( $\Sigma \phi \alpha \iota \rho o ́ \mu \pi \alpha \lambda \lambda \alpha \eta \alpha \sigma \varepsilon \rho о \varepsilon เ \delta \dot{\eta} \varsigma)$,





 фраоидо́ норфо) к. $\alpha$. (Ntáфп̧ к. $\alpha .1997$ ).














## 1．2 ANAФOPA AMAQN YФIइTAMENQN H／KAI EГKEKPIMENQN EPIתN H $\triangle P A \Sigma T H P I O T H T \Omega N ~$ ГTHN ПEPIOXH MEЛETH乏








## 





## 1.4 ФЛТОГРАФIКН TEKMHPI $\Omega$ Н






##  AIKTYOY NATURA 2000

### 1.5.1 Etóxol Sıatńpnons tnc oukías $\pi$ reploxńs Natura 2000

Aró to ápӨpo 8 tou N. 3937/2001








 $\mu \varepsilon \beta \alpha \dot{\sigma} \eta$ т $\alpha \pi \alpha \rho \alpha \alpha \dot{\tau} \omega$ крıтท́pı $\alpha$ :









 ठıатท́pクoņ́ тоu．






















##  ұ $\alpha \rho \alpha к \tau n \rho เ \sigma \tau \varepsilon i ́ ~ n ~ o u k i \alpha ~ \pi \varepsilon \rho เ o \chi n ́ ~ N a t u r a ~ 2000 ~$

 каı 5 т $\omega v$ عı $\delta \omega \dot{\nu} \mu \varepsilon \mu о \rho \phi \grave{\prime} \mu \eta ́ \tau \rho \alpha \varsigma$.
EIDIKH OIKO＾OПIKH AミIO＾OГHEH（EOA）EPTSN EПEEEPTAEIA乏 KAI DIAQE

| TÚTLO¢ оוкотט́tou | Kんరıкó¢ |  $\pi \varepsilon р เ o \chi \eta ́ \varsigma ~ N a t u r a ~$ |  |  | Katáotaon <br>  | ミuvo入ukń <br>  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| －AsuKnnai $\mu \varepsilon$ Juniperus spp． | 5210 | 1 | D |  |  |  |
| －Mғvగกnรıঠń Matorrals $\mu \varepsilon$ Laurus nobilis | 5230 | 1 | C | A | C | B |
|  | 5310 | 1 | C | A | C | B |
|  Funhorhia knurd́ as птก́коп $\mu v \varepsilon \varsigma ~ \beta р \alpha \chi \omega ́ \delta \varepsilon เ \varsigma ~$ актє́¢ | 5320 | 2 | A | A | B | A |
| －Wrívarva Sarrnnnterium spinosum | 5420 | 4 | A | C | B | B |
| －AnRertioúzol a入tuкoí $\lambda \varepsilon \mu \omega ́ v \varepsilon \varsigma$ | 6170 | 3 | C | B | B | B |
| －AiAtinertine Avatoגıкńc Méoveiou | 8140 | 3 | B | B | B | B |
| －Arian ofuár aró Luzulo－Fagetum | 9110 | 1 | D |  |  |  |
|  Alnus olutinnsa kcu Fraxinus excelsior | 91 E 0 | 1 |  |  |  |  |
| －Náron $\mu$ Castanea sativa | 9260 | 39 |  | A | A | A |
| －Fג入nvikós $\delta$ árn nfiớr $\mu \varepsilon$ Abies borisii－regis | 9270 | 1 |  | C | B | C |
| －$\Delta$ áon o̧ıás $\mu \mathrm{E}$ Quercus | 9280 | 5 |  | B | A | A |









| $\alpha / \alpha$ |  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Abies cephalonica |  | X |  |  |
| 2 | Aethionema orbiculatum |  | X |  |  |
| 3 | Antehemis sibthorpii |  |  | V |  |
| 4 | Asperula aristata ssp. thessala |  | X |  |  |
| 5 | Astragalus thracicus ssp. monochorum |  | X |  |  |
| 6 | Atropa belladona | $\Gamma$ |  |  | A $\Delta$ |
| 7 | Aubrieta erubescens |  |  | R |  |
| 8 | Beta nana |  | X | R |  |
| 9 | Campanula lavrensis |  | $x$ |  |  |
| 10 | Centaurea pannosa |  | X |  | A |
| 11 | Centaurea peucedanifolia | A |  |  | A |

