IEPA KOINOTHTA AГIOY OPOY乏

ЕРГО：
 «EPГA EПEEEPTA乏IA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~$ ミTO AIION OPO乏»

 KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ T M H M A T O \Sigma ~ I . ~ M . ~ \Sigma I M \Omega N O \Sigma ~$ ПETPAE

ANA $\triangle O X O \Sigma$ MEAETHE

EYミTPATIO KAPATERPIIOY
ПАПАФН 82， 54453 ӨEГミAへONIKH
email：skarageo＠gmail．com

ЕРГО：
 «EPTA EПE＝EPTA乏IA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ \Sigma T O ~$ AIION OPO乏»

MEAETH ПEPIBAMMONTIKSN EПIITTQEERN
EPIתN EПIEEEPIAEIA K KII $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ T M H M A T O \Sigma ~ I . ~ M . ~$ EIMRNOE ПETPA乏

MH TEXNIKH ПEPINH

ANADOXOE MENETHE

EYミTPATIOE KAPATERPIIOY
ПАПАФН 82， 54453 ӨЕГУAへONIKH
email：skarageo＠gmail．com

ПINAKA乏 ПEPIEXOMENתN

2. MH TEXNIKH ПEPIAHYH 3
2.1. ПЕРІРРАН ЕРГОҮ. 3
 3
 3
2.1.2 Перıураий іетоорүіас 4
2.2. AПOETALEIL-EYNTETARMENEL. 6
 6
2.4. METPA KAI \triangle PAEEIE IIA THN IIPOETAEIA TOY IEPIBAAAONTOE. 10
2.5. ОФЕАН 10
2.6. ENAAAAKTIKEE AYEEIL 10
 11

2. MH TEXNIKH ПEPI^H ΨH

Пю оиүкєкрıцвंva:

E.E.A.

 періпои 65 ıбоठ̄ủvaцоиद катоікоия.

ПIAPAMETPOE		ФAEH EXEAIAEMOY
Е६uпn¢	кat.	65,00
	$\mathrm{m}^{3} / \mathrm{d}$	9,75
акаӨápтшv	$\mathrm{m}^{3} / \mathrm{d}$	14,63
	$\mathrm{m}^{3} / \mathrm{h}$	0,61

Парох＇̆ aıхийऽ Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	2，20
Eıర̈ıкó Puпavtikó 甲ортio BOD_{5}	gr／kat／d	60
Eıठıкó Puпavtikó 甲ортіо TSS	gr／kat	70
Eıठıкó Punavtikó 甲ортio TN	$\mathrm{gr} / \mathrm{Kat} / \mathrm{d}$	10
Eıठıкó Punavtikó 甲ортio TP	gr／kat／d	3
	kg／d	3，90
Фортіо TSS бхहరıабนои่	kg／d	4，55
	kg／d	0，65
	kg／d	0，20

Фáon B＇：Kataokzuń $\theta \varepsilon \mu \varepsilon \lambda i \omega o n s$

[^0]

 TOV XЕı川ळ்va.

 رıкрผ́v парохढ̈v.

 520895,35 каІ $Y=4448690,24$.

	इuvtetayuėvec E[टA 87	
	X	Y
'Ȩoס̃oc anió EE^	520882,25	4448672,78
ミnueio రià	520871,92	4448675,58

1．ПPAEINH ENAEI三H avtiotoIxzi oع ӨETIKH EПIITT $\Omega \Sigma \mathrm{H}$

3．KOKKINH ENAEIEH avtıotorxi oع APNHTIKH EחIITT $\Omega \Sigma H$

ФAEH EPROY	ПEPIBAAMONTIKO ETOIXEIO	Emintoseis			BAPYTHTA				АIAPKEIA		ANAETPEYIMH		
		$\frac{\mathrm{z}}{2}$	W్凶入入	밍	¢	$\frac{\text { K }}{\frac{1}{6}}$	劲		$\sum_{\sum_{2}^{2}}^{\text {Tㅡㄹ }}$		칭		－
			$\sqrt{ }$			\checkmark				\checkmark	\checkmark		
	Морфоגоүıка่ каı топо入оүıка характпрıөтіка́		$\sqrt{ }$				\checkmark			$\sqrt{ }$			\checkmark
	характпріотাка́			\checkmark									
	Фuדiкȯ перıßà $/ \lambda$ ov		$\sqrt{ }$				\checkmark			\checkmark			\checkmark
				\checkmark									
		\checkmark			$\sqrt{ }$					\checkmark			
	TEXVIKغ̇¢ unoōouદ̇ऽ，		\checkmark					\checkmark		\checkmark			\checkmark
				\checkmark									
	Поıо́тпта тои аغ́pa	\checkmark				$\sqrt{ }$				\checkmark		$\sqrt{ }$	
		\checkmark					\checkmark			\checkmark		$\sqrt{ }$	
	Н入єкронаүvทтіка̇ пеठia			\checkmark									
	＇үбата			\checkmark									
		$\sqrt{ }$				$\sqrt{ }$				\checkmark		\checkmark	

M．ח．E．EPTSN EREEEPTASIA乏 KAI $\triangle I A G E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S N ~ T M H M A T O \Sigma ~ I . ~ M . ~ \Sigma I M \Omega N O E ~ ח E T P A \Sigma ~-~ M H ~ T E X N I K H ~ ח E P I A H \Psi H ~$
EPRO ：«EPTA ETEEEPTAITAE KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T S Z N ~ \Sigma T O ~ A / T O N ~ O P O \Sigma » ~$

