IEPA KOINOTHTA AГIOY OPOY乏
$A \Theta \Omega$

ЕРГО：
 ミTO ATION OPO¿»

AITHЕН ГIA ҮПАГЛГН ЕЕ ПРОТҮПЕЕ ПЕРIBAMONTIKE乏
 ＾YMATSN I．KEAIOY AГ．TPYФЛNOE，I．M．EГФIГMENOY

ANADOXOE MEAETHE

EYミTPATIOE KAPAГERPIIOY ПАПАФН 82， 54453 ӨЕГミAへONIKH email：skarageo＠gmail．com

IEPA KOINOTHTA
AIIOY OPOYE
$A \Theta \Omega$

EPГO：
 «ЕРГА ЕПЕЕЕРГAธIA KAI AIAOE $H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ \Sigma T O ~$ AIION OPOミ»

АITHЕН ГIA ҮПAГЛГH ЕЕ ПРОТҮПЕЕ ПEPIBAMONTIKE EPTSN EПEEEPГAEIAE KAI AIAOEEHE AETIKSN AYMATSN IEPOY KEAIOY KAOIГMATOE AГ，TPYФЛNOE I．M．EЕФIГMENOY

ANADOXOE MENETHE
EYETPATIOE KAPATERPIIOY
ПАПАФН 82， 54453 ӨЕЕミAへONIKH
email：skarageo＠gmail．com
$\Sigma u ́ \mu \varphi \omega v \alpha \mu \varepsilon$ т ηv K．Y．A．171914／2013（Ф．E．K． 3072 B＇／3－12－2013）$^{\prime}$

IAPAPTHMA A

A．TENIKEL ПАHPOФOPIEL					
A． 1					
A．1． 1	「Eviká Etoxeía				
Embvuyia： EPTA EПEEEPTAEIA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T Q N ~ I E P O Y ~ K E N I O Y ~ K A O I \Sigma M A T O \Sigma ~$ AГIOY TPYФ＠NOE IEPA乏 MONHE E $Ф I \Gamma M E N O Y$					
A．1．2					
Oós．s： （av upiotarai）				Aрөөн⿺¢¢：	
 	10 m vonoōutiká tou lepoú Kaөiəuatos Ayiou Tpúquvos－ 850 m öutiká tins lepás Movi̧s Eoquy			T．K．：	
Пeplpeperiaki／¢¢ Evótriades：					
Пер甲甲ереї／E¢，					
WGS 84 		Er2A 87		WGS 84	
		x	Y	Φ	\wedge
		510733，10	4466578，45	40.35226885	24.12814290
OПEKEПE（av upiotavtai）					
A． 2	Eroxe	¢opt́a тou		ótnras	
Etuwvpia：	IEPA MONH EटФITMENOY				
Dievéeuvan Époas：	KAPYAI， 630 86，AГION OPOE				
	23770－23229				
E－mail：	athos．kinotis＠gmail．com		Fax：	23770－23653	

Yteúधuvos emikoivuvias:			
A. 3			
A.3.1			X
A.3.2	трототоі́ŋоп		\square
A.3.3	 		\square
A.3.4	 		\square

B. XAPAKTHPIETIKA EPIOY					
B. 1	B. 1 Katata				
			Kpitipia / Meyéen		
 		\square	 	
		 	\square		
 D14 kaı D15)			\square	A) Hиерரீбіа побóтпта
		 		\square	
 kal R13)		\square			
		B) Evtós opicuv oוкıб $\mu \dot{v}$ kal то́ौह $\omega \mathrm{v}$:	\square		
		по́̀ $\varepsilon \omega v$:	\square		
 			\square	भováo $\omega \mathrm{v}$:	\square
 			\square	عוбعрхо́нгv
 катабкєиés, п.X. тйттои Өєриокптіои, $\mu \eta$ 		\square	Нцерйбіа побо́тптта 	
		\square	нováónv Emikivouvwv AEKK:	\square	

 ар $\theta .7$ тои П．$\Delta .51 / 2007$ 		X	uாठ́үघюои Чбठрочоре́a $\varepsilon \mu$ тіттой ото арө． 7 тои П．Δ ． 51／2007）	X	
		（ápōzữ） хрர்ণா	\square		
		「）Mováőeş Іஏoōúvauou $\pi \lambda \eta \theta$ иб μ oú：	．．．．．．100．．．．．．．		
B．1．1	 			23．03．06 $\ldots . .$.	
21／13．01．2012）órт 				X	

B． 2				
B．2．1	Evtós тepioxńs tou İktúou Natura 2000；$^{\text {2 }}$		NAI X	OXI \square
Kんర̄̈ıKós		Ovoua		
GR $1270003 \ldots \ldots$		．．．．．．．．．．．．．CHERSONISOS ATHOS－XEP $\mathcal{O N H \Sigma O \Sigma ~ A \Theta \Omega \Sigma ~}$		
	．．．．．．．．．．．．．．．．．．			
B．2．2			NAI \square	OXI X
B．2．3	غ́кта⿱㇒木乃ร：		NAI \square	OXI X
B．2．4	 （ФЕК A＇153）：		NAI \square	OXI X

Г．EПİYNAПTOMENA इTOIXEIA TEKMHPI $\Omega \Sigma H \Sigma$

 Amó乡aon̄s：

IEPA KOINOTHTA
AГIOY OPOY乏
$\mathrm{A} 日 \Omega$

ЕРГО：«EPГA EПE＝EPГA乏IA乏 KAI DIAOEटH A乏TIKתN ＾YMAT』N $\Sigma T O$ AГION OPO乏»

ANADOXOE	EYETPATIOE A．KАРАГЕОРГIOY Пamá甲n 82，T．K．54453，ӨEโEAAONIKH TПА．：2310－902321 \＆ 6976801783 Email：skarageo＠gmail．com

ГYNOनTTIKH TEXNIKH EKOEさH EГKATAइTAइH工
EПEEEPГAГIA乏 AYMATRN IEPOY KEAIOY
KAOI工MATOEAГ．TPYФRNOEI．M．EЕФIFMENOY

חEPIEXOMENA

1．TENIKA ETOIXEIA KAI $\triangle E \triangle O M E N A ~ \Sigma X E A I A \Sigma M O Y$ TH乏 EEA IEPOY KAOİMATO乏 AГ．TPYФ Ω NOE I．M．E¿ФITMENOY 1
1.1 ГENIKA 1
1.2 ПАНӨҮ乏MO乏 ミXEDIAEMOY 1
2．ПАРОХЕЕ KАI PYПANTIKA ФОРТIA 2
2.1 Парохє́ц акаӨа́ртшv 2
2．1．1 Гघvıка́ 2
 3
2．2 Puпavtiкá фортіа 3
3．ПOIOTHTA T ΩN EПEEEPLAEMEN ΩN AYMAT ΩN 5
4．AITIOAOГH乏H T Ω N BA乏IK ΩN EПIIOORSN $\Sigma X E \Delta I A \Sigma M O Y ~ T \Omega N ~ E P I \Omega N ~$ EПEEEPTAEIAE 7
 7
 7
5．ГENIKH ПEPITPAФH TH乏 EEへ 8
6．TEXNIKH ПЕРIГРАФН T $\Omega \mathrm{N}$ EPГЛN EПEЕЕРГАЕIA乏 8
 8
6．1．1 Гघvıка́ 8
6．2 Вıо入оүıки่ Eпє६врүабіа 10
6．2．1 Eıбаушуท่－перıүра甲＇ 10
 10
 10
6.3 ปIủ入ıəワ 15
6．3．1 Eıбаүшүท่ 15
6．4 Апо入úuavoŋ 16
6．4．1 Гघvіка่ 16
6．4．2 Пєріүра甲ர் биотйнато̧ UV 16
 17
6．6＇Ерүа ס̄ıavouク̧̆ ıбхúos， 17
 19
 20

1. IENIKA TOIXEIA KAI AEAOMENA EXEAIAEMOY THE EEAIEPOY KAOİMATOEAL, TPYФRNOE I.M. M EERTIMENOY

1.1 ГENIKA

1.2 ПАНО YЕMOE ミXEAIAEMOY

2．ПAPOXEE KAI PYПANTIKA ФOPTIA

2.1 Парохв́ц акаӨа́ртши

2．1．1 「eviká

 парохウ்̧ avá ка́тоіко．

入ітра／$п \mu$ ह́pa．

$q_{E}=0,80 \times 180=144 \mathrm{I} / \mathrm{Kat} / \eta \mu$ ．

 696／74）：
$P=1,50+2,50 /\left(Q_{H}\right)^{0,5} \mu \varepsilon \mu \dot{\varepsilon} \gamma \mid \sigma T \eta$ Ti $\mu \dot{\text { ion ion } \mu \varepsilon 3,00 \text { ．}}$

 100 кат.

$100 \times 150 / 1000=15 \mathrm{~m}^{3} / \mathrm{d}$.

Méviotn Huعpñoia Пapoxṅ AkaӨáptшv

$15 * 1,5 \quad=22,50 \mathrm{~m}^{3} / \mathrm{d}=0,94 \mathrm{~m}^{3} / \mathrm{h}$.

Méviotn תpıaia Парохй АкаӨáptшv
$\mathrm{Q}_{\mathrm{H}}=0,94 \mathrm{~m}^{3} / \mathrm{h}=0,26 \mathrm{l} / \mathrm{s}$
$P=1,5+2,5 / 0,26^{0.5}=6,4-$ ^адßávetaı íoos $\mu \varepsilon 3,00$
$\mathrm{Q}_{\mathrm{p}}=3,0 \times 0,26 \mathrm{l} / \mathrm{s} \quad=0,78 \mathrm{l} / \mathrm{s}=2,81 \mathrm{~m}^{3} / \mathrm{h}$
 аıхиŋ่ऽ проки்птєя:
$Q_{p}=1,20 \times 0,78 \mathrm{l} / \mathrm{s}=0,94 \mathrm{l} / \mathrm{s}=3,38 \mathrm{~m}^{3} / \mathrm{h}$

2.2 Pипаvтıкá 甲ортía

 чортіои (gr/кат./ $\neg \mu$.)

Пivakaş 1.3: Punavtıкá 甲ортia avá ı.к. otףv EE^

ПAPAMETPOE	Eıठıки́ Параүшүи́ Фортíou ($\mathrm{g} / \mathrm{kat} / \eta \mu$)
BOD_{5}	60
COD	120
O\ıко́ Azwio	10
	70
	3

ПAPAMETPO乏		ФA乏H ミXEDIAEMOY
	кат．	100，00
	$\mathrm{m}^{3} / \mathrm{d}$	15，00
	$\mathrm{m}^{3} / \mathrm{d}$	22，50
	$\mathrm{m}^{3} / \mathrm{h}$	0，94
Пapoxn่ aıxun่ऽ Q_{0}	$\mathrm{m}^{3} / \mathrm{h}$	3，38
Eıйıкȯ Punavtikó ¢ортio BOD	$\mathrm{gr} / \mathrm{kat} / \mathrm{d}$	60
Eıठ̈кȯ Punavtıкó ¢ортіо TSS	gr／Kat	70
Eıठ̈ıкó Punavtikó ¢ортio TN	gr／kat／d	11
Eıठ̈ıкó Punavtikó ¢ортio TP	$\mathrm{gr} / \mathrm{kat} / \mathrm{d}$	3
	kg／d	6，00
	kg／d	7，00
Фортіо TN OXEסıаонои่	kg／d	1，00
Фортіо TP охєठІабนои่	kg／d	0，30

3．ПOIOTHTA TRN EПEEEPLAMENRNAYMATRN

 хрク்णク（Пivakaç 2 TПऽ KYA）．

Пара́ретроs	KYA 5673／400／97	KYA 145116 －Miv． 2
AToōékT\ऽ	Етাı甲．uōátiva бǘhata（ $\mu \boldsymbol{\eta}$ عuаíaŋntos атоб̄́кктпS）	Aрб̄єuテワ （aाधріópiotn）
BOD ${ }_{5}(\mathrm{mg} / \mathrm{l})$	≤ 25	≤ 10（80\％ס̌ııy¢átuv）
COD（mg／）	≤ 125	
Alwpoúheva णтє¢á（mgl）	≤ 35	
Oo＾ótŋTa（NTU）		
Eschericia Coli（E．coli） （EC／100ml）	＊	

 тєкцпрішшпs．

 μ кко́тєрп η í̈п $\mu \varepsilon 70 \%$.

4. AITIOAOTHZH TRN BAEIKRN ELIMOLRN EXEATAEMOY TRN.ERTRN.EПE=EERAEIAX

 а६юппьтіа

> Yчп入ós ßаӨцо́s auтонатопоinonя

 $\mu \varepsilon Ө o ́ \delta ̄ o u ~ \varepsilon v \varepsilon p$ үoú ı入úos,

 anaıтоú $\mu \varepsilon v \eta$ aпó тоu̧̧ каvoviб

5．ГENIKH ПEPIIPAQH THE．EEA

 avtiotoıxa бхह́סוa．

 фштібцо́я，к．入．п．）．

6．TEXNIKH ПEPITPAQH TRN EPГRN EПEEEPLASIA天

6．1．1 「evikà

 oтعрعळ்้．

 єпє६६рүабіас．

 ßıо入оүıкク்ऽ єпє६६рүабіас．

 каıрıкє่ц бuvӨウ்кะऽ，

6.2 Bıo৯oyıкர́ Enȩ̧epyaaia

6.2.1 Eıवаүшүர் - перıура甲ர்

 inùos，

 $0.0049 \mathrm{~m}^{3} / \mathrm{m}^{2}$ घпıழávยıac．

 غүката́бтаö пахuvtผ்v 1λ ủoc.

 ßuӨıбиદ̇voı бто aváयıкто uүро́.