EIDIKH OIKO^OГIKH AミIO^OГHEH (EOA) EPTSN EПEEEPTAEIA乏 KAI DIAOE

| $\alpha / \alpha$ |  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | Cephalanthera longifolia | B |  |  | A |
| 13 | Cyclamen persicum | B |  | V | A |
| 14 | Digitalis leucophaea |  | X |  | A $\triangle$ |
| 15 | Fritillaria euboeica |  | X | R |  |
| 16 | Fritillaria graeca |  | X |  | A $\triangle$ |
| 17 | Helichrysum sibthorpii |  |  | V |  |
| 18 | Hypericum athoum |  | X |  |  |
| 19 | Isatis tinctoria ssp. athoa |  | X |  | A $\triangle$ |
| 20 | Limodorum abortivum | B |  |  | A |
| 21 | Linum leucanthum |  | X |  |  |
| 22 | Linum olympicum ssp. athoum |  | X |  |  |
| 23 | Neotinea maculata | B |  |  |  |
| 24 | Neottia nidus-avis | B |  |  |  |
| 25 | Polygonum icaricum |  | X |  | A |
| 26 | Silene echinosperma |  | X |  |  |
| 27 | Silene multicaulis ssp. genistifolia |  | X |  |  |
| 28 | Silene orphanidis | A |  | V |  |
| 29 | Viola athois |  | X |  | A $\triangle$ |

Ere\{nvíoelc Пivaka 3


##  <br> $$
\text { 2. Evঠ} \eta \mu x \delta \delta, N \alpha u: X \text {. }
$$





| $\alpha / \alpha$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 1 | Phalacrocorax aristotelis | Өалаббоко́ракаऽ | H meninvó siveri via to sifine mat <br>  <br>  каı ф（入оعғияi＞1\％тои）عӨvıкоú $\pi \lambda \eta \theta$ ư～ои́． |
| 2 | 1－lieraaetus fasciatus | ミлıそんعтó¢ | H reninvń fiver vir to sidor mar <br>  <br>  <br>  $\pi \lambda \eta \theta$ и $\mu$ ои́． |
| 3 | Puffinus yelkouan | Múxos | Kpıtи́pıo Bird Life ：B1ii，C3 |



| $\alpha / \alpha$ | Eлıотпนоvıки́ ovouんбia |  |  |
| :---: | :---: | :---: | :---: |
| 1 | Circoetus gallicus | Фıठаعтós |  |
| 2 | Aquila chrysaetos | Xpuoartós |  |


| $\alpha / \alpha$ | Emıotnuovikń ovouađía | E入入nvikñ ovounoía |  |
| :---: | :---: | :---: | :---: |
| 3 | Falco peregrinus | Пєтрitn¢ |  |
| 4 | Apus melba | Bouvootaxtáp $\alpha$ |  |



## yıa ta фиoık $\alpha$ हv

 аu६ávovtat．




## $\underline{\Sigma \pi n v \pi \varepsilon \rho i ́ t t i \omega a n ~ \varepsilon i ́ \delta o u s ~}$




 $\mu \varepsilon เ \omega \theta \varepsilon i ́ \kappa \alpha \tau \alpha ́$ то $\pi \rho \circ \beta \lambda \varepsilon \pi \tau$ о́ $\mu \varepsilon ́ \lambda \lambda$ доv



## 







## 

| MÉर¢Өo¢ | K $\omega$ \％uкó¢ | Характпрıбио́s |
| :---: | :---: | :---: |
| $\chi \propto \mu \eta \lambda$ ¢́ | B01．02 |  סévסpa） |
| $\chi \propto \mu \eta \lambda \grave{\prime}$ | E01．03 |  |
| $\chi \propto \mu \eta \lambda$ ́n | A01 | ка入入ı ¢́рүєı $\alpha$ |
| $\mu \varepsilon ́ t \rho ı \alpha$ | 109 | ф $\omega$ tıá（\＄ưokń） |