ФAEH EPROY	TEPIBAMAONTIKO ETOIXEIO	enintaseis			BAPYTHTA				DIAPKEIA		ANAETPE ${ }^{\text {I }}$ IMH		
		$\frac{\mathrm{K}}{2}$	W్ㅐㅄ	잉	奀	$\frac{\Sigma}{\frac{1}{2}}$			\sum_{\sum}^{2}		징		$\frac{1}{2}$
			\checkmark					$\sqrt{ }$	\checkmark			$\sqrt{ }$	
	Морфолоүıка่ каı топо入оүıка характпрıбтіка́												
	характпрітттка			\checkmark									
	Фuđiкó періßف̇												
	\checkmark			$\sqrt{ }$				\checkmark					
		\checkmark			\checkmark				\checkmark				
		\checkmark			\checkmark				\checkmark				
				\checkmark									
		\checkmark			\checkmark				\checkmark				
	Поıо́тпта тои аह̇ра	\checkmark						\checkmark	$\sqrt{ }$				\checkmark
	Өópußoç каı ठоvท̇əøı¢		\checkmark					\checkmark		$\sqrt{ }$			$\sqrt{ }$
	Н入єкронаүvๆтіка̇ пеठia			\checkmark									
	＇Үбата	\checkmark			\checkmark				\checkmark				
		$\sqrt{ }$				$\sqrt{ }$				\checkmark		\checkmark	

 גеітоupyia tous．

 ठıaøпорá TんV pún $\omega \mathrm{V}$ عival ıкаvoпоıптікク่．
Tह่́入oc，غ̇x Өорúßou anó тпv $\lambda \varepsilon ו т о u p y i a ~ т \eta ~ \eta \lambda \varepsilon к т р о \mu \eta \chi a v o \lambda о ү ı к о u ่ ~ \varepsilon \xi о п \lambda ı \sigma \mu о u ́ . ~$

2．5．O甲ع́ 1η

 перıßà入入ov．

2．6．ЕvaДЛактıкє́ऽ Аи́бधıৎ

 перıßà入lov．

 чүроßıото́пшv ．

tns oxetikís KYA
 Ааболоүоя $\mu \varepsilon A^{\prime} \beta$ ．

Eпиптஸ́osic tou غ̇pyou otnv nepıoxй Natura

Мє тпท катабкєиர่ тоu غ̇pүou：

Tๆ入．： 2310902321
Email：skarageo＠gmail．com

$\Sigma ф р а у і \overline{\text { ® }}$－Үпоүра甲и́

OEתPHOHKE Oeooolovikn．14．1041．20． 22 O AICYOYNTHE THE TEXNIKHE YHHPESIAE

Гعஸ́pүเos Matpanáそ̧ņ Подı七кós Mnxaviкós μ ع A＇β ．

IEPA KOINOTHTA AIIOY OPOYE $A \Theta \Omega$

ЕРГО：
 «EPTA EПE＝EPTA乏IA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ \Sigma T O ~$ AГION OPOE»

MEЛETH ПEPIBAИИONTIKSN EПI／TTSEERN
 EIMRNOE ПETPAE

ANAAOXOE MEAETHE
EYミTPATIOE KAPAFEQPTIOY
ПАПАФН 82， 54453 ӨЕこऽAへONIKH
email：skarageo＠gmail．com