		$\Delta \varepsilon \cup т \varepsilon \rho о \beta \dot{\theta} \theta \mu$ ио $\mu \varepsilon$ тautóxpovn vitponoinon	Аєитвроßд́ध $\boldsymbol{\mu}$ о $\boldsymbol{\mu \varepsilon}$ vitponoí̃on oтáठı
$\begin{aligned} & \text { Үסраиयıк'் фо́ртıбп } \\ & \left(\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}\right) \end{aligned}$	0.08-0.16	0.03-0.08	0.04-0.1
Opyaviкí ¢о́ption			
$\mathrm{Kg} \mathrm{SBOD} 5 / \mathrm{m}^{2} . \mathrm{d}$	0.003-0.01	0.002-0.007	0.0005-0.001
$\mathrm{Kg} \mathrm{TBOD} 5 / \mathrm{m}^{2} . \mathrm{d}$	0.01-0.017	0.007-0.015	0.001-0.003
Мह́yıoтŋ Opyavikí Фо́ртібп ото прผ́то 			
$\mathrm{Kg} \mathrm{SBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0.02-0.03	0.02-0.03	
$\mathrm{Kg} \mathrm{TBOD} 5 / \mathrm{m}^{2} . \mathrm{d}$	0.04-0.06	0.04-0.06	
$\begin{aligned} & \text { Фópтıoŋ a a } \mu \omega \text { viac (Kg } \\ & \mathrm{NH}_{3} / \mathrm{m}^{2} \text {.d) } \end{aligned}$		0.0007-0.0015	0.001-0.002

Yбраu入ıко́я Xро́vos， параноví¢（hr）	0．7－1．5	1．5－4	1．2－2．9
	15－30	7－15	7－15
A $\mu \mu \omega v i a$ $(m g / t)$ Eछóס̄ou		＜2	1－2

 катабкยuaбцغ̇va anò FRP．

 unعрıїठ̄ aктivoßo久ia．

 тпท пєрютрочウ่

－Pou入عuáv
－Poठ่̄̇̇ย؟
－Дакти́入ıо аб甲алвіая，

6.3 पIÚAıOワ

6.3.1 Eıбаүшүण்

 Eddy 2003, Titley 2014).

 фо́ртібп тои чіґтрои \forall a віvaı $<8 \mathrm{~m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$.

 є६ผтеріко்.

 перьттою்่．

6．4 Anohúuavot̄

6．4．1 Гغvıкá

 паранغ்троис：
－Поь́тпта тоu vepoú

－Aiwpoúuzva otepeá

- Пapouoia סıa入u
- О入ıкй бклпро́тпта

－BaӨんós anoגúpavoņ

 каı бוапहрато́тпта UVT 70\％／cm．

 нікроорүаvібнஸ்v．

 CANopen）．

 ка入入ıрүєıळ்ン．

6．6＇Epya ס̄avouŕsıбхйos

 бє коvtivウ் anóotaon anó TПV EEA．

 врариоүп̆я．

 т $\varepsilon \mu a x i \omega v$ عv $\sigma \varepsilon ı \rho a ́ . ~$

 yıa бuxvótnta 50 Hz .

 тои піvaка.

 náxouç перinou $25 \mathrm{~cm} \mu \varepsilon$ каӨapó úயо̧̧ перinou $2,70 \mu$.

 про́табпя.

－ミúotnua үعíwons
－Еүката́бта⿱㇒冋 аvтıкєраuviкn่s пробтабias，

 عוброウ่ онßpi $\omega \mathrm{V}$ Uōáт $\omega \mathrm{V}$ ．
 катабкєиабтві Өủpa про́бßабпя．

ГIA TON EMETXO
O EПIBAEПQN XH MEAETH
 Δ aбo入ôүos $\mu \varepsilon A^{\prime} \beta$ ．

пробаvaтоגıбцои่ тои غ̇pyou

EIDIKH OIKO＾OГIKH AミIONOГHEH

EПEEEPTA乏IA乏 KAI DIAOE KAӨI乏MATO乏 AГ．TPYФ®NOE I．M．E¿ФIГMENOY

ANADOXOE

EYETPATIOE KAPATEQPIIOY
ПАПАФН 82， 54453 OEโさAへONIKH
email：skarageo＠gmail．com
Пivakac $\pi \varepsilon \rho เ \varepsilon \chi о \mu \varepsilon ́ v \omega V$
EILAISГH－ПEPIOXH MEAETHE． 3
1．YФI乏TAMENH KATAETAEH TOY ФYEIKOY ПEPIBAANONTO乏 4
 MENETH乏 4
 4
 5
 6
 10
1．2 ANAФOPA AAЛ Ω N YФI乏TAMEN ΩN H／KAI EГKEKPIMENRN EPI Ω N＇H $\triangle P A \Sigma T H P I O T H T \Omega N ~ \Sigma T H N ~$ ПEPIOXH MEAETHE 35
 36
1.4 ФЛТОГРАФІКН TEKMHPI $\Omega Н$ 36
1．5 KATAГPAФH TH乏 KATA乏TA乏H乏 TOY ФYミIKOY ПEPIBAA＾ONTO乏 ミTHN ПEPIOXH TOY AIKTYOY NATURA 2000 36
 36
 37
1．5．3 Kúpız̧ ттиé avaфорác． 43
 43
1．5．5 Окко入оүкќя лєוтоирүіє¢ 44
 48
2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A E I O ~ O O F H \Sigma H ~ T Q N ~ E П I ח T \Omega \Sigma E \Omega N ~$ 48
3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma ~ T \Omega N ~ \Pi I \Theta A N \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N$ 50
4．ANTIITAOMIETIKA METPA 54
 4014／2011 54
 54
 55
 56
5．ПРОГРАММА ПАРАКО $\mathcal{O Y O H \Sigma H \Sigma ~}$ 57
6．$\Sigma Y N O \Psi H ~ \Sigma Y M \Pi E P A \Sigma M A T \Omega N$ 61
7．BIBAIOГРАФIKEE ПHTE乏 63
8．OMADA MEAETHE 67
חAPAPTHMAI 68

EIइAГ Ω ГН－ПEPIOXH MEへETH乏

 ठпиноирүoúvtat artó то épyo
 оแкото́лt

 $510733,10 \mathrm{k} \alpha\llcorner\mathrm{Y}=4466578,45$

1．YФI乏TAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBAへへONTO乏

MEAETHE

 koıvotıkó Síktuo Natura 2000.

＇Eктабп：33．567，80ha

1．2．2 Ava入utıkń $\pi \varepsilon \rho เ y \rho \alpha \phi n ́ ~ \tau n \varsigma \pi \varepsilon \rho เ o x n ́ c ~ \mu \varepsilon \lambda \varepsilon ́ \tau n s ~$

 （Мזг $\alpha \pi \alpha \lambda \omega \dot{v}$ 人ç 1998）．

 $\pi \rho \circ \sigma \delta i \delta o u v ~ \sigma \tau o ~ t o \pi i o ~ \mu o v a \delta ı k n ́ ~ ф u \sigma ı n \grave{~ o \mu о \rho \phi ı \alpha ́ . ~}$

 Пaroviaç, Pa: Zóvn Пä̈̆oo, Al: Zívn

P: Zơvn Iivo̊ov,
G: Zóvi Гарророи-Tpirồņ,
L: Ióvos ̧̧ant

 दू०ทร

EıKóva 3．A

 aroppońs tou＇A $\theta \omega$（EL1043），$\mu \varepsilon$ éktaon 239，44 km²．

к入щатікє́s वuvӨńкєs

 rou $24 \dot{\rho}$ pou.

 $\delta \rho \alpha \dot{\sigma} \varsigma \tau \tau v$ х $\varepsilon \mu \dot{\alpha} \rho \rho \omega v$.

 avartuү

X \wedge PIIA

 $\pi \lambda \alpha ү \epsilon \omega ́ v$ kat $\tau \eta$ фúбך $\tau \omega v \pi \varepsilon \tau \rho \omega \mu \alpha \dot{\alpha} \tau \omega v$ ．

 lentiscetum.

 A

 $\eta \mu i \theta \alpha \mu v o l$, ó $\tau \omega \varsigma \subset \alpha \sigma o \iota \beta i \delta \alpha$ (Sarcopoterium spinosum), $\gamma \varepsilon v i \sigma \tau \alpha$ (Genista acanthoclada), v $\alpha \lambda \alpha \tau \sigma i \delta \varepsilon \varsigma$
 (Phlomis fruticosa), orapáyyı (Asparagus aphyllus), a入oүoӨú $\mu \alpha \rho o$ (Anthyllis hermaniae)k $\lambda \pi$.
 (Pistacia lentiscus), ot $\alpha \rho \kappa \varepsilon u \theta$ ol (Juniperus sp.), $\tau \alpha \rho \varepsilon i к ı \alpha$ (Erica spp.) к $\lambda \pi$.

 $\alpha \mu \varepsilon ́ \sigma \omega \varsigma ~ \cup \psi \eta \lambda o ́ \tau \varepsilon \rho \alpha ~ \alpha \pi o ́ ~ t o v ~ \alpha u \xi \eta t เ к o ́ ~ \chi \omega ́ \rho o ~ t o u ~ O l e o-l e n t i s c e t u m . ~$

 клı $\mu \alpha \tau к \kappa \varepsilon$ ¢,

 Carpinion orientalis , $\pi \mathbf{~}$ confertae (frainetto)-cerris $\mu \varepsilon \phi \cup \lambda \lambda \circ ß \dot{\lambda} \lambda \alpha \alpha \delta \alpha ́ \sigma n \delta \rho u \omega ́ v ~ \alpha \pi o ́ ~ Q u e r c u s ~ f r a i n e t t o, ~ Q u e r c u s ~ p u b e s c e n s, ~$

 ह́v $\omega \sigma \eta$.

 to Carpinetum orientalis.

 $\mu \varepsilon t \varepsilon ́ \chi o u v \tau \alpha \xi u \lambda \omega \delta \eta \eta i \delta \eta \eta$ Ilex aquifolium, Fraxinus ornus, Sambucus nigra, Clematis vitalba, Rosa canina, Hedera helix, Sorbus aucuparia, Sorbus torminalis, Quercus conferta,Alnus glutinosa ($\sigma \alpha$

Abies cephalonica / £úvn $\vartheta \varepsilon \varsigma$
Aethionema orbiculatum / $\Sigma \pi \alpha \dot{\alpha} v o$
Allium chamaespathum / Пapóv
Anthemis sibthorpii / $\Sigma \pi \dot{\alpha} v i o$
Arabis bryoides / Mapóv
Arctostaphylos uva-ursi / חapóv
Asperula aristata ssp. nestia / Mapóv
Asperula aristata ssp. thessala / Пapóv
Astragalus thracicus ssp. monochorum / $\Sigma \pi \alpha \dot{v}$ o
Atropa bella-donna / $\Sigma \pi \alpha \dot{v i v o}$
Aubrieta erubescens / Пapóv
Beta nana / โnávio
Campanula lavrensis / Hapóv
Centaurea pannosa / חapóv

Cephalanthera damasonium／Mapóv
Cephalanthera longifolia／П $\alpha \rho o ́ v$
Colchicum doerfleri／Mapóv
Convallaria majalis／Mapóv
Corydalis integra／$\Sigma \pi \alpha$ vivo
Cyclamen persicum／Парóv
Cystoseira spp／Mapóv
Dianthus petraeus ssp．orbelicus／Пapóv
Digitalis leucophaea／$\Sigma \pi \alpha \dot{v}$ to
Erysimum drenowskii／חapóv
Fritillaria euboeica／Mo
Fritillaria graeca／Iapóv
Helichrysum sibthorpii／Mòú $\Sigma \pi \alpha ́ v i o$
Heracleum humile／Mapóv
Hypericum athoum／$\sum \pi$ ávio
Isatis tinctoria ssp．athoa／$\Sigma \pi \alpha \dot{\alpha}$ vo
Limodorum abortivum／ח α مóv
Linum leucanthum ミúvๆทิะৎ
Linum olympicum ssp．athoum／Пoגú $\sum \pi \alpha \dot{v}$ Io
Neotinea maculata／ITapóv
Neottia nidus－avis／Mapóv
Ophioglossum vulgatum／Пapóv
Osmunda regalis／Mapóv
Oxytropis purpurea／$\Sigma \pi \alpha \dot{v}$ vo
Platanthera bifolia／Mapóv
Platanthera chlorantha／חарóv
Poa thessala $\dot{\text { úvnves }}$
Polygonum icaricum／Σ návio
Saxifraga juniperifolia ssp．sancta／Hapóv
Silene echinosperma／Пapóv
Silene multicaulis ssp．genistifolia／ח $\alpha \rho o \dot{v}$

Sorbus chamaemespilus／£návvo
Stachys leucoglossa／Mapóv
Thymus thracicus／Mapóv
Valeriana alliariifolia／$\Sigma \pi \alpha \dot{v}$ vo
Viola athois／Mo入ú $\Sigma \pi \alpha \dot{v i v i o}$
Zerynthia polyxena

 immanuelis－loewii，Centaurea peucedanifolia，Silene orphanidis，Viola delphinantha，Viola athois，
 $\pi \alpha \rho \alpha ́ \rho \tau \eta \mu \alpha$ 3．3．13），єvف́ $\tau \alpha$ عíठ η Arctostaphylos uva－ursi，Atropa bella－donna，Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．orbelicus，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus $\pi \rho o \sigma \tau \alpha \varepsilon \varepsilon \dot{o v} \alpha \boldsymbol{\tau}$ aró to $\Pi \Delta 67 / 1981$ ．T α Heracleum humile，Saxifraga juniperifolia ssp．sancta，Ophioglossum vulgatum عivaı ord́vı α otqv E $\lambda \lambda \alpha \dot{\alpha} \alpha$ ฑ́ k αt

 тиク́ца тпร．

－$\Delta \varepsilon v \delta \rho o \varepsilon t \delta \dot{~ M a t o r r a l s ~} \mu \varepsilon$ Juniperus spp．（Arborescent matorral with Juniperus spp．）－ 5210
－$\Delta \varepsilon v \delta \rho о \varepsilon เ \delta \grave{\eta}$ Matorrals $\mu \varepsilon$ Laurus nobilis－ 5230

－Фpúyava aró Sarcopoterium spinosum－5420

－A $\lambda \lambda \frac{1}{} \beta \iota \alpha \kappa \alpha \dot{\alpha} \delta \dot{\alpha} \sigma \eta \mu \varepsilon$ Alnus glutinosa к αt Fraxinus excelsior－91E0
－$\Delta \alpha \dot{\alpha} \sigma \eta \mu \varepsilon$ Castanea sativa－9260

－$\Delta \dot{\alpha} \sigma \eta$ o $⿺$ tá $\varsigma \varepsilon$ Quercus frainetto－9280
 Xepoovท́бou（Securinegion tinctoriae）－92D0
－$\Delta \alpha \dot{\sigma} \eta$ סpuós tou Atyaiou $\mu \varepsilon$ Quercus brachyphyllo－ 9310
－$\Delta \dot{\alpha} \sigma \eta \mu \varepsilon$ Quercus ilex к $\alpha \iota$ Quercus rotundifolia－ 9340
－$\Delta \alpha ́ \sigma \eta ~ \mu \varepsilon$ Quercus macrolepis－ 9350

 Өa入́дбotac $\beta \lambda \dot{\alpha} \sigma t \eta \sigma \eta \varsigma \mu \varepsilon$ Posidonia．
 кат α An ψ ク́c touc（\％）عival：

N17－$\Delta \dot{\alpha} \sigma \eta$ Kwvoфópwv $(10,03 \%)$
N18－Aعíфu $\lambda \lambda \alpha \delta \alpha \sigma \eta(20,42 \%)$
N21－Mŋ $\delta \alpha \sigma$－ $\varepsilon \lambda \alpha \iota \omega ́ v \varepsilon \varsigma, ~ \alpha \mu \tau \varepsilon \lambda \omega ́ v \varepsilon \varsigma$ каı ßобкоú $\mu \varepsilon v \alpha$ 人paıд́ $\delta \dot{\alpha} \sigma \eta)(6,25 \%)$
 ка入urtó $\mu \varepsilon$ veç aró хเóvt каı זа́үo（4，76\％）

 фaivovtal otov đáptn tou ПAPAPTHMATO乏 I．

Abstract

 Meठoveiou) kat kwठıкó 5420 (Dpúvava aró Sarcopoterium spinosum), ol oroiot סev arote入oúv k. α. (2001).