##  2000 －STANDARD DATA FORM

## $160 \Delta \alpha \sigma$ ки́ $\delta t \alpha \chi \varepsilon i p t \sigma \eta$

## 

## 948 Пиркаүıи́ ало́ фибıкג́ גitı $\alpha$




 т $\alpha$ סג́oŋ Kaotaviác．

## Пuркауเદ́s




 $\mu \eta$ коऽ тпร Xepoovŋ́бou．

## 



 ＇Epyou．


 $\lambda$（ $\mu$ veৎ

 $\Delta$ t́́таүна 67／1981）－OXI



 67／1981）－OXI


 －OXI

$>$ Mauremys rivulata IUCN－LC，Kókкเvo Bı $\beta \lambda$ io E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha \varsigma$－LC，Annexes II of the EU Natural Habitats Directive－OXI
 u廿ó $\mu \varepsilon \tau \rho \alpha$

 67／1981）－NAI
 каı סабıк $\alpha$ ßоđкото́тıа．











 EKOסnyia 92／43／EOK，OXI
＞Platanus orientolis PD67／81 Пo入ú kotvó đe потd́ $\mu \mathrm{I}$ OXI


 $\alpha \pi \alpha \rho$ Ө
$>$ Trapa natans Annex II of Council Directive 92／43／EEC OXI
＞Pancratium maritimum Annex II of Council Directive 92／43／EEC OXI
＞Fraxinus angustifolia Annex II of Council Directive 92／43／EEC OXI
＞Groenlandia densa Annex II of Council Directive 92／43／EEC OXI
$>$ Lutra Lutro IUCN：NTKóккıvo Bı $\beta \lambda i$ о E $\lambda \lambda \nless \alpha \delta \alpha \varsigma$ EN－OXI
 трофท́


$>$ Canis aureus IUCN: LC Kókkıvo Bı $\beta \lambda$ io E $\lambda \lambda \alpha ́ \delta \alpha \varsigma ̧$ EN NAI ođףv $\pi \varepsilon p เ o \chi \eta ́$



 Пара́ртп $\mu \alpha$ V. Проотабia CITES- OXI




> Accipiter brevipes 2009/147/EC: Парápтп $\mu \alpha$ I, $\Sigma u ́ \mu \beta \alpha \sigma \eta ~ \tau \eta \varsigma ~ B \varepsilon ́ p v \eta \varsigma ~ I I, ~ \Sigma u ́ \mu \beta \alpha \sigma \eta ~ \tau \eta \varsigma ~ B o ́ v v \eta \varsigma ~ I I, ~$



$>$ Anthus campestris 2009/147/EC: Пl $\rho \alpha \dot{\rho} \neq \eta \mu \alpha$ I, $\Sigma$ ú $\mu \beta \alpha \sigma \eta$ Bépvךc II, KBE-E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha \varsigma$ : LC, IUCN: OXI


 K $\omega v o \phi o ́ \rho \omega v$ OXI


 иүрото́лоия $\mu \varepsilon \alpha \mu \mu$ о́ дофоис. OXI



> Calandrella brachydactyla 2009/147/EC: Пapáptп $\mu \alpha$ I, £ú $\mu \beta \alpha \sigma \eta$ Bépvך¢ II, KBE-E $\lambda \alpha \dot{\alpha} \delta \alpha \varsigma:$ NE, IUCN: NAI E $\delta \alpha ф$ ó єкта́бยเৎ̧ ท̇ ßобко́топой OXI

 про́бßабך бє $\varepsilon \lambda \omega ́ \delta \eta$ иүрото́лоис. OXI





> Circus aeruginosus 2009/147/EC: Пара́ртпиа I, £ú $\mu \beta \alpha \sigma \eta$ tns Bépvクs II, $\Sigma u ́ \mu \beta \alpha \sigma \eta$ tns Bóvvns II,