MINAKAE MEPIEXOMENתN

1．EILAГ Ω ГH9
1．1．Titaos eproy ． 9
1．2．EiaO\＆Kai MeIE＠OE EPIOY 9
1．3．ГЕЯГРАФIKH ЄELH KAI $\triangle I O I K H T I K H ~ Y I I A Г \Omega Г H ~ E P F O Y ~$ 9
1．3．1 Єヒ́व 10
 11
 11
1．3．3．1 इutctaүuévec Өéons EE \wedge 11
 11
1．4．Katatazh toy eproy 12
1．5．ФOPEAL EPTOY 13
1．6．ПEPIBAAAONTIKOE MEAETHTHL EPIOY 13
2．MH TEXNIKH ПEPIAHYH 14
3．ऽYNOITIKH ПЕРIГРАФН T Ω Е EPГ Ω N 15
3．1．BAEIKA ETOLXEIA TOY EPROY 15
 15
 15
3．2．BAEIKA ETOIXEIA KATAEKEYHZ KAI AEITOYPIIA乏 16
 16
3．3．AПATTOYMENE ПOSOTHIE乏 HPSTQN YARN，NEPOY，ENEPTELA乏 KAI AПOBAHTRN 18
 18
 18
4．$\Sigma T O X O \Sigma$ KAI $\Sigma K O I I M O T H T A ~ Y A O H O I H \Sigma H \Sigma ~ T O Y ~ E P I O Y ~-~ E Y P Y T E P E ~ \Sigma ~ \Sigma Y \Sigma X E T I \Sigma E I \Sigma ~$ 20
4．1．Σ TOXOE KAI EKOIIMOTHTA 20
 20
Épyou 20
 20
4．2．IETOPIKH EEEAIEH TQN EPIRN 21
4．3．OIKONOMIKA ETOIXEIA TRN EPRIN 21
4．3．1 Ектіцпоп отvо之ıко́ тройтоえангнои́． 21
 21
4．3．3 Тро́тог хюпиатобо́тпопร 21
4．4．इYEXETILH TOY EPLOY ME AAAA EPLA 22
 AELMEYミEIL THE ПEPIOXH乏 23
5．1．ЄEटH TOY EPTOY 23
5．1．1 Оріа оькабнюь 23
 23
 23
 23
5．1．4．1 Обио́ диктоо 23
 23
 23
5．1．4．4 АлоүЕ́tеибך 23
5．1．4．5 Үठрситा 24
 24
5．2．IEXYOYEE X XPOTAEIKE KAI ПOAEO O OMIKE Σ PY＠MILEIE TH亡 HEPIOXHE TOY EPIOY 24
5．2．1 Проßлв́чєเร 24
5．2．2 Өвоико́ каӨвбтю́с． 24
 25
 25
6．ANAAYTIKH ПEPIГPAФH ГXEAIAミMOY TOY EPГOY 26
6．1．ANAAYTIKH IEPITPAФH TEXNIK Ω－TE - METPIK Ω N ETOIXEI ΩN 26
 26
 26
 28
6．3．EIIMEPOYГ EPTA 28
6．3．1 Kпрıака́ в́рүа 28
 28
 29
 29
 29
6．3．4．2 Вьо久．оүкй елег̆धрүабіа 29
 31
 31
 32
6．4．ФALH KATALKEYHL T Ω N NE Ω N EPI Ω N 32
 32
6．4．2 Eлıuépov̧̧ texviкd épva 32
 32
6．4．4 Avaүкаіа vגıкд́ катабквшウ่ร 33
6．4．5 Eкров́г vуро́v алоßАд்гюv 34
6．4．6 Пגsová̧ovto v̀ıкд́ 34
6．4．7 Ектоилह́ц ац́рıаv ри்таv 34
 35
 35
6．5．ФALH AEITOYPILAE． 35
 35
 36
 36
 36
 37
 37
 37
6．6．ПAYЕH AEITOYPIIAZ－AПOKATAZTALH 37
 37
6．6．2 KаӨаірвоп μ о́vцни катабквьळ́v． 37
 38
6．7．＇EKTAKTES ZYNOHKEL KAI KINAYNOI IIA TO IEPIBAAAON 38
 38
 38
6．7．3 А七акотй Півктроঠо́тпбทऽ 38
 38
6．8．EIIIAPALH TOY EPIOY Σ KOITE PEMATQN 39
7．ENAAAAKTIKE $\operatorname{AY\Sigma EI\Sigma }$ 40
7．1．ПAPOYELALH BLOEIMHE AYEHE 40
7．1．1 МПбвикฑŋ λ и́бך 40
 40
 41
7．1．3．1 ГЕvкর́ 41
 42
 48
 50
 52
7．1．4 Фитка́ бтбті́иата． 56
 56
 58
 59
 60
 64
 66
 67
7．1．5．1 Гعvıќ 67
 67
 68
7．2．AミIOAOГHLH KAI AITIOAOLHEH THE TEAIKHE ETIIAOIHE 70
 70
 70
71
 74
 77
 77
8．YФIгTAMENH KATA亡TAH IIEPIBAAAONTOE 78
8．1．ПEPIOXH MEAETHZ 78
 78
8．1．2 इпиєıако́ в́рүо 79
8．1．3 Karךүopia épyov． 79
8．1．4 Пробатгио́ивvท терเохท̆ 79
8．1．5 Үүрототикй перьхй 79
 79
8．2．KAIMATOAOГIKA KAI BIOKAIMATIKA XAPAKTHPIETIKA． 79
8．3．МОРФОАОПККА КАІ ТОПОАОГІКА ХАРАКТНРЕЕТІК 81
 81
 81
 82
8．3．4 Eицаиако́трго－тршто́тра топіол． 82
8．4．ГЕЯAOITKA，TEKTONIKA KAI EАAФOAOГTKA XAPAKTHPILTIKA 83
8．4．1 Гволіотккх үарактиртоикд 83
8．4．2 Едачоіоиика характирьтикд 85
8．4．3 Тектоvкќ характиріотки́． 86
8．5．ФYЕIKO ПIEPIBAAAON 87
8．5．1 Геviкд́ тогдеia 87
 88
 90
 90
 96
 97
8．5．3．1 Характाןpas m！s ह́кtaols tov Épyov 98
 98
 98
 98
 99
8．6．ANӨPQחOFENE IEPIBAAAON 99
 99
 99
 99
 99
8．6．2．1 Характррьтика́ то́дьоу каи окибию̆ 100
8．6．2．2 Пробтатєчо́иєvа тий $\mu \tau \alpha$ 100
 100
8．6．3 Податакй кі̀ทроvоца́ 100
 100
 101
8．7．KOIN Ω NIKO KAI OIKONOMIKO IEPIBAAAON 101
 101
 102
8．7．2．1 Параүоүккоі тонвіс 102
 102
 102
 102
8．8．TEXNIKEL YHOAOME 102
8．8．1 Yтодоиغ́ μ втаиоро́v 102
 103
8．8．3 Аіктиa údezors． 103
8．9．ANӨP囚IOIENEIL IIEEEIL ETO IEPIBAAAON 103
 103
 103
8．10．ATMOLФAIPIKO IEPIBAAAON－ПOIOTHTA AEPA． 103
 104
 104
 104
8．11．AKOYZTIKO IEPBAAAON KAI AONHEEE 104
 104
 104
 105
8．12．HАEKTPOMAГNHTIKA IEAIA． 105
 105
 105
8．13．Y YATA 105
 105
8．13．1．1 Пароибіатп тро队之е́чєоь． 105
 105
 105
 106
8．13．2．1 Перчүрачฑ门 ид̈роүрацикои́ ӧитйои 106
8．13．2．2 Пергүраррі ирьтгддцвvер хрйовюь 106
 106
 106
8．13．3 Yло́veıa údara 106
 106
 107
 107
 107
8．14．KINAYNOI［IA THN ANEPSIINH YIEIA，THN ПOATTILTIKH KAHPONOMIA H／KAI TO IEPIBAAAON，KYPIRE AOIS
ATYXHMAT Ω N KAI KATAETPOФ Ω N 107
8．15．TAZEIL EEE $\Lambda E H \Sigma$ TOY ПEPIBAMAONTOE X Ω PIL TO EPIO 108
 108
 108
9．EKTIMHटH KAI AЕIOAOГH工H ПEPIBAAAONTIK Ω N EIIIT $\Omega \Sigma E \Omega N$ 109
9．1．ME＠OAOAOTIKEL AILATTHEEIZ， 109
9．2．EIIITTQटEİ £XETTKA ME TA KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPIटTIKA 110
 110