CORINE $32.7 \psi_{\text {عu }}$ боиаккі. Kんठико́ऽ 5350.

 Quercus coccifera, Juniperus oxucedrus, Quercus trojana, Carpinus orientalis, Ostrya carpinifolia, Pistacia terebinthus, Buxus sempervirens, Jasminus fruticans, Fraxinus ornus, Cercis siliquastrum (Coccifero - Carpinetum Honvat).

 π лоибเо́тєроц.

 eupatoria, Acer campestre, Carpinus orientalis, Chrysopogon gryllus, Silene italica, Juniperus oxycedrus, Ballota acetabulosa, Trifolium repens, Fraxinus ornus, Berberis cretica, Ostrya carpinifolia, к. $\dot{\alpha}$.
 Pinus mugo k $\alpha \mathrm{L}$ Pinus leucodermis. Kw Ľkó 9540.

Abstract

 Lentiscetum aegaeicum (Pistacia lentiscus, Olea europea ssp. oleaster) $\alpha \lambda \lambda \alpha \dot{\alpha}$ k α t tns Quercetea, Quercetalia ilicis (Arbutus unedo, Quercus ilex, Myrtus communis, Smilax aspera). A入入 α عí $\eta \eta \pi 0 u$ бu $\mu \mu \varepsilon \tau \varepsilon ́ x o u v ~ \varepsilon i v a \iota ~ \tau \alpha: ~ P h i l l y r e a ~ l a t i f o l i a, ~ S m i l a x ~ a s p e r a, ~ L o n i c e r a ~ i m p l e x a, ~ H y p e r i c u m ~ e m p e t r i f o l i u m, ~$ Pinus pinea, Scaligeria napiformis, Crepis fraasii, Rhamnus alaternus.

 flacca, Brachypodium retusum, Hypericum empetrifolium к. α. Mıкрés бuбđádeç aró α д́to $\mu \alpha \chi \alpha \mu \eta \lambda$ оú

 siculum, Coridothymus capitatus.

 avaүघvvıoúvtat, Kupíwc Cistus monspeliensis, Cistus creticus, Anthyllis hermanniae, Genista eivat

 latifolia, Aetheorhiza bulbosa, Stipa bromoides, Leontodon tuberosus, Trifolium campestre, Anthyllis hermaniae, Micromeria graeca, Luzula nodulosa, Cistus creticus, Alyssum lesbiacum, Crepis fraasii, Bupleurum trichopodum, Stipa bromioides, Allium sipyleum, Campanula hagielia, Stachys cretica subsp. smyrnaea, Lithodora hispidula, Genista fasselata, Rubia tenuifolia, Olea europaea ssp. oleaster,

Rhamnus lycioides ssp. oleoides, Prasium majus, Asparagus acutifolius, Cistus salviifolius, Piptatherum miliaceum, Leontodon tuberosus, Helichrysum conglobatum
 $\alpha к o ́ \lambda o u \theta \alpha$: Erica arborea, Juniperus phoenicea, Quercus ilex, Arbutus andrachne, Arbutus unedo, Quercus coccifera, Acer monspessulanum.
 europaea ssp. oleaster, Rhamnus lycioides ssp. oleoides, Arisarum vulgare, Aetheoriza bulbosa,

Katáotaon סıatńpnonc-A

CORINE 33.3 Фpúvava aró Sarcopoterium spinosum. Kんסıkóc 5420.

 tŋऽ Δ. Meбoyeiou.

 Sarcopoterium spinosum, Coridothymus capitatus, Genista acanthoclada, Anthyllis hermanniae, Euphorbia acanthothamnos, Cistus spp., Phlomis fruticosa $k \lambda \pi$. Oı $\delta \iota a \pi \lambda \dot{\alpha} \sigma \varepsilon เ \varsigma ~ \alpha u t o u ́ ~ t o u ~ t u ́ r o u ~$

X $\lambda \omega$ оьı δ кń $\sigma u ́ v \theta \varepsilon \sigma n$

 побобто́ $\mu \varepsilon ү \alpha \lambda$ útєро ало́ 25%.

Sarcopoterium spinosum (61\%), Coridothymus capitatus (58\%), Phagnalon graecum (46\%), Genista acanthoclada (30\%), Helichrysum conglobatum (30\%), Cistus creticus (29\%), Erica manipuliflora (25\%), Fumana thymifolia (21\%), Anthyllis hermanniae (19\%), Fumana arabica (18\%), Cistus salviifolius (18\%), Satureja thymbra (17\%), Teucrium microphyllum (16%, , óvo Aly人io), Teucrium capitatum (15
 (12\%), Asparagus aphyllus (11\%), Convolvulus oleifolius (11\%), Teucrium brevifolium (10\%), Cistus
 fruticosa (8%), Teucrium divaricatum (8%), Centaurea spinosa (7%, , Hóvo Alyaio), Lavandula stoechas (6\%), Phlomis cretica (5%, ev $\delta \eta \mu$ tкó), Lithodora hispidula (4%, μ óvo Atүaio), Ballota pseudodictamnus (4%, μ óvo Alyaio), Stachys spinosa ($4 \%, \varepsilon v \delta \eta \mu$ ккó, N. Alyaio), Carlina tragacanthifolia (3%, μ óvo
 tartonraira (3%), Teucrium alpestre (3%, evঠпиuкó Kрท̆tņ), Helichrysum italicum (2\%),

 Hypericum empetrifolium ssp. empetrifolium (1\%), Stachys mucronata (1%, عv $\delta \eta \mu$ tкó Kрпtıkńs перเoхŋ́я), Micromeria graeca (1\%), Hypericum species (1\%), Hypericum triquetrifolium (1\%), Ononis
 hypocistis ssp. orientalis (1\%), Helichrysum species (1%), Asperula idaea ($1 \%, \varepsilon v \delta \eta \mu$ ккó Kрฑ́tŋ̧) , Cistus monspeliensis (1%), Teucrium divaricatum ssp. divaricatum (1%), Phlomis floccosa (1%, μ óvo Ká σo -
 Convolvulus dorycnium ($<1 \%$), Micromeria myrtifolia ($<1 \%$), Hypericum rumeliacum ($<1 \%$), Helianthemum apenninum ($<1 \%$), Phlomis bourgaei ($<1 \%$, uлعv $\delta \eta \mu \leqslant$ ó), Fagonia cretica ($<1 \%$, μ óvo Aváфп-K $\grave{\eta} \tau \eta$), Helichrysum microphyllum ($<1 \%$), Teucrium massiliense ($<1 \%$), Ebenus cretica ($<1 \%$,

 $\tau \alpha$: Pistacia lentiscus (34%), Calicotome villosa (28%), Olea europaea ssp. oleaster (15%), Prasium majus (14 \%), Juniperus phoenicea, Rhamnus lycioides ssp. oleoides, Quercus coccifera, Ceratonia siliqua, Osyris alba, Euphorbia dendroides, Juniperus macrocarpa, Clematis cirrhosa, Prunus webbii,
 Pinus halepensis k $\alpha \mathrm{P}$. brutia.

 tuberosus (48\%), Trifolium campestre (47\%), Urginea maritima (46\%), Anagallis arvensis (45\%), Dactylis glomerata (45\%), Hypochoeris achyrophorus (41\%), Trifolium scabrum (37\%), Linum strictum (37\%), Valantia hispida (36\%), Asphodelus ramosus (36\%), Avena barbata (34\%), Lagoecia cuminoides
(33\%), Catapodium rigidum (32\%), Asterolinon linum-stellatum (30\%), Brachypodium distachyon (30%), Galium murale (29%), Briza maxima (29%), Rostraria cristata (28%), Sherardia arvensis (26%), Trifolium stellatum (24\%), Brachypodium retusum (24\%), Tordylium apulum (24\%), Bromus fasciculatus (24\%), Ononis reclinata (23\%), Urospermum picroides (23\%), Lagurus ovatus (22\%), Biscutella didyma (21\%), Euphorbia peplus (21\%), Valantia muralis (20\%), Aira elegantissima (20\%), Crucianella latifolia (20\%), Plantago lagopus (18\%), Bromus intermedius (18\%), Centaurea raphanina
 Køптıкń reptoxń), Carlina corymbosa ssp. graeca (17\%), Hedypnois cretica (17\%), Scorpiurus muricatus (17\%), Allium rubrovittatum (17\%), Plantago bellardii (16\%), Crepis cretica (16\%), Arisarum vulgare (16\%), Medicago coronata (16\%), Atractylis cancellata (16\%), Tuberaria guttata (15\%), Euphorbia exigua (15\%), Hymenocarpos circinnatus (14\%), Centaurium tenuiflorum (14\%), Cuscuta palaestina (13\%), Selaginella denticulata (13\%), Bupleurum gracile (13\%), Crupina crupinastrum (13\%), Gagea graeca (13\%), Psilurus incurvus (13\%), Trifolium uniflorum (13\%), Hyparrhenia hirta (12%), Asteriscus spinosus (12%), Piptatherum coerulescens (12%), Scaligeria napiformis (11\%), Daucus involucratus (11\%), Filago species (11\%), Blackstonia perfoliata (11\%), Linum trigynum (11\%), Lotus edulis (11\%), Melica minuta (10\%), Poa bulbosa (10\%), Plantago afra (10\%), Reichardia picroides (10%), Filago gallica (10%), Aetheorhiza bulbosa ssp. microcephala (10\%), Vulpia ciliata.
(10\%), Bromus madritensis (10\%), Stipa capensis (10\%), Aetheorhiza bulbosa (10\%), Petrorhagia dubia (10\%), Vicia cretica (10\%), Crepis commutata (9%), Crepis hellenica (9%), Onobrychis caput-galli (9%), Piptatherum miliaceum (9%), Scandix australis (9%), Lotus ornithopodioides (9%), Paronychia macrosepala (9\%), Ballota acetabulosa (9\%), Knautia integrifolia (9\%), Galium setaceum (9\%), Gastridium phleoides (9\%), Ranunculus paludosus (9\%), Trifolium angustifolium (9\%), Senecio vulgaris (9%), Medicago disciformis (9%), Eryngium campestre (9%), Scandix pecten-veneris (9%), Sideritis curvidens (9\%), Helianthemum salicifolium (9\%).
 chamaepeuce, Asperula taygetea, Campanula carpatha, Hypericum cuisinii,k. α, , $\varepsilon v \omega \dot{\omega} \sigma \alpha \alpha \pi \alpha \rho \alpha \kappa \tau L \alpha$
 halimus, Salsola aegaea, Lotus cytisoides, Silene sedoides к. α.

 Cisto-Micromerietalia ń, кат' $\alpha \lambda \lambda o u s ~ \sigma \tau \eta v ~ S a r c o p o t e r i e t a l i a . ~ M \alpha \rho \alpha \pi \eta \rho \varepsilon i t a t ~ \mu \alpha \alpha ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~$

 orientale, Euphorbia acanthothamnos, Thymelaea hirsuta, Cichorium spinosum.

 avá $\pi \varepsilon \rho i \pi t \omega \sigma \eta$.