CITESII／A，KBE－E $\lambda \lambda \alpha ́ \delta \alpha \varsigma ̧: ~ V U, ~ I U C N: ~ O X I ~$

 E $\lambda \lambda \alpha \dot{\alpha} \sigma \alpha$ ．
 KBE－E入入á $\delta \alpha c ̧ / / \cup$ ，IUCN：OXI




 عктд́oॄเц．



$>$ Haliaeetus albicilla 2009／147／EC：Пapáptqu I，£ú $\mu \beta \alpha \sigma \eta$ Bépvnç II，Bonn Convention I／II，CITESI，
 $\pi \alpha \rho \alpha ́ к т เ \varepsilon \varsigma ~ \lambda \iota \mu v o \theta \alpha ́ \lambda \alpha \sigma \sigma \varepsilon \varsigma$ к $\alpha \iota \lambda i \mu v \varepsilon \varsigma$ ．
 поu ф $\omega \lambda \varepsilon \alpha ́ \zeta \varepsilon เ ~ \sigma \varepsilon ~ \delta \varepsilon ́ v \tau \rho \alpha ~ к \alpha เ ~ Ө \alpha ́ \mu v o u c . ~ O X I ~$






$>$ Melanocorypha calandra 2009／147／EC：Пар́́ptп $\mu \alpha$ I，¿ú $\mu \beta \alpha o \eta ~ B \varepsilon ́ \rho v \eta c, ~ I I, ~ K B E-E \lambda \lambda \alpha ́ \delta \alpha c ̧: ~ V U, ~ I U C N: ~$ OXI


## 










## 








 актіvoßо入ies.







## 2. $\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O \cap O T H \Sigma H ~ T \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N ~$




















## $\delta \eta \mu \iota o u p y o u ́ v t a \iota ~ \alpha \pi o ́ ~ t \eta v ~ ү e ́ q u p \alpha ~$




 єлє乡врүабíac）．

## 









## 





 Өєрцóßı$\iota v$ пєúк $\omega v$ ．
 $\theta \propto \delta ı \alpha ф$ оолоџŋӨо⿱́v．





## Enurtüozic épyou otnv ravi $\delta \alpha$ ins $\pi \varepsilon \rho ı o x n ́ s$









## 3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma$ T $\Omega N$ ПIOAN $\Omega N$ EПIITR乏E $\Omega N$








 Castanea sativa，Quercus sp．，Fagus sp．），a入入ᄉ́ umápxouv kat opıб $\mu \varepsilon ́ v \alpha$ кwvoфóp $\alpha$ סáon（Pinus






 Quercus coccifera．





 Пعрıß́̀入入ovtoç（1992），$\pi \varepsilon p \iota \lambda \alpha \mu \beta \alpha \dot{v o v t a ı ~} 5$ ta૬t（Corydalis integra，Osmunda regalis，Oxytropis
 катádoүo t $\omega v$ кókкıv $\omega v$ v $\delta \delta o \mu \varepsilon ́ v \omega v, 10$ eí $\delta \eta$（Arctostaphylos uva－ursi，Atropa bella－donna， Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．Orbelicus，Neottia nidus－ avis，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus） пробтатвúovtaı aró to $\varepsilon \lambda \lambda \eta v i k o ́ ~ \pi \rho о \varepsilon \delta \rho ı к o ́ ~ \delta t a ́ t \alpha ү \mu \alpha ~(67 / 1981), ~ з ~ \varepsilon i ́ \delta \eta ~(H e r a c l e u m ~ h u m i l e, ~$
 $\beta \alpha \lambda_{k \alpha v i k \alpha ́ d ~ e v \delta \eta \mu u k \alpha ́ ~(A l l i u m ~ c h a m a e s p a t h u m, ~ A r a b i s ~ b r y o i d e s, ~ A s p e r u l a ~ a r i s t a t a ~ s s p . ~ N e s t i a, ~}^{\text {s }}$ Colchicum doerfleri，Erysimum drenowskii，Stachys leucoglossa）kaı 1 ta $\xi$ ıvouıkós（Thymus thracicus）．

## 

























 $\pi \alpha ̆ v \omega$ aró 100 ह́tๆ.




