 Өериохюриако́трац． 110
9．2．3 Eктоитец аеріои тои Өсриокппіот． 110
9．2．3．1 Фа́т катабкви！́ร． 110
9．2．3．2 Фи́oा 入etzoupriac． 111
9．3．EПIITTOSEIL $\Sigma T A$ MOPФOAOIIKA KAI TOIIOAOHIKA XAPAKTHPIETIKA． 111
 111
 111
 111
 111
 112
9．4．EIIITRQEEIE EXETIKES ME TE $\Omega A O$ IIKA，TEKTONIKA KAI EAAФOAOIIKA XAPAKTHPIETIKA． 112
9．4．1 Макробкоткж́s таратррікетс． 112
 112
 112
 112
 112
 112
 113
 113
9．5．EIIITTQSEIE STO ФYEIKO IIEPIBAAAON 113
 113
 113
9．5．2．1 Eıঠıкá oгo七zeía 113
 114
 114
 115
 115
 115
 115
 115
9．5．4．2 इe Өaláoorȩ eкtáoȩ̌． 115
9．6．EIIITTREEIE ETO ANEPQHOLENE HEPIBAANON 115
 115
 115
9．6．1．2 Eпuтt由бEts 115
 116
 116
 116
9．6．3 Поגтатакй кіпроуоцд́ 116
9．6．3．1 Enuttioelc， 116
 116
9．6．3．3 Еடெиท் єктіцทणा． 117
9．7．ETIITRQEEIL ETO KOINQNIKO－OIKONOMIKO IEPIBAAAON． 117
9．7．1 Мढ̈ø 117
 117
9．7．3 Өв́двцсяруашіас 117
 117
9．7．5 Поь́тига Цайя 117
 117
9．8．EIITTR乏EIE ETIL TEXNIKE Y YHO OME 117
 117
9．8．2 Eлйцквіа． 117
9．9．Σ YLXETILH ME TIL AN＠PSHOFENEIL HELEIL ETO IIEPIBAAAON 118
 118
 118
9．10．EПIITIREELE ETHN ПOIOTHTA TOY AEPA 118
9．10．1 Eпидぁぁай 118
 119
 119
9．11．EпIITTQEELL AПO＠OPYBO H $\triangle O N H \Sigma E I \Sigma$ 119
 119
 120
9．12．EIIITTOEELE EXETIKES ME HAEKTPOMAINHTIKA IEAIA 120
9．12．1 Eлитшывац 120
9．12．2 Th日avótpra 120
9．13．Enimioneİ ETA YaATA 120
 120
 120
 120
 121
 121
 121
 121
9．13．3．1 इvoфह́tō 甲а́бとov． 121
 121
 122
 122
 122
9．14．EIITTR乏EIE ПOY AПOPPEOYN AПO KINAYNOYZ ГIA THN ANӨPQIINH YTELA，THN ПOAITIETIKH KAHPONOMIA H
／KAI TO IIEPIBAAAON，KYPI Σ ת 122
9．15．इYNOYH EIIITTSEESN SE IINAKE 122
10．ANTIMET Ω IILH IEPIBAAAONTIK ΩN EIIIIT $\Omega \Sigma E \Omega N$ 125
10．1．MEӨOAOAOIIKE AIIATTHEEIL KAI ITPOУӨETA METPA 125
10．2．METPA AПOKATALTALH亡 KAI ANTIMET $\Omega \Pi I I H \Sigma$ EIIITIILEQN $2 E$ KAIMATIKA KAI BIOKAIMATIKA XAPAKTHPILTIKA 127
10．3．METPA AПOKATALTALH亡 KAI ANTIMET Ω ПILHE EПIITTQEEQN EE MOPФOAOIIKA KAI TOПOAOIIKA XAPAKTHPIETIKA 127
 XAPAKTHPIETIKA 128
10．5．METPA AПOKATALTALHE KAI ANTIMETSIILHL EIIITRSE Ω N Σ TO Ф YEIKO IEPIBAAAON 128
 129
10．7．METPA AПOKATAETAEHE KAI ANTIMETQIILHE EIIITT $\Omega \Sigma E \Omega$ E Σ TO KOIN Ω NIKOOIKONOMIKO IIEPIBAAAON． 130
 130
 IEPIBAAAON 131
10．10．METPA AПOKATAZTALHE KAI ANTIMETQПLLHE EПIIT $\Omega E E N$ STHN ПOЮTHTA TOY AEPA 131
10．11．METPA AПOKATALTALHE KAI ANTIMETQMILHE EIIITTQLE Ω N AПO＠OPYBO H $\triangle O$ ONHEEIL 132
10．12．METPA AПOKATALTALHE KAI ANTIMET Ω IILHL EПIITQLE Ω N 上XETIK ΩN ME HAEKTPOMAГNHTIKA ПEAIA 133
10．13．METPA AПOKATALTALHE KAI ANTIMETQПILHE EПIITIREE Ω N $\Sigma T A$ Y $\triangle A T A$ 133
10．14．METPA AПOKATAZTALHE KAI ANTIMETQПILHE ПEPIBAAAONTIKQN EПIITTREE ΩN ПOY AПOPPEOYN AПO THN
EYTLAOELA TOY EPIOY $\Sigma E ~ K I N A Y N O Y \Sigma ~ \Sigma O B A P \Omega N ~ A T Y X H M A T \Omega N ~ H ~ K A T A \Sigma T P O \Phi \Omega N$ 134
10．15．AПOTEAEEMATIKOTHTA METP Ω N 134
11．IEPIBAAAONTIKH AIAXEIPILH KAI ПAPAKOAOYӨH工H 161
11．1．ПEPIBAAMONTIKH ALAXEIPILH 161
11．2．ПЕРIBAAAONTIKH ПАРАКОАОУӨНЕН 161
 161
 161
 161
 161
11．2．1．4 Ориаке́я тие́з цгтрїбвеی 161
 162
 162
 162
 163
 163
 163
11．2．3．1 M 163
 163
 163
 164
11．2．4 Паракоіои́Өпоп Өоро́ßор． 164
 164
 164
 164
 164
11．2．5 Паракоіоо́ӨПळן оби＇ө 164
 164
 165
 165
 165
11．3．Σ XEAIO ANTIMETRIIILE EKTAKT Ω N IEPIETATIK Ω N 165
11．3．1 Eıoxүணй 165
11．3．2 Av тквіивvo тои Σ xeठion 165
11．3．3 Evерүотоіпоך тои Σ хвठiou 165
 167
 168
12．KЛAIKOIOIHLH AIOTEAELMATQN KAI IIPOTALE IIEPIBAAAONTIK』N OP Ω N 175
12．1．OEMA－ONOMA乏IA EPIOY H \triangle PAETHPIOTHTAL 175
12．2．EПLNYMIA ФOPEA H \triangle PALTHPIOTHTAL， 175
 175
 175
 175
 176
12．2．3 Периррарй＇Ероо． 176
 терıß́̈̀iovtos． 178
 178
12．2．5．1 Aépla anóß $\lambda \eta \tau \alpha$. 178
 178
 179
 180
 180
 180
12．2．7．3 Katd tा फגणा Astroupriac 183
 187
 188
13．IPOEOETA ETOIXEIA． 189
13．1．EこEIAIKEYMENE MEAETE 189
13．2．ПРОВАНМАТА ЕКПЮNH工НЕ 189
14．Ф Ω TOГРАФIKH TEKMHPI $\Omega \Sigma H$ 190
15．XAPTE－EXEAIA 191
15．1．XAPTHE ITPOLANATOAIEMOY 191
15．2．XAPTHE ITEPIOXHE MEAETHE 191
15．3．XAPTHE ENAAAAKTIK Ω N AYEE Ω N 191
15．4．ГЕ®＾OПIKOE XAPTHE， 191
15．5．XAPTHE XPHEE Ω N KAI KAAYYHL THE 191
15．6．इXEAIA TOY EPГOY H THЕ \triangle PAETHPIOTHTA乏 191
15．7．XAPTES E！IITTREE Ω N． 191
15．8．XAPTHE ПPOLPAMMATOE ПAPAKOAOY＠HLHZ 191
16．IIAPAPTHMA 200
 201
16．2．ПTYXIO ME＾ETHTH． 202
16．3．EIムIKH OIKO＾OГIKH AミIOЛOГНЕН 203