ПANIAA

Opvtधिoravi $\delta \alpha$

 Handrinos and Akriotis (1996), Birdlife Intenational (2004) k α Mroúquroupac (2009), η

 (Xрибаєтóc), Bubo bubo (Mлoúфoc), Buteo buteo (Гعракiva), Caprimulgus europaeus

 peregrinus ($\Pi \varepsilon \tau \rho i \tau \eta \varsigma)$, Fringilla coelebs ($\Sigma \pi i v \circ \varsigma$), Garrulus glandarius atricapillus (Kíoo α
 ($\Delta \varepsilon v \tau \rho о \sigma \tau \alpha \rho \eta^{\prime} \Theta \rho \alpha$), Phalacrocorax aristotelis ($\left.\Theta \alpha \lambda \alpha \sigma \sigma o k o ́ \rho \alpha k \alpha \varsigma\right)$, Puffinus yelkouan (MúXo̧) k α Tetrao urogallus (Аүріо́коиркос).
 'Opoc'A $\theta \omega$, t $\alpha \varepsilon i \delta \eta$ Phalacrocorax aristotelis к αt Hieraaetus fasciatus, artot $\varepsilon \lambda$ oúv $\varepsilon i \delta \eta \eta \alpha \rho \alpha \kappa \tau \eta \rho เ \sigma \mu \circ u ́$

 Eıбıко̇тера：

$\Phi=\Phi \theta$ ıvór $\omega \rho \circ$

$K=$ K α докаірь
2）Katпүoрís＂Kóккıvou B¿ß入iou＂：
K1＝Kıvסuveúouv á $\mu \varepsilon \sigma \alpha$
K2 $=$ Kıvסuveúouv
$T P=T \rho \omega T \alpha$
$\Sigma=\Sigma \pi \alpha \dot{v i} \alpha$
AT＝Averapk ω ç $\gamma v \omega \sigma t \alpha ́$
A＝Arpooঠtóplot α
3） $\mathrm{K} \alpha \theta \varepsilon \sigma \omega \dot{\omega}$ ç $\pi \rho \circ \sigma \alpha \alpha \sigma \dot{\alpha} \propto$ ：

BON．＝\quad ú $\mu \beta \alpha \sigma \eta$ Bóvvņ，órou：

EIAH		©	x	A	K	K．ВIB＾．		79／409	BEP．	BON．
Koiví Ovouaoia										
＾аитроßойті	Gavia arctica			＋				II	11	3
EKouфоßoutnxtápl	Podiceps cristatus		＋	＋						
Kokкıvoßoutnxtápi	Podiceps grisegena		＋			A		II	11	
Maupoßoutnxtápt	Podiceps nigricoiiis		＋			$A \Gamma$		11		
Aptéuņ	Caionectris diomedea	＋		＋	＋			II		2
Múxos	Puffinus yeikouan	＋	＋	＋	＋		＊	11		

 IEPOY KENIOY KAOİMATO乏 AГ．TPYФ Ω NOL I．M．EEФITMENOY

EIDH		©	X	A	K	K．BIB＾．		79／409	BEP．	BON．
Kotví Ovo $\mu \alpha \sigma$ ia	Eriotnuovikń Ovouaбia									
Kopuopávos	Phalacrocorax carbo	$+$								
Өалабооко́рака¢，	Phaiacrocrax aristoteiis	＋				TP	＊	11		
Kритrotoıkviás	Ardeoia raiioides						＊	II		3
＾єuкотоıкvidé	Egretta garzetta	＋					＊	11		
ミтахтотоıкviás	Ardea cinerea	＋								
Mauporı入арүós	Ciconia nigra	＋		＋	$+$		＊	II	11	3
Пе入арүо́¢	Ciconia ciconia	$+$					＊	II	II	2
Воиßóкuкvos，	Cygnus oior		＋						II	
B $\alpha \rho \beta \alpha{ }^{\text {人 }}$ 人	Tadorna tadorna		$+$			TP		II	11	
Прабтvoкย́ф $\alpha \lambda \Pi$	Anas piatyrhynchos	$+$	$+$						／I	
इ $\alpha \rho \sigma$ ¢́入 α	Anas querqueduia	$+$		$+$		$A \Gamma$			11	3
¿фпкıápŋ̧	Pernis apivorus	$+$		＋	$+$		＊	11	11	
Toítins	Miivus migrans	＋				K1	＊	11	II	3
Aбтротápns	Neophron percnopterus	$+$				TP	＊	11	11	3
ФıбаEtó¢	Circaetus gallicus	$+$		＋	＋		＊	II	II	3
Kа入ацо́кıрко¢	Circus aeruginosus	＋				TP	＊	11	II	
¿тето́кıрко¢	Circus macrourus	＋						II	II	
＾ィ β 人бо́кıрко¢	Curcus pygargus	＋		＋		K1	＊	II	11	
Δ urkooáıvo	Accipiter gentiiis	＋	＋	$+$	＋			II	11	
Tбıх入оүе́рако	Accipiter nisus	$+$	＋		＋			II	II	
Eaiv	Accipiter brevipes	＋			＋		＊	II	11	2
「epakiva	Buteo buteo	$+$	＋	＋	$+$			11	II	
Xtovoуepakıva	Buteo lagopus		＋					II	II	
Kpauyaztó¢	Aquiia pomarina	$+$				TP	＊	II	II	2
Xpuoderós	Aquila chrysaetos	$+$	＋	＋	＋	TP	＊	II	II	3
ミuţartó¢	Hieragetus fasciatus	$+$	＋	$+$	＋	TP	＊	II	II	3
Etaupaetó¢	Hieraaetus pennatus	＋				TP	＊	11	11	3
Kıpkıvȩ́，	Fa／co naumanni	＋		＋		TP	＊	II	1／11	1
Врахокıркіреて̧。	Fa／co tinnuncuius	$+$	＋	＋	＋			II	II	3
Maupoкıркіveそ̧	Fa／co vespertinus			$+$				11	II	
هеvtроүе́рако	Fa／co subbuteo	＋						11	11	
Mauportetpitns	Fa／co eieonorae	＋				AI	＊	11	11	2
Хрибоуе́рако	Fa／co biarmicus		＋			TP	＊	II	11	3

EIDIKH OIKO＾OПIKH AミIO＾ORHEH（EOA）EPRQN EПEEEPTAEIA乏 KAI DIAQE IEPOY KENIOY KAOIEMATOE AR．TPYФ Ω NOE I．M．E乞ФITMENOY

EISH		Ф	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kowví Ovouaví	Ettornuovıkń Ovounơia									
Пerpitn¢	Fa／co peregrinus	＋				Ar	＊	II	11	
Aүpıókoupkos，	Tetrao urogailus	＋	＋	$+$	＋	Σ		11		
Пєтропย่рбіка	Alectoris graeca	＋	＋	$+$	＋					2
Optúkı	Coturnix coturnix	＋		＋	＋	AI			11	3
Nepókota	Gailinuia chioropus	＋	＋	＋	＋					
Ф $\alpha \lambda \alpha \rho i \delta \alpha$	Fulica atra		＋						11	
Потанобфuptxtris	Charadrius dubius	＋						11	11	
	Charadrius aiexandrinus	＋	$+$					II	11	3
Ка入Пци́va	Vanellus vane／us		＋						11	2
Mпєк α то α	Scoiopax rusticoia		＋						11	3
Потано́трuүүа¢	Actitis hypoleucos	＋	＋					11	II	3
ミтеркора́рıо̧	Stercorarius parasiticus			$+$						
	Larus meianocephaius		＋			TP	＊	11	11	
Navóphapos	Larus minutus	$+$						II		3
Kабтаvокย́ф $\alpha \lambda$ о̧	Larus ridibundus	＋	＋							
＾ептто́рацфо¢	Larus genei		＋			K2	＊	11	11	3
Atyatóy入入ро̧	Larus audouinii			$+$		K2	＊	11	1／11	1
Aоппиóy入入роऽ	Larus cacchinans	＋	＋	$+$	$+$					
「ع入оү入র́ ρ ovo	Gelochelidon ni／otica	$+$				K1	＊	11	II	3
	Sterna sandvicensis		＋			A	＊	11	II	2
Потаноү入ג́роvo	Sterna hirundo			$+$			＊	11	11	
Aүpıопвріттвро	Co／umba îvia	＋	＋	$+$	＋					
Фабботерібтвро	Co／umba oenas	$+$	＋	$+$	$+$	Σ				
Фа́бo人	Co／umba pa／umbus	$+$	＋	$+$	$+$					
－eкохтои́pa	Streptopelia decaocto	＋	＋	$+$	＋					
Tpuyóvi	Streptopelia turtur	＋		$+$	＋					3
Koúkos	Cucu／us canorus	＋		$+$	$+$					
Tutú	Tyto alba	$+$	$+$	$+$	$+$			11		3
「кเผ่vクร	Otus scops	$+$			$+$			II		2
Mroúфо¢	Bubo bubo	＋	＋	$+$	＋		＊	11		3
Koukoußáyıa	Athene noctua	＋	$+$	$+$	$+$			11		3
Xouxouptotn่s	Strix aluco	$+$	$+$	$+$	＋			II		
Navóurouфоя	Asio otus	$+$	$+$	＋	＋			II		

EIIIKH OIKO＾OГIKH AミIO＾OIHEH（EOA）EPION EПEEEPTAEIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \Lambda Y M A T \Omega N ~$ IEPOY KENIOY KA＠I乏MATOE AR．TPYФ Ω NOL I．M．ELФITMENOY

EIAH		Ф	X	A	K	K．BIB＾．		79／409	BEP．	BON．
Kotví Ovopaoia	Erıotпиovıkí Ovoцабоia									
「tסoßüてl	Caprimulgus europaeus			＋	$+$		＊	II		2
ミтахт α ра	Apus a pus			$+$	$+$					
EкErapvá¢	Apus melba	$+$		＋	＋			11		
A $\lambda_{\text {kuóva }}$	Alcedo atthis	＋	＋				＊	11		3
Me入ıбоофа́үos	Merops a piaster			$+$	$+$			11	II	3
	Coracias garrulus			＋	＋	TP	＊	II	11	2
	Upupa epops			$+$	＋			11		3
	Jynx torquilla			＋				II		3
	Dendrocopos syriacus	＋					＊	II		
「 $\alpha \lambda$ ı α vtp α	Melanocoryha calandra			$+$			＊	II		3
Katoou入tépņ	Galerida cristata	$+$	＋	＋	＋					3
	Lululla arborea	＋	$+$				＊			2
ミтарウ́Өра	A／auda arvensis		$+$	＋						3
OxӨoxe入i $\delta^{\text {on }}$	Riparia riparia	$+$		$+$				II		3
Bpaxoxe入iSovo	Ptyonoprogne rupestris	$+$			＋			II		
Xe入tioóvt	Hirundo rustics	$+$		$+$	＋			II		3
－evtpoxeגíoovo	Hirundo daurica	＋		＋	＋			11		
โrutoxe入1（Sovo	Delichon urbica	${ }^{+}$		$+$	＋			11		3
	Anthus triviaiis			$+$	＋			11		
Kıtpıvoбouбoupá $\delta \alpha$	Motaciiia fiava	$+$		$+$	$+$			II		
¿тахтобoucoupá δ 人	Motaciiia cinerea	＋		＋	$+$			11		
＾عuкoбouбoupá $\delta \alpha$	Motaciiia alba	$+$	＋	$+$				II		
Nероко́тбuфа¢	Cinc／us cinc／us	＋	＋	$+$	＋			11		
Tputoфроххт！s	Troglodytes troglodytes	＋	＋					11		
Өauvo廿d̀入tn¢	Prunella modularis		＋					11		
Xıovo廿á入ṫs	Prunella collaris	＋	$+$	＋	$+$			11		
Kouqanరóv	Cercotrichas galactotes	＋		＋	＋			11	11	3
Kоккıvo入aiun¢	Erithacus rubecula	＋	＋	＋				II	II	
Aņóvl	Luscinia megarhynchos	$+$		$+$	$+$			11	11	
Kapßouviápns	Phoenicurus ochruros	$+$	＋		＋			11	11	
Kokkıvoúpns	Phoenicurus phoenicurus	$+$		＋	＋			II	11	2
Kaotavo入aipŋร	Saxicola rubetra	$+$		$+$				11	II	
Maupo入кiun¢	Saxicola torquata	＋						II	11	

 IEPOY KENIOY KAӨIEMATOE AR．TPYФ Ω NOE I．M．E¿ФIГMENOY

EIAH		©	X	A	K	K．BIB＾．	79／409	BEP．	BON．
Kotví Ovopuøia	Ertotquovtkí Ovouaoia								
£тахтопєтро́к入n¢	Oenanthe oenanthe	＋		＋			11	II	3
Абпрок $\hat{\lambda} \alpha$ а	Oenanthe hispanica	＋		＋			11	11	2
Петрокоттбифа¢	Monticola saxatilis	＋		＋	$+$		11	11	
「а入аそокótouфа¢	Monticola solitarius	$+$	＋	＋	＋		11	11	3
Kótouфas，	Turd us merula	＋	＋	＋	＋			11	
Toixh α	Turd us philomelos	$+$	$+$	＋	＋			11	
Tбартбд́pa	Turd us viscivorus	$+$	$+$					II	
Ueutanסóvi	Cettia cetti	$+$					11	11	
	Locuste／a luscinioides	＋		$+$			11	11	
Тбьхлопотаціб α	Acrocephalus	＋		$+$			11	11	
	Hippolais pallida	＋		＋	＋		11	11	3
Aıотрıтоiба	Hippolais olivetorum	＋		＋	$+$	＊	11	11	2
Kıтрıvootpıtoi $\chi^{\text {a }}$	Hippolais icterina	＋					11	11	
Kоккıvотоироßג̇ коя	Sy／via cantillans			$+$			11	11	
Maupotбıpoßáко¢	Sy／via melanocephala		$+$				II	11	
－Evtpototpoßákos	Sy／via hortensis	＋		＋	$+$		11	11	3
Аалототроßа́коя	Sy／via curruca	＋		＋	$+$		11	11	
Өациотбıроßа́ко¢	Sy／via communis	＋		＋	$+$		11	11	
Кптотоьроßа́ко¢	Sy／via borin	＋					11	11	
Maupookoúфп¢	Sy／via atricapiiia	＋	＋				11	11	
Bouvoфu入入обко́то¢	Phyloscopus boneiif	＋		＋	$+$		11	11	2
Аегтрофи入лобко́тоя	Phyloscopus coiliybita	$+$	＋	＋			11	11	
Өациофиגлопко́тос	Phyloscopus trochilus	＋		－			11	11	
хрибоßаби入іокоя	Regu／us reguius	＋		＋			11	11	
Baбuliokos	Regu／us ignicapilius	＋	＋				11	1	
Muyoxáфtns	Muscicapa striata	$+$		＋	＋		11	11	3
	Ficeduia parva	＋				＊	11	11	
Maupouvyoxáфtins	Ficeduia hypoieuca	＋					11	II	
	Aegithaios caudatus	$+$	＋	$+$	$+$		II		
	Parus pa／ustris	$+$	＋	$+$	$+$		11		
	Parus iugubris	＋	＋	＋	＋		11		
＾офопалабітоа	Parus cristatus	＋	＋	＋	＋		II		
	Parus ater	＋	＋	$+$	＋		11		