 пupkapıác عivaı $\eta$ Fritillaria euboeica（Phitos et al．1995）．






 tᄁs ravido
 t $\omega v$ Ө

 $\tau \omega v$ ：
 סג்øŋ）

















 про́бкроибпs














 غ́pywv.




## 4. ANTI乏TAOMİTIKA METPA

## 

## N. 4014/2011




## 



| Enirtwon | Métp $\alpha$ |
| :---: | :---: |
|  <br>  |  <br>  <br>  <br>  <br>  <br>  <br>  |
|  |  <br>  <br>  <br>  <br>  <br>  $\pi \rho \circ \sigma \omega \rho เ v \grave{~} \pi \varepsilon \rho i \phi \rho a \xi \eta$. |
|  |  <br>  <br>  <br>  <br>  |
|  <br>  |  <br>  éxet $\mu \varepsilon i v e t ~ ү u \mu v ท ́ ~ \lambda o ́ \gamma \omega ~ к \alpha t a đ к \varepsilon u \omega ́ v ~$ |


| Enirtwon | Métp $\alpha$ |
| :---: | :---: |
|  ф $\omega \lambda \varepsilon$ олоínons |  <br>  (то ह́pyo عivaı по入ú $\mu$ ккро́) |
|  |  |

## 






 $\mu \pi о \rho \varepsilon i(v a \varepsilon \xi \propto \lambda \varepsilon เ ф \tau \varepsilon i)$.











 $\pi \lambda \dot{\rho} \rho \omega \varsigma$.




## 













##  

## 


















 тๆv $\alpha \rho \mu o ́ \delta \iota \alpha \alpha \rho x \dot{\eta}$ ．














 $\pi \rho о к \lambda \eta$ Өoúv ох $\lambda$ ŋ́беเс．



## 










－Na $\mu \eta \nu \delta \eta \mu$ toupyoúvtal « $\lambda \mu$ voú $\lambda \varepsilon \varsigma$＂





## Aphóठtot форعí̧ u入omoínoŋs

 топıкои́ç форعí̧（Ієра́ Kotvótŋта，$\Delta \alpha \sigma \alpha \rho \chi \varepsilon i ́ o, ~ к . \lambda . \pi.) . ~$

## 5．ПРОГРАММА ПАРАКОЛОҮОНГНГ





 к $\alpha$ Ooptotoúv．


бuxvótnta катаүрафńৎ $\sigma u \mu \beta \alpha \dot{\lambda} \lambda$ ouv $\sigma \tau \eta v$ ：
 KんL tПV KYA 5673／400／1997（DEK 192／B－14．3．1997）



 оŋлтткท́ৎ $\delta \varepsilon \xi \alpha \mu \varepsilon v$ ท́s．
－Пробтабía тп $\delta п \mu$ о́бıас uүعiac．



## Перıßа入入оvtкки́ ларако入ои́Өŋŋך




## 









## Eiбepróusvo opyaviкó بoptio





## 

A．$\Delta \varepsilon \xi \alpha \mu \varepsilon v$ ர́ $\pi \rho о к а \theta i \nsucceq \eta \sigma \eta \varsigma$















## 







- ठибогдівс отпи лгрьохи́




## 

## 



 $\lambda u \mu \alpha ́ t \omega v$.


























 о入ок入ńp $\omega$ Øí тouc．





























| ПAPAMETPOE | EIzOAOE | EEOAOE | IAYE | $\triangle$ EITMA | ПAPATHPHZEİ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BOD ${ }_{5}$ | \# | \# |  | M.H |  |
| COD | \# | \# |  | M. ${ }^{\text {H }}$ |  |
| SS | \# | \# |  | M. ${ }^{\text {H }}$ |  |
| A $\mu \mu \omega v i \alpha \kappa \alpha ́, ~ v ı t \rho \omega ́ \delta \eta \eta, ~$ vitpiká | \# | \# |  | M.H |  |
| TP | \# | \# |  | M.H |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| * : ミлорабıкá |  |  |  |  |  |
|  |  |  |  |  |  |

## 6. £YNOUH इYMILEPA乏MAT $\Omega N$

















 $\lambda \cup \mu \alpha ́ \tau \omega v:$







 $\pi \varepsilon \rho เ \beta \dot{\alpha} \lambda \lambda о$.