1．EIइAГЛГH

 EПEEEPTA乏IA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ A Y M A T \Omega N ~ T M H M A T O \Sigma ~ I . ~ M . ~ \Sigma I M \Omega N O \Sigma ~ П E T P A \Sigma » ~ T O u ~ \varepsilon ่ p y o u ~$

 нก்коис，періпои 11 m ．

 kaı tov N1650／1986．

1．1．Títhos épyou

 TMHMATO乏 IEPA乏 MONH $\Sigma ~ \Sigma I M \Omega N O \Sigma ~ П E T P A \Sigma » . ~$

1．2．Eídoৎ каı $\mu \varepsilon ́ \gamma \varepsilon Ө о \varsigma ~ \varepsilon ́ \rho \gamma o u ~$

Tо ह́pyo a甲орá đuvoптіка́ та парака̇тш：

ПPOTEINOMENA EPГA

 SN8，ouvo入ıкоú μ ŋ́коиц періпои 11 m

1．3．1 Өモ்ற

Eıкóva 1．1：Xáptŋ̧ п пробavaroגıбนoủ

1．3．2 Аıоккппкウ่ uпаүшүฑ่

 520895，35 каı $Y=4448690,24$ ．

 апобغ̇ктП（параквінцvo рغ́ца）દival：

Kんठ̈ıко่¢ опиعiou	इuvtetayuėvec E［टA 87	
	X	Y
＇Ȩoठoç anó EE＾	520882，25	4448672，78
£п	520871，92	4448675，58

1．4．Ката́таگ̄ク тои ع́pyou

 катата́ббоvта। бع：
－ 12 Oцáб̄ø¢ каı
－ 2 Катпүорієц：

```
- 17 катпүоріа (A) \mu\varepsilon ठ̀úo uпокатпүоріє¢ (A1 каı A2) ка।
- 2n karnyopia (B)
```


OMADA 4n ：EYETH EIAOE EPTOY＇H \triangle PAETHPIOTHTA乏	$\begin{aligned} & \text { MATA ПEPIBAMM } \\ & \begin{array}{l} \text { YחOKATHIOPIA } \\ \text { A1 } \end{array} \end{aligned}$	$\begin{aligned} & \text { ONTIKSN YПIOAC } \\ & \hline \text { YTOKATHIOPIA } \\ & \hline \end{aligned}$	$\frac{\mathrm{M} \mathrm{\Omega N}}{\text { KATHIOPIA }}$	пAPATHPHEEİ
a／a： 19 Еүкатаота́бઘя घп६छॄруабіаऽ （пі̇ไع ω каı оккө $\mu \dot{\omega}) ~ \mu \varepsilon$ ठ̈áधとaŋ ยпย६६pyađuغ̇v ω v uүpळंv $\sigma \varepsilon$ впияаvधıако́ 	$\Pi \geq 100.000$ ı．к．	$\Pi<100.000$ ı．к．		П：Mováס̌६く Iqoōu̇va ПАПӨuбиои́（Міп） $\lambda \cup \mu a ́ t \omega v ~(E E N): ~$ －о к кеvтрікоі апохетеUтікоі аүшуоі єкто́द бхєठїо －ol aywyoi סıáधeans $\varepsilon п \varepsilon \xi \varepsilon p y a \sigma \mu \dot{\varepsilon} v \omega v$ лuرát ωv тоиріттікळ̈v єүкатаота́бをшv， к．д．п．，бu ппарабúpovтаı anó браотпріт்тптяя ү）Гіа то єбштвріко́ ठіктио