 IEPOY KENIOY KAOIZMATO乏 AR．TPYФ Ω NOE I．M．ELФITMENOY

EIAH		Ф	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovouãóa	Ertotпuovıkń Ovouaбia									
	Parus caervieus	＋	$+$	$+$	＋			II		
Kalóyepoş	Parus major	＋	$+$	$+$	＋			11		
Каилобеvтроßর̇tn¢	Certhia brachydactyia	＋	$+$	＋	＋			11		
－evtpotoonavákos	Sitta europaea	＋	$+$	$+$	＋			II		
Bpaxorooravákoç	Sitta neumayer	＋	＋	＋	＋			11		
¿ßapviotpa	Tichodroma muraria		＋			Σ		11		
¿uкофáyos	Orioius orioius	＋		$+$	＋			11		
Actouáxos	Lanius coiliurio	＋		$+$	＋		＊	11		3
	Lanius minor	＋		＋	＋	AI	＊	II		2
Кокктขокефа入á¢	Lanius senator	＋		＋	＋			II		2
	Lanius nubicus	＋				Σ		11		2
Kiona	Garruius giandarius	＋	＋	＋	＋					
Каракд́ $¢ \alpha$	Pica pica	＋	＋	＋	＋					
Káppla	Corvus moneduia	＋	$+$	$+$	$+$					
Koupoúva	Corvus corone	＋	＋	＋	$+$					
Kо́paкас̧	Corvus corax	＋	＋	$+$	＋					
Wapóvt	Sturnus vulgaris	＋	$+$	$+$	＋					3
Eroupyitns	Passer domesticus	＋	$+$	＋	＋					3
Xwpaфоотоирүitn¢	Passer hispaniolensis	＋		$+$	$+$					
Петроотоирүit\％¢	Petronia petronia	＋	＋	$+$	＋			II		
	Fringilla montifringilla		$+$							
Erivos	Fringilla coe／ebs	＋	＋	＋	＋			II		
IKapéki	Serinus serinus		＋					11		
Ф入úpos	Cardueilis chioris	＋	$+$	＋	＋			11		
Kapסepiva	Cardueiis cardueiis	＋	$+$	＋	＋			11		
＾óupapo	Carduelis spinus		$+$					11		
Фavéto	Cardueilis cannabina	$+$	＋					II		2
Xovtpouútns	Coccothraustes	＋	＋	$+$	＋			11		
	Emberiza cirius	＋	＋					II		
Bouvotaix ${ }^{\text {a }}$ ovo	Emberiza cia	＋		＋	＋			II		3
B入áxos	Emberiza hortuiana	＋		＋	＋		＊	11		2
£коupóß入ахо¢	Emberiza caesia	＋		＋	＋		＊	II		
	Emberiza meianocephaia	＋		＋	＋			11		2

EIAH		（1）	X	A	K	K．BIBA．		79／409	BEP．	BON．
Koıvṅ Ovouãia										
Tou¢tás	Miliaria calandra	＋		$+$						2
Zúvo入o：	173					29	40	134	81	68

Өa入аббоко́ракац（Phalacrocorax aristotelis）
K $\alpha \vartheta \varepsilon \sigma \tau \dot{\omega} \varsigma \pi \alpha \rho о \cup \sigma i \alpha \varsigma-\pi \lambda \eta \vartheta \cup \sigma \mu o ́ \varsigma$

Оєколоүіа

$\underline{\sum \pi u \text {（aとtóc（Hieraaetus fasciatus）}}$

 $\varepsilon к \tau ц \mu \eta \varepsilon i \quad \sigma \varepsilon$ 100－140 そعuүд́pıа（Bourdakis \＆Xirouchakis 2008）．

Oıкодоүіа

 к $\alpha \iota \eta ~ \eta \lambda \varepsilon к т \rho о \pi \lambda \eta \xi i \alpha$.

Фıסаعtós (Circaetus gallicus)

Oıколоүіа

 $\delta \alpha \sigma о к \alpha ́ \lambda u \psi \eta$.

Xpuoaeróc (Aquila chrysaetos)

 $\sigma \tau \alpha$ סutuk α tou Avtí่ $\theta \omega v \alpha$.

 そ६uүव́ata（Tucker \＆Heath 1994，BirdLife International 2004）．

Oıколоүіа

 $\pi \rho o \sigma t \alpha \tau \varepsilon u ́ \sigma o u v \tau \alpha$ Өпра́ $\mu \alpha \tau \dot{\alpha}$ тоис．

 то ε íסoc．

Пetpitnc（Falco peregrinus）

 $\mu \varepsilon \tau \alpha \xi u ́ 100$ каl 250 ̧euүápıa (Tucker \& Heath 1994).

Oıколоүіа

 $\alpha \varepsilon ́ p \alpha$.

А $\nearrow \varepsilon \iota \lambda \varepsilon ́ \varsigma$

Bouvootaxcápa (Apus melba)

K $\alpha \vartheta \varepsilon \sigma t \omega \dot{\varsigma} \pi \alpha \rho o v \sigma i \alpha \varsigma-\pi \lambda \eta \vartheta \vartheta \cup \sigma \mu o ́ s$

Oıколоүіа

Ал $\varepsilon \iota \lambda \varepsilon$,

On $\lambda \alpha \sigma \pi \iota \alpha$

 （Erinaceus concolor），η vavouupa入i $\delta \alpha$（Sorex minutus），η кппоцuүа入i $\delta \alpha$（Crosidua suaveolens），η блttouиүа入i $\delta \alpha$（Crosidua russula），o okioupoş（Sciurus vulgaris），o orep citelus），о μ кротифлопóvtıка¢（Spalax leucodon），о тpavoпоvtıкós（Spalax mikrophthalmus），о otaxtorovtıkós（Mus musculus），o $\mu \alpha u$ ропоvtıkós（Ratus ratus），o סekatıotŕs（Ratus norvegicys），o סабопоvtıkó̧（Sylvaemys sylvaticus），o apoupaioç（Microtus arvalis），o $\beta \rho \alpha \chi$ дпоvtıkóc（Apodemys ystacinus）．

 $\lambda \alpha \phi \dot{\alpha} \tau \varepsilon \varsigma($ Elaphe quatuorlineata），oaiteç（Coluber najadum），$\delta \varepsilon v \delta \rho \circ \gamma \alpha ́ \lambda \iota \varepsilon \varsigma$, （Coluber gemonensis），

 （Murr．）Barr，ouv．Endothia parasitica（Murr．）Anderson каı éx $\varepsilon \iota ~ \varepsilon ү к \alpha \tau \alpha \sigma \tau \alpha \theta \varepsilon i ~ к \alpha \iota ~ \varepsilon \pi \varepsilon \kappa \tau \alpha \theta \varepsilon i ~ o t \eta v ~$

 veкрท́ opyavikń ú $\lambda \eta$ к $\kappa \pi$ ）．

 E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha$ ），Astreus hygrometricus（＇Aбtpeıos o uүpauعtpıкóc），Clitocybe olearia（К入ıtoкúß $\eta \eta$

arudinaceum，Apiospora montagnei，Porpolomyces farinosus，Microthyrium ilicinum k $\alpha \mathrm{t}$ по $\lambda \lambda \dot{\omega} v$ $\alpha \lambda \lambda \omega v$ ．इтףv हu
 Amanita virosa，Paxillus panuoides（ $\Pi \alpha \dot{\varrho} \lambda \lambda<\varsigma$ o $\pi \eta v i o ́ \mu \circ \phi \circ \varsigma)$ ），Suillus collinitus，Mycena atrocyanea （Mukñvŋ η kuavó $\mu \alpha u \rho \eta$ ），Antrodia ramentacea，Ramaria myceliosa（Pa $\mu \alpha \dot{\rho}\llcorner\alpha \eta \mu u k \eta \lambda t \omega \delta \eta \varsigma)$ к．α ．
 катаүрафвí ot ođáviot $\alpha \sigma \kappa о \mu u ́ k n t e \varsigma ̧ ~ M o l l i s i a ~ c i n e r e a, ~ C i b o r i a ~ a m e r i c a n a, ~ L a n z i a ~ e c h i n c e p h a l a, ~$ Rustroemia firma，R．sydowiana，Sarcoscypha coccinea（ $\left.\sum \alpha \rho к о \sigma к u ́ \phi \eta ~ \eta ~ к o ́ k к ı v \eta\right) ~ k . ~ \alpha . ~ M e t \alpha ६ u ́ ~ t \omega v ~$

 Caloscypha fulgens（Ka入ookúф η ү үua入ıotepŕ），Pithya vulgaris（ $П$ t日ú $\alpha \eta$ кotvฑ́），Cortinarius

1．2 ANAФOPA AЯAQN YФI乏TAMENSN H／KAI ETKEKPIMENRN EPIRN＇H $\triangle P A \Sigma T H P I O T H T \Omega N ~$

ETHN ПEPIOXH MEAETHE

1.4 ФЛТОГРАФІКН ТЕКМНРI $\Omega \Sigma H$

Фатоүрафіа 1：Өє́бп EE＾

1.5 КАТАГРАФН TH乏 КАТАЕTAइH乏 TOY ФY乏IKOY ПEPIBAMМONTO乏 ミTHN ПEPIOXH TOY

 ДIKTYOY NATURA 2000
1．5．1 Etóxol סıatńpnons tnc olkiac π reploxńs Natura 2000

Ató to α рӨpo 8 tou N．3937／2001

$\mu \varepsilon$ ßáon ta $\tau \alpha \rho \alpha к \alpha ́ \tau \omega ~ к \rho ı t ท ́ \rho เ \alpha: ~$

 ठıatripnotis tou.

 そпт

 EEDIIMENOY

TÚrı̧̧ OLKOTÚTLOU	KwరtKó¢	 	Avtutpoowteutuoótทra ＊2	Erıфф́veıa ミхモтикй ＊3	Karáoraan Кı๙tip ${ }_{4}$	¿uvoגukń $\alpha \xi$ เo入óүワণך ＊5
－AfvKnnai र́n Matorrals $\mu \varepsilon$ Juniperus spp．	5210	1	D			
－AevKinneiKń Matorrals $\mu \varepsilon$ Laurus nobilis	5230	1	C	A	C	B
	5310	1	C	A	C	B
Funhorhia knutró as $\alpha k \tau \varepsilon ่ \varsigma$	5320	2	A	A	B	A
－Wrínomvar Sarrnnnterium spinosum	5420	4	A	C	B	B
－AnRentríjol $\alpha \lambda \pi$ tikoí $\lambda \varepsilon \iota \mu \omega ் \vee \varepsilon \varsigma$	6170	3	C	B	B	B
－Aiftiluer tre Avaroגuк！́s Meбoүعiou	8140	3	B	B	B	B
Luzulo－Fagetum	9110	1	D			
Alnıs olıtinnca krı Fraxinus excelsior	91E0	1				
－Aŕrn $\mu \varepsilon$ Castanea sativa	9260	39		A	A	A
$\mu \varepsilon$ Abies borisii－regis	9270	1		C	B	C
－$\Delta \alpha$ án o§ıác $\mu \varepsilon$ Quercus	9280	5		B	A	A

EIDIKH OIKO $\cap O \Pi I K H ~ A \Xi I O \wedge O T H \Sigma H ~(E O A) ~ E P I \Omega N ~ E П E \Xi E P Г A \Sigma I A \Sigma ~ K A I ~ \triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ I E P O Y ~ K E \wedge I O Y ~ K A \Theta I \Sigma M A T O \Sigma ~ A Г . ~ T P Y Ф \Omega N O \Sigma ~ I . M . ~$ ELФITMENOY

 EEDIIMENOY

α / α		1	2	3	4
12	Cephalanthera longifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		$\mathrm{A} \triangle$
15	Fritillaria euboeica		X	R	
16	Fritillaria graeca		X		A \triangle
17	Helichrysum sibthorpii			V	
18	Hypericum athoum		X		
19	Isatis tinctoria ssp. athoa		X		$A \triangle$
20	Limodorum abortivum	B			A
21	Linum leucanthum		X		
22	Linum olympicum ssp. athoum		X		
23	Neotinea maculata	B			
24	Neottia nidus-avis	B			
25	Polygonum icaricum		X		A
26	Silene echinosperma		X		
27	Silene multicaulis ssp. genistifolia		X		
28	Silene orphanidis	A		V	
29	Viola athois		X		A \triangle

Eneधnvíoeıc Пivaka 3

 E¿ФIIMENOY

α / α	Emıotnuovikń ovouacia		
1	Phalacrocorax aristotelis	Өа入аббоко́рака¢	H meninvń siver via to sikne ilig $\pi \lambda \eta \theta \cup \sigma \mu \circ$ ú．
2	I－lieraaetus fasciatus	£nu̧actó¢	H meninví siven vire to sifor tiln $\pi \lambda \eta$ Өибиои́．
3	Puffinus yelkouan	Múxo̧	Kpıtṅpıo Bird Life ：B1ii，C3

Пivakas 6：Eion opıo日

α / α	Erıotnuovikí ovorãí		Eión opto日źtnon¢
1	Circoetus gallicus	Фıరactó¢	
2	Aquila chrysaetos	Xpuoxetós	

EIAIKH OIKO^OГIKH AミIO^OTHEH (EOA) EPR

α / α	Eriotnuovikń ovouãia		
3	Falco peregrinus	Петрitıs	
4	Apus melba	Bouvootaxtáp α	

 au̧ávovtal.

乏tnv $\pi \varepsilon p i \pi t \omega a n$ हíoous

MĖ¢¢ ${ }^{\text {¢ }}$	K ω סıко́¢	Характпрібио́s
$\chi \propto \mu \eta \lambda$ ¢́	B01.02	$\delta \varepsilon ́ v \delta \rho \alpha)$
$\chi \propto \mu \eta \lambda$ ¢́	E01.03	бıабкорльбце́vך катоккіа
$\chi \propto \mu \eta \lambda$ ¢	A01	
$\mu \varepsilon ́ t \rho ı \alpha$	L09	

2000 - STANDARD DATA FORM

$160 \Delta \alpha \sigma$ кки́ $\delta 1 \alpha \chi \varepsilon i p t \sigma \eta$

948 Пиркаүıд́ апó фибıкג́ аitıа

 $\tau \alpha$ סáan kaбтaviác.

Пupkaviés

Ta oukoouotñ $\mu \alpha \tau \alpha$ rou ouvӨ

 Epyou.