## Eruாtẃaعis tou ह́pyou otnv repıoxń Natura

Me tŋv катабквuท́ tou ह́pyou:
















## 7．BIBАIOГРАФIKE乏 ПHГE乏

 Poठórпnc．A日ท́va．





－EгYE Aлоүрафர́ 1991.


 Eкסó
－Dimou D，Gikas GD，Tsihrintzis VA：＂Water quantity and quality monitoring of Lissos river，North Greece＂，Proceedings of the Third International Conference on Environmental Management， Engineering，Planning and Economics（CEMEPE 2011）\＆SECOTOX Conference，2011，Skiathos， Greece，p．151－157
 Eтаıрías，Өعб／vikn Arpìıо̧̧ 2004
－Гıavvórou入oç，PYПANइH T $\Omega N$ Y $\triangle A T I N \Omega N ~ \Sigma \Omega M A T \Omega N$ AПO THN KYK $\Lambda O Ф O P I A ~ T \Omega N ~ O X H M A T \Omega N ~$

－＂The AOPII Cost Effectiveness Study Part III：The transport base case Annex B4 Greece，The European Commission，Standard \＆Poor＇s DRI and KULeuven＂
－ҮПЕХ $\Omega \Delta \mathrm{E}$＂Ат
－Taylor，E．C．，Green，R．E．，\＆Perrins，J．（2007）Stone－curlews Burhinus oedicnemus and recreational disturbance：developing a management tool for access．Ibis， 149 （1），37－44．
－Tucker，G．M．\＆Heath M．F．，（1994）Birds in Europe：Their conservation status．Cambridge，UK．： BirdLife International（BirdLife Conservation Series No 3）
－Barros，C．\＆De Juana，．E．（1997）Breeding success of the Stone Curlew Burhinus oedicnemus at La Serena（Badaioz．Spain）．Ardeola 44 （2），199－206．
－Bealey，C．E．，Green，R．E．，Robson，R．，Taylor，C．R．，Winspear，R．（1999）Factors affecting the numbers and breeding success of Stone Curlews Burhinus oedicnemus at Porton Down，Wiltshire． Bird Study 46 （2），145－156．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．
－Giannangeli，L．，De Sanctis，A．，Manginelli，R．，Medina，F．M．（2005）Seasonal variation of the diet of the stone curlew Burhinus oedicnemus distinctus at the Island of La Palma，Canary Islands． Ardea 92 （2），175－184．
－Green，R．E．，Tyler，G．A．，Bowden，C．G．R．（2000）Habitat selection，ranging behaviour and diet of the stone curlew（Burhinus oedicnemus）in southern England Journal of Zoology 250 （2），161－183．
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Thompson，S．，Hazel，A．，Bailey，N．，Bayliss，J．，Lee J．T．（2004）Identifying potential breeding sites for the stone curlew（Burhinus oedicnemus）in the UK．Journal for Nature Conservation 12， 229 － 235.
－Catry T．，Ramos JA．，Catry I．，Allen－Revez M．，Grade N．， 2004 Are salinas a suitable alternative breeding habitat for Little Terns Sterna albifrons？IBIS 146 （2）：247－257 APR 2004
－Fasola M．，（1993）Distribution，population and Habitat Requirements of the Vommon Tern and the Little Tern breeding in the Mediterranean in Aguilar，J．S．，Monbailliu，X．Paterson，A．M．Status and Conservation of Seabirds，Proceedings of the 2nd MEDMARAVIS，SEO，Madrid
－Goutner V．，Charalambidou T．，\＆Albanis A．（1997）Organochlorina Insecticide Residues in Eggs of the Little Term（Sterna albifrons）in the Axios Delta，Greece．Bull．Environmental Contamination and Toxicology 58－61－66
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Joris E．，\＆Stienen E．，（2009）Impact of wind Turbines on Terns in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．
－Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute （VLIZ）．Oostende，Belgium．Viii＋68 p．
－Medeiros R．；Ramos J．，Paiva V．，Almeida A．，Pedro P．，Antunes S．（2007）Signage reduces the impact of human disturbance on
－Little tern nesting success in Portugal，Biological Conservation 135 （2007）99－100