[^1] 1^{17} Kaтпүорі́а каı Yттокатпүорі́а A2．

KatátaEn katá ミTAKOA 2008 KaI NACE Rev． 2

1． 37.00 Епєદ ε рүабіа λ ица́тшv

1．5．Фоمźaৎ épyou

1．6．ПعрıßaגМоvтıкós $\mu \varepsilon А \varepsilon т \eta т i ́ \varsigma ~ \varepsilon ́ \rho ү o u ~$

$\Delta / v \neq \eta \quad: \quad$ Пanáqn 82，Өєббa入ovikn，Т．К． 54453

e－mail ：skarageo＠qmail．com

2. MH TEXNIKH ПEPI^H ΨH

3．इYNOПTIKH ПЕРІГРАФН T Ω N EPГЛN

3．1．Baбıка́ бтолхві́а тои غ́คүои

Пı оuүкєкрıцغ̇va：

E．E．A．

 періпоu 65 ıбоठ̇u̇vauouc，катоікоu̧，

Пivaкас 3．1．：Парáयहтро охहठıaбノоú EEへ

ПAPAMETPOE		ФAइH EXEAIAEMOY
E¢uпn¢eтоú	кпт．	65，00
	$\mathrm{m}^{3} / \mathrm{d}$	9，75
акаӨápт ωv	$\mathrm{m}^{3} / \mathrm{d}$	14，63
Méyıotn ω pıaia парохй aкаӨápt ${ }^{\text {a }}$	$\mathrm{m}^{3} / \mathrm{h}$	0，61
	$\mathrm{m}^{3} / \mathrm{h}$	2，20

Eıठıкó Punavtikó بортio BOD_{5}	$\mathrm{gr} / \mathrm{Kar} / \mathrm{d}$	60
Eıठıко́ Puпavtıкó ¢ортіо TSS	$\mathrm{gr} / \mathrm{kat}$	70
Eıठııó Punavtıkó ¢ортіо TN	gr／kar／d	10
Eıठıкó Punavtikò بортio TP	gr／kat／d	3
	kg／d	3，90
Фортіо TSS бхعбıабиои่	kg／d	4，55
Фортіо TN охघঠıабนои่	kg／d	0，65
Фортіо TP охहঠıабนой	kg／d	0，20

Tа катабквиаотıкд отоıхвіа тои ह́pyou перı入aןßávouv：

Фáon $\mathrm{A}^{\text {a }}$ ：X X

Фáon B＇：Katacкєuń $\theta \varepsilon \mu \varepsilon \lambda i \omega o n s$

3．2．1 Періүра甲й גєıтоupүias

 غүкатаота́бєıс ßıоһоүıкои் каӨарıбной．

 Tov Xعı $\mu \dot{\omega} \mathrm{va}$ ．

 رикрळ́v парохढ̈v．

aпоßАர்тшV

 घival：
－Өpauotó uגıкó גатоиعiou $210 \mathrm{~m}^{3}$
－А А μ ос латонвіои $60 \mathrm{~m}^{3}$
－Філтра отраүүıотпрішv $6 \mathrm{~m}^{3}$
－Гعшúqaбиa oтрауүıттпрi $\omega \mathrm{v} 50 \mathrm{~m}^{2}$
－「عшúqаобна ßápouc $300 \mathrm{gr} / \mathrm{m}^{2} 500 \mathrm{~m}^{2}$

－Σ тєүav ω тiкń $\mu \varepsilon \mu \beta$ páv η PE $2.0 \mathrm{~mm} 200 \mathrm{~m}^{2}$
－Σ тєүav
－Мікропа́боа入оі ठıацغ்трои 220 mm 266 m．
－Móviцa ayкúpıa otaӨعponoinons 182 m．
－Фutá عvర̄モıктıкоủ тúnou Fragmites Australis 605 т $\varepsilon \mu$ ．
－$\Sigma k u \rho o ́ \delta \varepsilon \mu a \mathrm{C} 25 / 30163 \mathrm{~m}^{3}$ ．

Xpñon evépyelas

 2.195 kWh каı 6 kWh avtioтогха．

Xpñon xпиıкळ்v

3．3．2 Побо́тптеৎ апоßגク்тюv

 тро́по．

Yypá anóß入nta

A ε pia aпóß入nta

 ठıعن́Өuvon avغ่ $\mu \omega \mathrm{v})$ ．

4．$\Sigma T O X O \Sigma$ KAI £KOПIMOTHTA Y＾OПOIH乏H亡 TOY EPIOY－ EYPYTEPE Σ Y Σ XETİEI乏

4．1．इто́хоц каı бкопиио́тпта

 ठı ε vépy

 пиркаүіа́ тоu 1891.

4.3. Оıкоуонıка́ бтолхві́a тшv غ́pүшv

4.3.1 Eктіцпоп бuvoגıкой проüпоגоүıбนой

 бع 289.000,00 Eupढ்.

4.3.3 Тро́поৎ Хрпиатобо́тпоŋৎ

 проүра́ диста.

 Opos,

5．โYMBATOTHTA TOY EPГOY ME OE乏MOOETHMENE XתPIKE乏 KAI ПONEOAOMIKE乏 $\triangle E \Sigma M E Y \Sigma E I \Sigma$ TH乏 ПEPIOXH乏

5．1．Oモ́oŋ тоu モ́pyou

 тои рغ́натоৎ，

5．1．1＇Opıa оıкıоцผ்v

5．1．2＇Opıa проотатєuó $\boldsymbol{\varepsilon v \omega v ~ п \varepsilon р ı о х \omega ் v ~}$

5．1．3 Аaণıкと̇ৎ عוктáoॄıৎ

5．1．4．1 Обіко́ ঠіктио

 хшиато́брроно．

 İpıббой kaı Tpunŋтர่ऽ．

5．1．4．4 AПохغ́тعиणП

5．1．4．5＇Yбовиоп

tou غ́pyou

 ипобัంนஸ்v．

5．2．1 ПроßАвंчєıя

$\Sigma u ̀ \mu \varphi \omega v a \mu \varepsilon$ т ηv E

 4% avá ठєкаєтіа．

5．2．2 Өєбцико่ каӨєотஸ்乌

 ГХООАП，ПЕРПО К．т．А．）．

 бú $\mu \varphi \omega \mathrm{va} \mu \varepsilon$ та крıтйрıa тоu àpӨpou 19，$\omega \varsigma$ ：

6. ANAAYTIKH ПЕРIГРАФН £XEДIA乏MOY TOY ЕРГОY

Піо бuүкєкрıцદ่va:

גupàтшv

 нர்коиц̧ періпоu 11 m .
 520895,35 ка। $Y=4448690,24$.