 $\lambda i \mu v \varepsilon \varsigma$

 67/1981)-OXI

 -OXI

＞Mauremys rivulata IUCN－LC，Kókkıvo Bı $\beta \lambda$ io E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha<$－LC，Annexes II of the EU Natural Habitats Directive－OXI
 uұо́нєтра

 67／1981）－NAI
 каı $\delta \alpha$ бıк β ßобкотórl α ．

 Δ ád $^{2} \alpha \mu \mu \alpha$ 67／1981），－NAI

 каเ $\mu \varepsilon \gamma \alpha \dot{\lambda} \lambda \alpha$ סабルк α бUбтท́ $\mu \alpha \tau \alpha$

 EKO8пүia 92／43／EOK，OXI
＞Platanus orientolis PD67／81 חo入ú kotvó $\sigma \varepsilon$ rotá $\mu \mathrm{L}$ OXI

＞Trapa natans Annex II of Council Directive 92／43／EEC OXI
＞Pancratium maritimum Annex II of Council Directive 92／43／EEC OXI
＞Fraxinus angustifolia Annex II of Council Directive 92／43／EEC OXI
＞Groenlandia densa Annex II of Council Directive 92／43／EEC OXI
＞Lutra Lutro IUCN：NTKókkıvo Biß入io E入入 $\alpha \delta \alpha \varsigma$ EN－OXI
 трофń

 Пара́ртп $\mu \alpha$ V．Пробтабi α CITES－OXI

＞Accipiter brevipes 2009／147／EC：Парápтпна I，$\sum u ́ \mu \beta \alpha \sigma \eta ~ \tau \eta \varsigma ~ B \varepsilon ́ p v \eta \varsigma ~ I I, ~ \Sigma u ́ \mu \beta \alpha \sigma \eta ~ \tau \eta \varsigma ~ B o ́ v v \eta \varsigma ~ I I, ~$

 Kwvoфó $\rho \omega v$ OXI

 uүрото́лоu६ $\mu \varepsilon \alpha \mu \mu$ о́ λ офоия．OXI

$>$ Calandrella brachydactyla 2009／147／EC：П $\alpha \rho \alpha \dot{\alpha} \tau \eta \mu \alpha$ I，$\sum u ́ \mu \beta \alpha \sigma \eta$ Bépvクৎ II，KBE－E入入 $\dot{\alpha} \delta \alpha c:$ NE，
 モктáoॄı̧̧ ท́ ßookótortou̧ OXI

 $\pi \rho о ́ \sigma \beta \alpha \sigma \eta$ бє $\varepsilon \lambda \omega ́ \delta \eta$ иүрото́тоиц，OXI
＞Ciconia nigra 2009／147／EC：Пара́ptqua I，$\sum u ́ \mu \beta \alpha \sigma \eta ~ t \eta ̧ ~ B e ́ p v \eta \varsigma ~ I I, ~ \sum u ́ \mu \beta \alpha \sigma \eta ~ \tau \eta \varsigma ~ B o ́ v v \eta ̧ ~ I I, ~ K B E-~$

 CITESII／A，KBE－E入入 $\dot{\alpha} \delta \alpha \varsigma: ~ V U, ~ I U C N: ~ O X I ~$

 E入入ádas．
＞Coracios garrulous 2009／147／EC：Парáptn $\mu \alpha$ I，£ú $\mu \beta \alpha \sigma \eta$ tņ Bépvņ II，£úußaon tnç Bóvvnc II， KBE－E $\lambda \lambda \alpha \dot{\sigma} \alpha \alpha ¢ / / u$ ，IUCN：OXI

＞Falco vespertinus 2009／147／EC：Пара́ptnu人 I，¿úußaon tnç Bépvnc II，£ú μ ßaon tnc Bóvvns II，

＞Haliaeetus albicilla 2009／147／EC：Пард́ptп $\mu \alpha$ I，¿ú μ ß $\alpha \sigma \eta$ Bépvnç II，Bonn Convention I／II，CITESI，

＞Larus Melanocephal us 2009／147／EC：Пара́ptn $\mu \alpha$ I，£ú $\mu \beta \alpha \sigma \eta$ tņ Bépvņ II，£ú $\mu \beta \alpha \sigma \eta$ tņ Bóvvņ

＞Melanocorypha calandra 2009／147／EC：Пара́ptп $\mu \alpha$ I，£ú $\mu \beta \alpha \sigma \eta$ Bépvnc II，KBE－E $\lambda \lambda \alpha \delta \alpha \varsigma$ ：VU，IUCN： OXI

 актіvoßо入іє¢．

2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O \Lambda O T H \Sigma H ~ T \Omega N ~ E ח I ח T \Omega \Sigma E \Omega N ~$

－Erutt $\delta \eta \mu$ юoupyoúvtal aró tףท үé申upa

 епє乡єрүабіац）．

 Өєрцóß $\omega \mathrm{\omega v} \pi \varepsilon$ úk ωv ．
 $\theta \alpha$ бıaфоротоıท $Ө$ oúv．

3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma T \Omega N ~ \Pi I \Theta A N \Omega N ~ E \Pi I \Pi T \Omega \Sigma E \Omega N$

 Castanea sativa，Quercus sp．，Fagus sp．），a入入á umápxouv kal opıoرéva kwvoфópa סáon（Pinus

 Quercus coccifera．

 Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．Orbelicus，Neottia nidus－ avis，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus）

 ßa入kavk $\alpha \dot{\alpha}$ ev $\delta \eta \mu$ uk （Allium chamaespathum，Arabis bryoides，Asperula aristata ssp．Nestia， Colchicum doerfleri，Erysimum drenowskii，Stachys leucoglossa）k $\alpha 1$ ta \ddagger เvo μ וкóc（Thymus thracicus）．

 тทৎ оסпүіа¢ 92／43／EOK．A

 тоu $\alpha \dot{\alpha}$ เซtov 420 عí $\delta \eta$ ．

 пávต aró 100 ย́tाท．

 $\sigma \varepsilon \mu$ ккро́тєро $\alpha \rho เ \theta \mu$ ó $\varepsilon เ \delta \omega ̉ v$.

 $\alpha v \theta \rho \omega ́ \pi t \imath \eta \varsigma ~ \pi \alpha \rho o u \sigma i \alpha \varsigma ~ \sigma \varepsilon ~ \alpha \pi \rho о \sigma \pi \varepsilon ̇ \lambda \alpha \sigma \tau \varepsilon \varsigma ~ \theta \varepsilon ́ \sigma \varepsilon เ \varsigma . ~$

 пиркаүเа̇¢ єivaı η Fritillaria euboeica（Phitos et al．1995）．

 тПऽ ravi

 $\tau \omega v$ ：
 ठג்َท）

3．$\varepsilon v \delta เ \alpha \iota t \eta \mu \alpha ́ \tau \omega v$ onávi $\omega \mathrm{v}$ ，Kıv
4．иүрото́л $\omega \mathrm{v}$ ，пот $\alpha \mu \dot{\jmath} \mathrm{v}$ каเ таро́х θ t $\alpha \varsigma \beta \lambda \dot{\alpha} \sigma t \eta \sigma \eta \varsigma . ~$

 $\alpha v \alpha \pi \alpha \rho \alpha ү \omega ү ⿺ 𠃊 ท ́ ~ \pi \varepsilon \rho i o \delta o, ~ \mu \varepsilon \tau \alpha \xi u ́ ~ A \pi \rho i \lambda i o u ~ k \alpha ı ~ l o u \lambda i o u . ~$
 про́бкроиaŋs

 غ́pywv.

4．ANTIETAOMIETIKA METPA

N．4014／2011

Enirtwon	Métp α
 	 －δ кń $\pi \rho o ́ \sigma \beta \alpha \sigma \eta ~ к \alpha \iota ~ \gamma \iota \alpha ~ t \eta v ~ к \alpha ́ \lambda u \psi \eta ~ \alpha ́ \lambda \lambda \omega v$ $\pi \varepsilon р ı \beta \alpha \lambda \lambda$ оvtıк由่v $\alpha \pi \alpha เ \tau \dot{\sigma} \sigma \varepsilon \omega v$ ．
	 тóte autá va eival фuđuká $\delta \varepsilon v$ eпıtрéretal η $\pi \rho \circ \sigma \omega \rho เ v$ и́ $^{\pi \varepsilon \rho i \phi \rho \alpha \xi \eta \text { ．}}$
аvaไ̧́tnoņ т тофи́s	

Enintwon	Mét α 人
ф $\omega \lambda \varepsilon$ огоinons	 （тo ह́pүo عivaı по入ú μ ıкрó）

 $\mu \pi о \rho \varepsilon i v \alpha \varepsilon \xi \propto \lambda \varepsilon ı \phi \tau \varepsilon i)$ ．

 $\pi \lambda \dot{\rho} \rho \omega \varsigma$ ．

＇Охлппп к кı $\alpha \pi \dot{\omega} \lambda \varepsilon เ \alpha ~ \alpha \tau о ́ \mu \omega v$

 ката́ to Xpóvo ékӨzaņ．

 к $\alpha \iota$ тПv ал $\dot{\mu} \lambda \varepsilon ı \alpha ~ \tau \omega v ~ т о ́ \pi \omega v ~ \omega о т о к і \alpha \varsigma, ~ к \lambda \pi . ~$

－Oı vuxtepıvȩ́ epү

－$N a \mu \eta v \delta \eta \mu$ юoupyoúvtal « $\lambda \mu \mu v o u ́ \lambda \varepsilon \varsigma »$

Aриóסtot форعi̧ u入oroinaņ

5．ПРОГРАММА ПАРАКОЛОҮОНЕНГ

 k α Oplotoúv．
 бuxvótnta к $\alpha \tau \alpha ү \rho \alpha \phi n ́ \varsigma ~ \sigma u \mu \beta \alpha ́ \lambda \lambda$ ouv $\sigma \tau \eta v$ ：
 192／B－14．3．1997）

 （KYA 5673／400／1997（DEK 192／B－14．3．1997））．

Elनeрхóuzvo opvaviкó بортio

－＇${ }^{2} \lambda \varepsilon \gamma \chi$ оऽ $\sigma \dot{\alpha} \theta \mu \eta \varsigma ~ a v \tau \lambda \iota \sigma \sigma \tau \alpha \sigma i \omega v$

Δ. Лotró ε घ

 $\lambda u \mu \alpha ́ t \omega v$.

TAPAMETPOE	EIEOAOE	EEOAOE	InYE	\triangle EIIMA	TAPATHPHZEİ
BOD_{5}	\#	\#		M. H	
COD	\#	\#		M. H	
SS	\#	\#		M.H	
A $\mu \mu \omega \mathrm{v} \alpha \kappa \alpha \dot{\alpha}, \mathrm{vit} \rho \dot{\omega} \delta \eta$, vitpıкর́	\#	\#		M. H	
TP	\#	\#		M. H	
: \sum пropa uk $^{\text {d }}$					

6. $\Sigma Y N O \Psi H ~ \Sigma Y M \Pi E P A \Sigma M A T \Omega N$

 к $\alpha \iota$ тПV $\alpha \pi \dot{\omega} \lambda \varepsilon เ \alpha ~ \tau \omega V$ tó $\pi \omega v$ шотокі α, к $\kappa \lambda \pi$.

 $\lambda u \mu \alpha \dot{\tau} \omega \mathrm{v}$:

 $\pi \varepsilon \rho _$ßд入入оv．

Me tŋv катабкєuท́ tou ह́pץou：

7．BІВАІОГРАФІКЕГ ПНГЕГ

 Poठórnc．AӨńva．

－EइYE Aлоүрафர́ 1991.

－Dimou D，Gikas GD，Tsihrintzis VA：＂Water quantity and quality monitoring of Lissos river，North Greece＂，Proceedings of the Third International Conference on Environmental Management， Engineering，Planning and Economics（CEMEPE 2011）\＆SECOTOX Conference，2011，Skiathos， Greece，p．151－157

－「Lavvótou入oç，PYחAN之H T ΩN Y $\triangle A T I N \Omega N ~ \Sigma \Omega M A T \Omega N$ AПO THN KYK＾OФOPIA T ΩN OXHMAT ΩN 20 Пave入入ńvıo ミuvéठpıo Oठorotiac，Bó入oç，Máıoç 2005
－＂The AOPII Cost Effectiveness Study Part III：The transport base case Annex B4 Greece，The European Commission，Standard \＆Poor＇s DRI and KULeuven＂

－Taylor，E．C．，Green，R．E．，\＆Perrins，J．（2007）Stone－curlews Burhinus oedicnemus and recreational disturbance：developing a management tool for access．Ibis， 149 （1），37－44．
－Tucker，G．M．\＆Heath M．F．，（1994）Birds in Europe：Their conservation status．Cambridge，UK．： BirdLife International（BirdLife Conservation Series No 3）
－Barros，C．\＆De Juana，．E．（1997）Breeding success of the Stone Curlew Burhinus oedicnemus at La Serena（Badaioz．Spain）．Ardeola 44 （2），199－206．
－Bealey，C．E．，Green，R．E．，Robson，R．，Taylor，C．R．，Winspear，R．（1999）Factors affecting the numbers and breeding success of Stone Curlews Burhinus oedicnemus at Porton Down，Wiltshire． Bird Study 46 （2），145－156．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．
－Giannangeli，L．，De Sanctis，A．，Manginelli，R．，Medina，F．M．（2005）Seasonal variation of the diet of the stone curlew Burhinus oedicnemus distinctus at the Island of La Palma，Canary Islands． Ardea 92 （2），175－184．
－Green，R．E．，Tyler，G．A．，Bowden，C．G．R．（2000）Habitat selection，ranging behaviour and diet of the stone curlew（Burhinus oedicnemus）in southern England Journal of Zoology 250 （2），161－183．
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Thompson，S．，Hazel，A．，Bailey，N．，Bayliss，J．，Lee J．T．（2004）Identifying potential breeding sites for the stone curlew（Burhinus oedicnemus）in the UK．Journal for Nature Conservation 12， 229 － 235.
－Catry T．，Ramos JA．，Catry I．，Allen－Revez M．，Grade N．， 2004 Are salinas a suitable alternative breeding habitat for Little Terns Sterna albifrons？IBIS 146 （2）：247－257 APR 2004
－Fasola M．，（1993）Distribution，population and Habitat Requirements of the Vommon Tern and the Little Tern breeding in the Mediterranean in Aguilar，J．S．，Monbailliu，X．Paterson，A．M．Status and Conservation of Seabirds，Proceedings of the 2nd MEDMARAVIS，SEO，Madrid
－Goutner V．，Charalambidou T．，\＆Albanis A．（1997）Organochlorina Insecticide Residues in Eggs of the Little Term（Sterna albifrons）in the Axios Delta，Greece．Bull．Environmental Contamination and Toxicology 58－61－66
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Joris E．，\＆Stienen E．，（2009）Impact of wind Turbines on Terns in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．
－Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute （VLIZ）．Oostende，Belgium．Viii +68 p．
－Medeiros R．；Ramos J．，Paiva V．，Almeida A．，Pedro P．，Antunes S．（2007）Signage reduces the impact of human disturbance on
－Little tern nesting success in Portugal，Biological Conservation 135 （2007）99－100

 ミúvסєб
－Ruben F．，Krijgsveld K．，Camiel Heunks，Martin Poot \＆Sjoerd Dirksen．（2009）Nocturnal and Diurnal Flight Intensity and Altitude of Seabirds and Migrants in and around an Offshore WindFarm in the Dutch North Sea in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．
－Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute（VLIZ）．Oostende，Belgium．Viii＋68 p．