－Ruben F．，Krijgsveld K．，Camiel Heunks，Martin Poot \＆Sjoerd Dirksen．（2009）Nocturnal and Diurnal Flight Intensity and Altitude of Seabirds and Migrants in and around an Offshore WindFarm in the Dutch North Sea in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．
－Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute（VLIZ）．Oostende，Belgium．Viii＋68 p．

 EKӨE
三ávӨn 2006．$\sigma \varepsilon \lambda .64$
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－BirdLife International（2008）Species factsheets．Downloaded from http：／／www．birdlife．org Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．




－Xavס́pıvó̧ Г．，（1992）Mou入ıá oto Kapavסeıvós M．，＾eүákı̧ A．To Kókкıvo Bıß入io twv
 OpvıӨо入оүıкй Eтаıргía．
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．

- De La Montana, E., Rey-Benayas, J.M., Carrascal, L.M. (2006) Response of bird communities to silvicultural thinning of Mediterranean maquis. Journal of Applied Ecology 43, 651-659.
- Guerrieri, G., Pietrelli, L., Biondi, M. (1996) Status and reproductive habitat selection of three species of Shrikes, Lanius collurio, L. senator and L. minor in a Mediterranean area. (Proc. of the First Intern. Shrike Symposium) Found. Vert. Zool. 6, 167-171.
- Handrinos, G., \& Akriotis, T., (1997) The birds of Greece. C. Helm, A \& C Black, London.
- Isenmann, P., Debout, G. (2000) Vineyards harbour a relict population of Lesser Grey Shrike (Lanius minor) in Mediterranean France. Journal fur Ornithologie 141 (4), 435-440.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) Philopatry, dispersal patterns and nest-site reuse in Lesser Grey Shrikes (Lanius minor). Biodivers. Conserv. 16, 987-995.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) The importance of breeding density and breeding synchrony for paternity assurance strategies in the lesser grey shrike. Folia Zoologica 57 (3), 240250.
- Kristin, A., Hoi, H., Valera, F., Hoi, H. (2000) Breeding biology and breeding success of the Lesser Grey Shrike (Lanius minor) in a stable and dense population. Ibis 142 (2), 305-311.
- Lepley, M., Ranc, S., Isenmann, P., Bara, T., Ponel, P., Guillemain, M. (2004) Diet and gregarious breeding in lesser Grey Shrike (Lanius minor) in Mediterranean France. Revue d'Ecologie (La Terre et la Vie) 59 (4), 591-602. Pons P., Lambert B., Rigolot E., Prodon, R. (2003) The effects of grassland management using fire on habitat occupancy and conservation of birds at a mosaic landscape. Biodiversity and Conservation 12, 1843-1860.
- Ristow, D., Wink C., Wink M. (1986) Assessment of Mediterranean Autumn Migration by Prey Analysis of Eleonora's Falcon. Proc. 1st Conf. on Birds wintering in the Mediterranean Region, Aulla Feb. 1984. Supplemento alle Ricerche di Biologia della Selvaggina 10(1), 285-295.
- Tucker, G. M. \& Heath M. F., (1994) Birds in Europe: Their conservation status. Cambridge, UK.: BirdLife International (BirdLife Conservation Series No 3)
- Valera, F., Kristin, A., Hoi, H. (2001) Why does the lesser grey shrike (Lanius minor) seldom store food? Determinants of impaling in an uncommon storing species. Behaviour 138 (11-12), 14211436.
- Wirtitsch, M., Hoi, H., Valera, F., Kristin, A. (2001) Habitat composition and use in the lesser grey shrike (Lanius minor). Folia Zoologica 50 (2), 137-150
 $\Delta t \alpha \chi \varepsilon i p t \not \square \eta ~ к \alpha \lambda \alpha \mu t \omega ́ v \omega v \lambda i \mu v \eta \varsigma$ l $\sigma \mu \alpha \rho i \delta \alpha c$ ),
 Bıotwvi $\delta \alpha \varsigma$, l $\sigma \mu \alpha \rho i \delta \alpha \varsigma$ ), Boskidis et al., 2010 (J., Envir., Scien., Health, 45,11, 1421-1440, Changes of water quality and SWAT modelling of Vosvozis river basin),
 Єра́кпся),
- Economou et al., 2007 (Medit., Mar., Scien., 8,1,91-166, The freshwater ichthyofauna of Greece),