 125 т. $\mu .$.

 ката́ тп 入еıтоupүіа．

ПAPAMETPOE		ФAEH EXEAIAEMOY
Eॄuпnpetoủ	кат．	65，00
	$\mathrm{m}^{3} / \mathrm{d}$	9，75
акаӨа́ртшv	$\mathrm{m}^{3} / \mathrm{d}$	14，63
	$\mathrm{m}^{3} / \mathrm{h}$	0，61
Пapox＇́ aıх们¢ Q_{p}	$\mathrm{m}^{3} / \mathrm{h}$	2，20
Eıठıкк̇ Punavtıkó ¢ортio BOD_{5}	$\mathrm{gr} / \mathrm{Kar} / \mathrm{d}$	60
Eıठıкó Punavtıкó ¢ортіо TSS	$\mathrm{gr} / \mathrm{Kat}$	70
Eıరıккó Punavtıkó 甲optio TN	gr／Kat／d	10
Eıठıкó Puпavtikó ¢ортio TP	gr／Kat／d	3
Фортіо BOD_{5} бXहठıабนои่	kg／d	3，90
	kg／d	4，55
	kg／d	0，65
Фортіо TP охعठıабนои่	kg／d	0，20

Пара́peтроऽ	KYA 5673／400／97
Atrōékm¢	Eтा८．uठ́átiva ой μ ата（ $\mu \eta$ घuaiöntos аाтō̄ékins）
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{l})$	≤ 25
COD（mg／）	≤ 125
Aimpoúneva oteped́（mg／）	≤ 35

 tnv I．Moví．

 ка入 $\omega \delta \dot{\omega} \sigma \varepsilon \omega \mathrm{v}$ ．
OI nivake¢ túnou пहסíou Өa èx
 દ૬опत৷ఠน०u่．

－Toпाко́s фштібно́s

－ミúornua yeíoons

6．3．1 Ктıрıака́ épya

 $+244.00 \mu$ ．．

6.3.3 Xஸ́poi oтd்Өนعuoŋ乌

 $\mu \varepsilon ่ \sigma \omega ~ \mu \eta x a v i \sigma \mu o u ่ ~ \sigma i \varphi \omega v a$.

 отعрєळ்v каı TпV ava

 вүкстабта́бєı¢ ßıо入оүıкой каӨарıбной．

 паӨоyóvous，μ икроорүаviб

 иб̈раидıкой фортіои．

 رıкрผ்้ парохஸ்v.

6.3.4.4 K\ivn Erípavanc $\mu \varepsilon$ иסрохарí ФuTd́

каталаиßávєтаı

Фáon A＇：X ω иatoupvikés عpyaoizs

Фáon B＇：Katack\＆uń $\theta \varepsilon \mu \varepsilon \lambda i \omega o n s$

6．4．3 Yпоотпріктıкєৎ вүкатаота̇бєıৎ катабкєиク่ৎ

 عкпоv $\eta \varepsilon \varepsilon$ i．

6．4．4 Avayкaia uגıкả катабкєuท่s

 घival：
－Өраито́ u入ıкó \атоивiou $210 \mathrm{~m}^{3}$
－＇А $\mu \boldsymbol{\mu}$ ся латонгіои $60 \mathrm{~m}^{3}$
－Фі入тра отраүүıттпрішv $6 \mathrm{~m}^{3}$

－「عшúqаণиa ßápouc $300 \mathrm{gr} / \mathrm{m}^{2} 500 \mathrm{~m}^{2}$

－Мікропа́бба入оі ठіацغ்трои 220 mm 266 m ．
－Móvııа аүкúpıa отаӨعропоínons 182 m．
－Фutá عvסモıктıкоú Túnou Fragmites Australis 605 тعן．
－Σ Kupóбє $\mu \mathrm{C} 25 / 30163 \mathrm{~m}^{3}$ ．

6．4．5 Eкроżৎ uypàv anoß入グтமv

6．4．6 ПАعováそovтa u入ıká

 $170 \mathrm{~m}^{3}$ ．

 घiठ̄ouc epyađia．

 ठІદúӨuvon avé $\mu \omega v)$ ．

- 1 Мпхаvіко́ц єкокарєац,
 Xळ̈ро бтáӨ

	LWa dBA	Leq/LWa	Eu̇vodo				-ıápıвıı			dB(A)
			$\begin{gathered} \text { Res.Laeq } \\ \text { dBA } \end{gathered}$	Dist. Ratio	Equiv. On-time	Equiv. On-time	Active dur.	Corr. On-time	PNi	
$\begin{aligned} & \text { Eкокафв̇ас } \\ & 200 \mathrm{~kW} \end{aligned}$	109	Lwa	61.00	4.00	0.32	0.32	8	21.6\%	0.02	54
$\begin{aligned} & \text { Avatpenóusvo } \\ & 25 \mathrm{Tv} 120 \mathrm{kw} \end{aligned}$	108	Lwa	60.00	4.00	0.32	0.32	8	21.6\%	0.02	53
Хроvікп் періобо¢: 8h										
Combined (Leq): 59 dBA										