三ávӨŋ 2006．$\sigma \varepsilon \lambda .64$
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－BirdLife International（2008）Species factsheets．Downloaded from http：／／www．birdlife．org Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Mullarney K．，Svensson L，．Zetterstrom D．，\＆Grant P．，（1999）Ta Пou入iá tns E入入 $\dot{\alpha} \delta \alpha \varsigma$ ，tп̧ Kúrtpou каเ тпऽ Eup山́rņ．

－Xavסpivós 「．，（1992）Mou入ıá oto Kapavסeıvós M．，＾eүákı̧ A．To Kóккıvo Bı $\beta \lambda i o ~ \tau \omega v$
 OpviӨо入оүıкń Etaup
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．

- De La Montana, E., Rey-Benayas, J.M., Carrascal, L.M. (2006) Response of bird communities to silvicultural thinning of Mediterranean maquis. Journal of Applied Ecology 43, 651-659.
- Guerrieri, G., Pietrelli, L., Biondi, M. (1996) Status and reproductive habitat selection of three species of Shrikes, Lanius collurio, L. senator and L. minor in a Mediterranean area. (Proc. of the First Intern. Shrike Symposium) Found. Vert. Zool. 6, 167-171.
- Handrinos, G., \& Akriotis, T., (1997) The birds of Greece. C. Helm, A \& C Black, London.
- Isenmann, P., Debout, G. (2000) Vineyards harbour a relict population of Lesser Grey Shrike (Lanius minor) in Mediterranean France, Journal fur Ornithologie 141 (4), 435-440.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) Philopatry, dispersal patterns and nest-site reuse in Lesser Grey Shrikes (Lanius minor). Biodivers. Conserv. 16, 987-995.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) The importance of breeding density and breeding synchrony for paternity assurance strategies in the lesser grey shrike. Folia Zoologica 57 (3), 240250.
- Kristin, A., Hoi, H., Valera, F., Hoi, H. (2000) Breeding biology and breeding success of the Lesser Grey Shrike (Lanius minor) in a stable and dense population. Ibis 142 (2), 305-311.
- Lepley, M., Ranc, S., Isenmann, P., Bara, T., Ponel, P., Guillemain, M. (2004) Diet and gregarious breeding in lesser Grey Shrike (Lanius minor) in Mediterranean France. Revue d'Ecologie (La Terre et la Vie) 59 (4), 591-602. Pons P., Lambert B., Rigolot E., Prodon, R. (2003) The effects of grassland management using fire on habitat occupancy and conservation of birds at a mosaic landscape. Biodiversity and Conservation 12, 1843-1860.
- Ristow, D., Wink C., Wink M. (1986) Assessment of Mediterranean Autumn Migration by Prey Analysis of Eleonora's Falcon. Proc. 1st Conf. on Birds wintering in the Mediterranean Region, Aulla Feb. 1984. Supplemento alle Ricerche di Biologia della Selvaggina 10(1), 285-295.
- Tucker, G. M. \& Heath M. F., (1994) Birds in Europe: Their conservation status. Cambridge, UK.: BirdLife International (BirdLife Conservation Series No 3)
- Valera, F., Kristin, A., Hoi, H. (2001) Why does the lesser grey shrike (Lanius minor) seldom store food? Determinants of impaling in an uncommon storing species. Behaviour 138 (11-12), 14211436.
- Wirtitsch, M., Hoi, H., Valera, F., Kristin, A. (2001) Habitat composition and use in the lesser grey shrike (Lanius minor). Folia Zoologica 50 (2), 137-150
- Mroú

 Bıбt $\omega v i \delta \alpha \varsigma, 1 \sigma \mu \alpha \rho i \delta \alpha \varsigma$), Boskidis et al., 2010 (J., Envir., Scien., Health, 45,11, 1421-1440, Changes of water quality and SWAT modelling of Vosvozis river basin),
 Өра́кпс),
- Economou et al., 2007 (Medit., Mar., Scien., 8,1,91-166, The freshwater ichthyofauna of Greece),

- Papastergiadou, Babalonas, 1993 (Willd., 23,137-142, Aquatic flora of N.Greece)Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),
- Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),

 OППEO 97
 Екठо́бєцц ОППЕӨ 97.
 A日ñ́va．
－Zagas，T．D．，P．P．Ganatsas，T．K．Tsitsoni and Marianthi Tsakaldimi．2004．Thinning effect on stand structure of holm oak stand in northern Greece．In：
－Arianoutsou，M．and V．P．Papanastasis（eds），Proceedings of the 10th MEDECOS Conference，April 25－May 1，2004．Rhodes，Greece．Millpress，Rotterdam．

 117.
－Grisebach，A．1841．Reise durch Rumelien und Brussa in jahre 1839， 1.2 Gottingen．
－Mattfeld，J．1927．Aus wald und macchie in Griechenland．Dendrol．Ges．38：106－151．
 Apvaiaç．Өєбоалоvikn．
 1：50．00 A A ω ç кん l leplơóc．A Ańva．

－Ntáфņ，£．1990а．Ефар

8．OMADA ME＾ETH乏

Tп入．／Fax： 2310902321 ／ 2310330630
$\Sigma \phi \rho \alpha ү i \delta \alpha-Y \pi о ү \rho \alpha ф \eta \dot{\prime}$

OERPHOKLKE
Orcaadovikn． 1410412029
（）AEYOYNT：月卫

Гé́pyıos Matparáz̧ns Нодıtкó̧ Mnxaviкó̧ μ е A＇β ．

ПАРАРТНМА I

IEPA KOINOTHTA AГIOY OPOY乏 $\mathrm{A} \Theta \Omega$

ЕРГО：«EPГA EПEEEPTA乏IA乏 KAI $\operatorname{\Delta IAOE\Sigma H~A\Sigma TIK\Omega N~}$ AYMATתN $\Sigma T O$ AГION OPOE»

MEAETH ГXEAIAEMOY KAI EФAPMORH乏 ГYЕTHMATOE $\triangle T A O E \Sigma H \Sigma ~ \Sigma E ~ A П O P P O Ф H T I K O V \Sigma ~$ BOOPOVE THE ETKATAETA乏HE EПEEEPГAEIA乏 A YMATRN IEPOY KEAIOY KAOIEMATOE AГ． TPYФ®NOEI．M．EEФITMENOY
1.1 ГENIKA 1
2．ПAPOXE KAI PYПANTIKA ФOPTIA 2
2.1 Парохє́ц акаӨáртшv 2
2．1．1 ГЕуіка่ 2
 3
2．2 Pипаvтіка́ чортіа． 3
3．ПOIOTHTA T ΩN EПEEEPTAZMEN ΩN AYMAT ΩN 5
4．ПPOAIATPAФE $\Sigma X E \triangle I A \Sigma M O Y ~ \Sigma Y \Sigma T H M A T O \Sigma ~ \triangle I A Q E \Sigma H \Sigma ~ \Sigma E ~$ АПОРРОФНТІКОУЕ BOOPOY乏 7
 7
5．ГЕЛМОРФОЛОГІА－ЕДAФO乏． 8
5.1 Гعш入оүіка́ характпрıотіка́ 8
5.2 Eठачо入оүіка́ характпрıттıа́ 10
6．YАРОАОГIA－YАРОГРАФIKO ДIKTYO 12
7．YПO＾OГI乏MOI AПAITOYMENH乏 ПAPAПАЕҮPH乏 EПIФANEIA乏 AПOPPOФНTIKתN BOOP 12
 13

1. IENIKA ETOIXEIAKAI AEAOMENA EXEAIAEMOY THE EEAIEPOY KAQIZMATOEAL,TPYФRNOEI,M, EE@ITMENOY

1.1 TENIKA

 о́үкоu 15 к. μ. (100 व́тоца $\mu \varepsilon$ катаvà $\lambda \omega$ оп 150lt/d).

2. ПAPOXEE KAI PYПANTIKA ФOPTIA

2.1 Парохв́ц акаӨа́ртшv

2.1.1 Гعvıкá

 парохй̧ avá ка́тоıко.

入ітра / $\eta \mu \varepsilon ̇ р а . ~$

$\mathrm{q}_{\mathrm{E}}=0,80 \times 180=144 \mathrm{I} / \mathrm{Kat} / \eta \mu$.

 696/74):

 100 кат.

Méon Huعpñoia Пapoxn่ AkaӨáptшv

$100 \times 150 / 1000=15 \mathrm{~m}^{3} / \mathrm{d}$.

Méviotn Huzpṅoia Пapoxń AkaӨáptढv

$$
15 * 1,5 \quad=22,50 \mathrm{~m}^{3} / \mathrm{d}=0,94 \mathrm{~m}^{3} / \mathrm{h} .
$$

Mévıotn תpıaia Пapoxń АкаӨáptшv
$\mathrm{Q}_{\mathrm{H}}=0,94 \mathrm{~m}^{3} / \mathrm{h}=0,26 \mathrm{l} / \mathrm{s}$
$P=1,5+2,5 / 0,26^{0.5}=6,4-$ ^ацßávetal íoos $\mu \varepsilon 3,00$
$Q_{p}=3,0 \times 0,26 \mathrm{l} / \mathrm{s} \quad=0,78 \mathrm{I} / \mathrm{s}=2,81 \mathrm{~m}^{3} / \mathrm{h}$
 аıхи'்̧ прокйптв:
$\mathrm{Q}_{0}=1,20 \times 0,78 \mathrm{l} / \mathrm{s}=0,94 \mathrm{l} / \mathrm{s}=3,38 \mathrm{~m}^{3} / \mathrm{h}$

2.2 Puпavtıкá 甲ортía

 мортіои ($\mathrm{gr} / \mathrm{kat} . / \eta \mu$.)

Пivakas 2.1: Punavтıкá 甲ортia avá I.к. otףv EE^

ПAPAMETPOE	Eıठıки́ Параүшүท́ Фортíou ($\mathrm{g} / \mathrm{kat} / \eta \mu$)
BOD_{5}	60
COD	120
Oגıко́ AZwto	10
Oגıкর́ aımpoúpغva oteped́	70
	3

 опоіо ह́x

 a๘甲á $\lambda \varepsilon$ हас．

ПAPAMETPO乏		ФA乏H ミXEAIAEMOY
	кат．	100，00
	$\mathrm{m}^{3} / \mathrm{d}$	15，00
	$\mathrm{m}^{3} / \mathrm{d}$	22，50
	$\mathrm{m}^{3} / \mathrm{h}$	0，94
Пapoxṅ aıxu＇̇s Q_{0}	$\mathrm{m}^{3} / \mathrm{h}$	3，38
Eı̇ıк⿺尢丶 Puпavtikó ¢ортio BOD	$\mathrm{gr} / \mathrm{KaT} / \mathrm{d}$	60
EıЇк⿺̇ Puпavtikó ¢ортio TSS	$\mathrm{gr} / \mathrm{kat}$	70
Eıठ̈ко̇ Punavtikó ¢ортіо TN	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	11
Eıठ̈ıкó Punavtikó ¢ортio TP	$\mathrm{gr} / \mathrm{KOT} / \mathrm{d}$	3
	kg／d	6，00
Фортіо TSS охहбוабนой	kg／d	7，00
	kg／d	1，00
Фортіо TP охعరıабนои்	kg／d	0，30

3．ПOIOTHTA TRN EПEEEPLAMENRNAYMATRN

 хрク்on（Пivakaç 2 TПऽ KYA）．

Mapáperpos	KYA 5673／400／97	KYA 145116 －חiv． 2
Атооб́ктTS	Етіч．uơátiva бüpara（ $\mu \mathrm{n}$ عuаioөŋtos аाтоб̈́kтПऽ）	Aрб̄६uテワ （aтєpiópioti）
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{l})$	≤ 25	≤ 10（80\％סॄıүयátov）
$C O D$（ mg / l ）	≤ 125	
Alwpoúnsva oteped́（mg／）	≤ 35	
Өо入о́tŋTa（NTU）		
Eschericia Coli（E．coli） （EC／100ml）	＊	

 текцпрїшテŋร．

4. ПPOATAIPAФE EXEATAEMOY EYZTHMATOE AIAOEXHE EE ALOPPOФHTHKOYEBOOPOYZ

4.1 Пробıаүраче́я Y.A. Еıß 221/65 (ФЕК 138/B/24-2-65) «Ппрi

minas vi

Eiboc E6íquos	
XovĒpóxoккос ¢́qu	5
	7
	12
	20
	40

5．ГЕRМОРФОМОГIA－ЕААФОЕ

5.1 Гєш৯оуıка́ характпрıотıка́

 חchoviaç，Pa：Zỏvŋ חákov，Al：Zóvn

Pk：Zóvๆ Пapvacroó－Гкióvas．
P：Zövq חivōou．
G：Zoivn Taßpópov－Tpitoi．j．
I：IÓvoç 弓̧ovn．

 П入ıкіас，

 anoӨżбદıら（П＾EIOITOKAINO－O＾OKAINO）

 （TPIA IIKO－IOYPAEIKO）

 （ПANAIOZ®IKO－IOYPAEIKO）
 （ПANAIOZתIKO－TPIA \triangle IKO）
8．E $\mu \varphi$ аviбвıç каı коıтд́б $\mu a t a \mathrm{~Pb}-\mathrm{Zn}$
9．Eน甲аviбвı̧，каı коıта́б μ ата $\mathrm{Fe}-\mathrm{Cu}$
10．Ец甲аviбвı̧ каı коıта́б \quad мата Mn

12．Мвта入入віа．

5.2 ЕбачоАоугка́ Характпріотіка́

 （I．Г．M．E．1978，NTà甲ク̧ к．à 1999）．

IZпиатоуعvท́ петрஸ்цата

＇Eठо甲os

 $\mu \varepsilon ү а \lambda и ́ т \varepsilon \rho \eta ~ п о б о ́ т \eta т а ~ х о и ́ \mu о и . ~$

al：A入入oußıaкદ̧̇ anoӨżбモı̧．

 Xı入ıavōapiou．
 үveúøoouc．
 $\mu \varepsilon т а і ̈ \grave{\jmath \mu а т а ~ т о и ~ б х п \mu а т і \sigma \mu о и ̆ ~ В \varepsilon р т і б к о и . ~}$

 клінакас，1：50．000）

Tou oxnuatıoนou̇ t T

6. YAPOAOГIA - YAPOГPAФIKO AIKTYO

 хвінаррон.