- Papastergiadou, Babalonas, 1993 (Willd., 23,137-142, Aquatic flora of N.Greece)Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),
- Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),




 ОППЕО 97
 Екठо́бعเц ОППЕӨ 97.
 A日ńva．
－Zagas，T．D．，P．P．Ganatsas，T．K．Tsitsoni and Marianthi Tsakaldimi．2004．Thinning effect on stand structure of holm oak stand in northern Greece．In：
－Arianoutsou，M．and V．P．Papanastasis（eds），Proceedings of the 10th MEDECOS Conference，April 25－May 1，2004．Rhodes，Greece．Millpress，Rotterdam．

 117.
－Grisebach，A．1841．Reise durch Rumelien und Brussa in jahre 1839， 1.2 Gottingen．
－Mattfeld，J．1927．Aus wald und macchie in Griechenland．Dendrol．Ges．38：106－151．
 Apvaiac．Өعбба入oviкๆ．
 1：50．00 AӨ $\omega$ ç каи Iepıббóc．AӨńva．














## 8．OMA $\triangle A$ ME $N E T H \Sigma$

 Taх．$\Delta / v \sigma \eta$ ：Пала́фף 82，Өعбба入оviкп，Т．К．54453， Tף $\lambda$ ．／Fax： $2310902321 / 2310330630$

## $\Sigma \phi \rho \alpha \gamma i \delta \alpha-$ Yлоүрафท́



$$
\begin{aligned}
& \text { Oraoa入ovikn } 14 / 041 \text { 20.22 } \\
& \text { ГIA TON EAETXO }
\end{aligned}
$$

EAETXOHKE
0عooadovikn 14／．．．4 $1 \ldots .20$ 2．2．
TMHMATOE $\triangle A \Sigma O N$ \＆ПEPBAMMONTOE



## ©EתPHOHKE

Oecoatovikn． 14 lo4 $/ 20.22$
O AIEYEYNTH乏 TH乏
＇1EXNIKHZ YILHPEEtA天


「éupytos Matpaná̧ns
Hoduthós Mnxavikós $\mu$ ع A＇$\beta$ ．

ПАРАРТНMA I



## 





## 





| IEPA KOINOTH乏AГIOY OPOYAQ |  |  |
| :---: | :---: | :---: |
| Epyo：$\quad$ EPTA ETEEEPTAEIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma$ |  |  |
| ПPOME IEPAE MONHE EENOQQNTOE |  |  |
|  <br> $\triangle$ IATPAMMA POH $\Sigma$ ETKATA乏TA EПE |  |  |
| Aviooxos Melems | KAPAГERPIIOY EYETPA MSc XHMIKOZ MHXANII Ap．TEE： 87022 <br>  <br>  |  |
|  |  |  |
| ккйках | Appenos sxexiou | Huspounvia |
| － | I－M－01－16－03＿4 | IOYNioz 2021 |




[^0]:    M．П．E．EPTSN EREEEPTASIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K S N ~ A Y M A T S N ~ I . ~ M . ~ E E N O Ф \Omega N T O \Sigma ~-~ M H ~ T E X N I K H ~ П E P I A H \Psi H ~-10-~$

[^1]:    －132－

    M．П．E．EPTSN EПE＝EPTAEIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ I . ~ M . ~ E E N O \Phi S N T O \Sigma ~$