 үıа aпо́ $\lambda \eta \Psi \eta ~ п о б і \mu о u ~ v \varepsilon p o u ̉ . ~$

7. YПOAOГIEMOL AПAITOYMENHE ПAPAПAEYPHE EПIФANELA乏 ADOPPOФHTIKRN.BOOPתN

ПAPAMETPOE	EYMBO^O	TIMH	MONA \triangle A
	$\mathrm{Q}_{\mathrm{d}, \mathrm{av}, \mathrm{w}}$	15	$\mathrm{m}^{3} / \mathrm{d}$
Enı̣áveıa		7	$\mathrm{m}^{2} / \mathrm{m}^{3} / \mathrm{d}$
		105	m^{2}
		2	-
		52,50	m^{2}
Мغ̇үıтто BȧӨо¢ Yүpoú		3,50	m
		16	m
Bóधpou		4,0	m

EAETXOHKE

Өrooadovikn ...14/04/...20.22
) OTIPOİTAMENOE
TMHMATOE $\triangle A E Q H$ - П IDPBAMMONTOE

Yүıєıvoגоүıкоі Yполоүıбноі Е.Е.^.

IEPA KOINOTHTA AГIOY OPOY乏 $A \Theta \Omega$

ЕРГО：«EPГA EПE＝EPГA乏IA乏 KAI $\operatorname{\Delta IAOE\Sigma H~A\Sigma TIK\Omega N~}$ AYMAT $\Omega \mathrm{N}$ £TO AIION OPO乏»

ПAPAPTHMA A：
YITEIONOAOГTKOI YПOAOFIEMOI ETKATAETALHE EПEEEPTAEIAEAYMATתN IEPOY KEAIOY KAOIIMATOEAГ．TPYФRNA I．M． ELDITMENOY

חEPIEXOMENA

1．EIEATתГH 1
2．IIAPAMETPOI ミXEAIAEMOY EEN 1
2.1 Парохघ́¢ каı Фортіа＾ица̇тшv 1
2.2 Поо́тпта Екройऽ 1
 ． 2
3．$\Delta I A \Sigma T A \Sigma I O A O R H \Sigma H$ MONA $\Delta \Omega N$ 3
 3
3．1．1 Гعvıка́ 3
 4
 5
3．2．1 EІбаүшү＇்－пергүрач 5
 6
3．2．3 Δ ıабтабіо入о́үпоп－Үподоүıбиоі 10
3.3 ธıủ 1 ıə 11
3．3．1 Elбayшү＇் 11
 11
3．4 Ano久újuavon． 12
3．4．1 Eıбаүшүウ่ 12
 13
 15

1. EIEAГRГН

2. ПAPAMETPOL EXEALASMOY EEA

2.1 Парохв́с ка৷ Фортіа Ачцáтаи

TAPAMETPOE		ФA乏H EXEAIAEMOY
	кат.	100,00
	$\mathrm{m}^{3} / \mathrm{d}$	15,00
	$\mathrm{m}^{3} / \mathrm{d}$	22,50
	$\mathrm{m}^{3} / \mathrm{h}$	0,94
Пapox'̆ aıxuņs Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	3,38
Eıठ̈к<ó Punavtikó ¢ортio BOD	gr/KOT/d	60
Eıঠ̈ıó Punavtikó ¢ортіо TSS	gr/Kat	70
Eiöró Punavtikó ¢орtio TN	gr/KOT/d	11
Eıठ̄ıкó Punavtiкó ¢ортio TP	gr/kat/d	3
	kg/d	6,00
Фортіо TSS бXEסוaбนой	kg/d	7,00
	kg/d	1,00
	kg/d	0,30

2.2 Поıóтпта Eкроѓя

^óv

 хрウ்on（Пivakaç 2 тクऽ KYA）．

Eпıтрह́пะı عпionऽ：
 tou коvтіvஸ்v ка入入ıєрү६ıळ்v

Пара́peтроS	KYA 5673／400／97	KYA 145116 －Пiv． 2
AToठ̇́kT\ऽ	Emị．ướtiva ош́ μ ata（ $\mu \eta$ вuаíaөптоs атобе́ктПऽ）	
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{l})$	≤ 25	≤ 10（80\％бЕıуцátwv）
COD（ mg / l ）	≤ 125	
Alwpoúheva ण¢\＆p\＆á（mg／l）	≤ 35	
Oo\ótпTa（NTU）		
Eschericia Coli（E．coli） （EC／100ml）	＊	$\begin{aligned} & \leq 5(80 \% \text { бєıуцव́тшV) } \\ & \leq 50(95 \% \text { бвıүй́т }) \end{aligned}$

 оріگ६тaı отоv Пivaka 1 Tクऽ KYA 145．116／2011．

3. AIAETAEIOAOLHEH MONAARN

3.1.1 Гعvıка́

 orepe山்v.

 घпє६६pүacias.

 ßıо入оүікйऽ єпє६६рүабіас.

 oxદ̇ఠŋ!
$\mathrm{q}=\mathrm{Q}_{\mathrm{d}, \mathrm{m}} / \mathrm{A}$

ПAPAMETPOE	MONA \triangle A	TIMH
	$\mathrm{m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$	0,6
	$\mathrm{m}^{3} / \mathrm{hr}$	3,38
	m^{2}	5,63

 $15,7 \mathrm{~m}^{3}$.

ПAPAMETPOE	MONADA	TIMH
Méyıơך ω pıaia napox'̆ Qd,max	$\mathrm{m}^{3} / \mathrm{hr}$	0,94
	m^{3}	3,38
	m^{3}	11,78
	hr	12,53
	hr	3,49

 аб甲á $\lambda \varepsilon ı а ~ \omega \varsigma ~ а к о \lambda о u ́ \theta \omega \varsigma ~(A T V-H a n d b u c h, ~ M e c h a n i s c h e ~ A b w a s s e r r e i n i g u n g, 1996): ~$

ПAPAMETPO乏	MONADA	TIMH
BOD 5	\％	25
COD	\％	25
AIwpoújeva orepeà SS	\％	60
O入ıко́ à̧んтто	\％	10
Фஸ்०¢ороऽ，	\％	9

 $\omega \varsigma \varepsilon \xi \check{\iota}$

ПAPAMETPOE	MONA \triangle A	TIMH
BOD5	mg／l	300，00
	kg／d	4，50
COD	mg／l	540，00
	kg／d	8，10
Alwpoủneva oreped SS	mg／l	186，67
	kg／d	2，80
	mg／l	60，00
	kg／d	0，90
Фஸ்б¢ороऽ，	mg／l	18，20
	kg／d	0，27

3．2 BıoАоүıкர́ Enȩ̧єруаवia

3．2．1 Eıбаүшүர்－пєрıура甲ர்

 ı入ủoç.

 $0.0049 \mathrm{~m}^{3} / \mathrm{m}^{2}$ घпıழávघıac.

 то ठ̋ıa入u

 ¢áan, nou кupaivovtaı anó 90 ह́فऽ $95 \% \omega \varsigma$ про̧ то BOD.

		ДєитвроßáӨцıо $\mu \varepsilon$ таuтóxpovn vitponoinon	$\Delta \varepsilon \cup т \varepsilon \rho о \beta \dot{a} \theta \mu$ ио $\mu \varepsilon$ vitponoinon бє छєхшріото́ Oтáőı
$\left(\mathrm{m}^{3} / \mathrm{m}^{2} . \mathrm{d}\right)$	0.08-0.16	0.03-0.08	0.04-0.1
Opyavikí ¢о́ption			
$\mathrm{Kg} \mathrm{SBOD} / \mathrm{m}^{2} . \mathrm{d}$	0.003-0.01	0.002-0.007	0.0005-0.001
$\mathrm{Kg} \mathrm{TBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0.01-0.017	0.007-0.015	0.001-0.003
Мغ̇ץıбтŋ Opyaviкท่甲о́ртібП бто пра́то бта́ठ̄॰			
$\mathrm{Kg} \mathrm{SBOD} / \mathrm{m}^{2} . \mathrm{d}$	0.02-0.03	0.02-0.03	
$\mathrm{Kg} \mathrm{TBOD}_{5} / \mathrm{m}^{2} . \mathrm{d}$	0.04-0.06	0.04-0.06	
$\begin{aligned} & \text { Фо́ртіळп а а } \mu \omega v i a c ~(K g ~ \\ & \left.\mathrm{NH}^{3} / \mathrm{m}^{2} . \mathrm{d}\right) \end{aligned}$		0.0007-0.0015	0.001-0.002
$\begin{aligned} & \text { Yס́pau入ıкós Xpóvos } \\ & \text { mapapovŋ்̧ (hr) } \end{aligned}$	0.7-1.5	1.5-4	1.2-2.9
$\mathrm{BOD}_{5} \mathrm{E}$ ¢́̇ठou (mg/lt)	15-30	7-15	7-15
A $\mu \mu \omega v i a ~$ $(\mathrm{mg} / \mathrm{t})$ Eछ̌óठou		<2	1-2

3．2．3 Аıабтабіоגо́үпоп－Yпоגоүıбиоі

	（mg／l）	（ Kg / d ）
BOD_{5}	300，00	4，50
COD	540，00	8，10
SS（aıwpoúhzva orepeá）	186，67	2，80
Oגıко́ àZんто（оруaviкó N ， $\mathrm{NO}_{3}-\mathrm{N}, \quad \mathrm{NH}_{4}-\mathrm{N}$ ）	60，00	0，90
	18，20	0，27
Өяриокрабіа	$12-20^{\circ} \mathrm{C}$	
pH	7，5	

 25\％
 $4,50 \mathrm{Kg} / \mathrm{d}$

$\mathrm{BOD}_{5} \leq 20 \mathrm{mg} / \mathrm{l}$
COD
$\leq 125 \mathrm{mg} / \mathrm{l}$
Ai ω рои́нцva oteped（SS）
$\leq 25 \mathrm{mg} / \mathrm{l}$

 $6 \mathrm{~g} /\left(\mathrm{m}^{2} \mathrm{xd}\right)$

Aпаıтоú $\mu \varepsilon v \eta$ عпı甲áveıa ßıоסiஎкんv
$4,50 \times 1000 / 6=750 \mathrm{~m}^{2}$
 $1000 \mathrm{~m}^{2}$
 1
 $0,75 \mathrm{~kW}$

O入ıкர่ єпו甲ávยıa $1000 \mathrm{~m}^{2}$

2 m

3．2．3．6 \quad Пaрayшүrí ıฝúos

 побо́тŋта аішрои́ $\varepsilon \varepsilon \omega \omega$ oтepعळ்v，àpa：

 $\mathrm{kg} \cdot \mathrm{SS} / \mathrm{kg} \cdot$ BOD $_{5}$ апоиакриvóндvo．
 anouakpuvó $\mu \varepsilon v o$.

ミuvoגıкń параүшүク̆ ıגúos，
$4,50 \mathrm{~kg} / \mathrm{d}$
$20 \times 15 / 1000=0,30 \mathrm{~kg} / \mathrm{d}$
$0,55 *(4,50-0,30)=2,31 \mathrm{~kg} / \mathrm{d}$
$4,20+2,31=6,51 \mathrm{~kg} / \mathrm{d}$

3.3 AIÚAıOワ

3．3．1 Eıवаушүற่

 （Andreadakis 2003，Metcalf \＆Eddy 2003，Titley 2014）．

 фо́ртıбп тои цї λ трои $\forall a$ عivaı $<8 \mathrm{~m}^{3} / \mathrm{m}^{2}$－ hr ．

	0,42	
	4	m^{2}
	0,85	$\mathrm{m}^{3} /\left(\mathrm{m}^{2} \mathrm{xh}\right)$

 mg / l.

$B O D_{s s}=0,65 * 1,42 * 0,68 * S S$
ónou :

$B O D_{5, \text { eff }}=B O D_{5, i n}-B O D_{s s}$
ónou:

$B O D_{5, \text { eff }}=9,96 \mathrm{mg} / \mathrm{l}$

3.4 Aпo৯úfavon

3.4.1 Eıбаушүர்

 $\mu п о \rho o u ̉ v ~ v a ~ a v a n a p a x \theta o u ́ v ~ к a ı ~ v a ~ Ө \varepsilon \omega р о u ́ v т а ı ~ п р а к т ı к a ̀ ~ \omega \varsigma ~ п \varepsilon Ө a \mu غ ̇ v a . ~$

 параиغ்троия :
\Rightarrow Поо́тпта тоu vepoú

- Aiwpoúpeva oтepeá

 $\mu \varepsilon ү а \lambda u ́ t \varepsilon \rho \eta ~ a n o ́ ~ 70 \% . ~$
 $10^{7} \mathrm{FC} / 100 \mathrm{ml}$.

 Disposal Reuse, 1979, p. 287):

Eoxápoon
Е६á $\mu \mu \sigma \square$
Вıо入оүıкń ßаӨніб̈а

$$
\begin{aligned}
& \mathrm{Eff}_{\text {SCN }}=10-20 \% \\
& \mathrm{Eff}_{\text {SF }}=10-25 \% \\
& \mathrm{Eff}_{B B}=90-98 \%
\end{aligned}
$$

ПрокаөiZnоп
$E f f_{p C}=10 \%$
Віо入оүıк்่ ßаӨиіба
Eff $_{B B}=90 \%$
 проки̇птєı aпо́ тоv тúno:

Colifeff $=$ Colifin $_{\text {n }} *\left(1-\right.$ Eff $\left._{p \mathrm{c}}\right) *\left(1-\right.$ Eff $\left._{\mathrm{BB}}\right)$
Me avtiкaтáotaon прокúnтєı :
Colifett $=10^{7}(1-0.10) *(1-0.90)$
Colifent $=9 \times 10^{5} / 100 \mathrm{ml}$
 $\lambda a \mu ß a ́ v \varepsilon T a ı ~ i o n ~ \mu \varepsilon ~ 10 ~ / ~ 100 ~ m l . ~$.

 A^{\prime} тá $\mathfrak{n} \uparrow \mathrm{C}$:

$$
N / N_{o}=e^{-k . i . t}
$$

ónou,
N_{0} : o apxiкós apı日иós TC
N : о телıко́s арı日цо́s TC
k : वтaӨعрá

каı

$$
-k^{*} i^{*} t=\ln \left(10^{-5}\right)=-11,51
$$

$i * \mathrm{t}=11,51 \mathrm{mWsec} / \mathrm{cm}^{2}$

 проки́птєः:
$15 \times 7=105 \mathrm{~m}^{2}$

EAETXQHKE

OERPHOHKE
O AEVOVNHHE THE
TEXNIKHE YHHPEETAE

Гé́pyıos MatpanáZ̧ņ
Нәднико́ Мпхауако́с $\mu \varepsilon A^{\prime} \beta$.