6.5. Фáбך Aعıтоupvia,

Xprion evépyeias

 kWh avtiotoixa．

A／A		Tzqúxue $є \varepsilon$之̇atroupyia	Iexúg．／requ．	Aторроро́нкит Ioxiétrap．		Xpóvog 3xtrovppiac	Нинрэ்ба катаvட́h．ω ฑ Evépraacs
	ІІррүүраф甲	Тер．	kW	kW	kW	h／d	kWh／d
1	Yтоßро́xu aved．ia दúpavans	1	0，37	0，30	0，30	0,5	0，1
2	Avгоицтибцо́s	1	0，25	0，25	0，25	24	6，0
	EYNOAO				тиер门்ои кити	（2）	6

Xpróon xпuıкळ்v

$\Delta \varepsilon v$ проß入غ́п

6．5．4 Екроє́¢ отعрعஹ்v anoß入ウ்тตv

К ω бъко́ç E．K．A．：19．08．05

 тро́по．

入úuata $\mu \varepsilon$ кivठठuvo тПV тغ

6.6.2 KaӨaipعon μ óvı $\mu \omega \mathrm{v}$ катабкєuผ́v.

 anó Tnv I $\varepsilon \rho a ́ ~ M o v \grave{. ~}$

 $\pi \lambda \dot{n} \rho \omega c$.

6.7.2 Екठ̄ர் $\lambda \omega \sigma \eta \eta$ nupıayıàs

6.7.3 Аıакопท่ Плєктробо́тпоךৎ

- Aотохіа тп̧ $\lambda \varepsilon$ -

 $\varepsilon \lambda \varepsilon \gamma \chi \dot{\mu} \mu \varepsilon v o$.

 عпо் μ vvo кє甲á入aıo．

7. ENAMAAKTIKEE AYEEİ

- η ठонй тои обıкои́ ठıкти̇оu

 aпó тŋ Өżon TПऽ E.E.^.

甲úoņ, к k п)

7．1．3．1 โEVIKá

（5）इu ßatiká－MnXaviкá бuotíuata
1．ミuotìuata Evepyoủ İúos，
i．इu μ ßatiкó бúơтŋua

3．ミúvinua $\mu \varepsilon \mu ß p a v \omega \dot{v}$（MBR－Membrane－Bio reactor）
4．Перıттрєфо́иєvoı ßıодоүıкоі ठібко৷

ii．Үүроßıо்топоі катако́ри甲пяя pońs（SFS）

6．TEXVПTغ่ऽ＾i $\mu v \varepsilon \zeta$

7．1．3．2 ミúotnua eveproú ıौúos

ミuußatikó oúotnua evepyoú iגúos

 uпа́рхモı прштоßäӨциа каӨiZпоп．

 кávovtaç aп入oúoтधpo то đúoтпиа．

 пои ovoцáそоvтаı ßıокрокіঠєц．

 пара aпо́ то бúoтпиа．

Anopáкриvón BOD_{5} (\%)	Opyaviкท่ фо́pтín ($^{\mathrm{Kg}} \mathrm{KOD}_{5} / \mathrm{kg}$ ı λ ủoç $\eta \mu \varepsilon \dot{\varepsilon} p a)$		Aváuıкто uypó MLSS (mg/lt)	Xpóvoç Параиогท่я (hr)	Avaкuклочорі́a inủos,	Xpóvos Параиогท่¢ ı λ ủos (пนغ่рє¢)
85-95	0.2-0.4	0.3-0.6	1500-3000	4-8	0.25-0.50	5-15

 ханплой мортіои.

 BOD_{5} (85-95\%).

 аvтıцвт

 ı入̀̇os．

 та́दॄшц тои 10\％）．

 впıтєuхӨعi kaı anoviтропоinon．

 паратвтанغ̇vou aعрıбиоú．

Anoцáкриvón BOD 5 （\％）	Opyaviки่ фо́ртїŋ （KgBOD ${ }_{5} / \mathrm{kg}$ ı λ u̇oç $\eta \mu$ ह́pa）		Aváuıкто Uypó MLSS （ $\mathrm{mg} / \mathrm{It}$ ）	Xpóvos Параиогท̀s （hr）	Avaкиклочоріа ı入úos	Xpóvos Параиогท̀s ıגủos （ $п \mu \varepsilon \dot{\rho} \varepsilon \varsigma$ ）
85－95	0．05－0．15	0．16－0．4	3000－6000	18－36	0．95－1．50	20－30

 ウ̀ μ عбаіася к入інакац．

\checkmark Nitponoinon $\lambda u \mu a ́ t \omega v$.
\checkmark Aп入oúoтepo anó то тuпıкó бủotnua evepyoú ı入ủoc．
 тоu $\mu \varepsilon$ үà入ou xpóvou aعpıoرoú．

 паратвтанвंvои аєрıбนои่．

 тпऽ vitponoinonc.

 \גúos.

 прєціас бтоv пuӨцદ̇va.

 । \úoc.

 aєpıб

$\Theta c=300 / T$ п $\mu \varepsilon$.

 aut

 חáxuvoŋ．

Anopáкрuvön BOD_{5}（\％）			Avápıктo uypó MLSS （ $\mathrm{mg} / \mathrm{It}$ ）	Xpóvos Параиогі்я （hr）	Avaкиклочоріа ıגúos	Xpóvos Параиогท่я ıגủos （ $п \mu \varepsilon \dot{\rho} \varepsilon \varsigma)$
85－95	0．05－0．30	0．08－0．24	1500－5000	12－50	－	－

\checkmark Y $\Psi \lambda \lambda$ ń anouákpuvon opyaviкоủ 甲ортiou．

\checkmark Мıкрท் anarтоú $\mu \varepsilon v \eta$ ह̇ктаoŋ．

 єпаvакиклороріац каі то аvтлıота̇бıо єпаvакиклороріас．
 аитонатоповітв．
 фортішv．

7．1．3．3 玉úornua almpoúnsvou Biohovikoú pilu（MBBR－Moving Bed Bio Reactor）

 воочі $\lambda \mu$.

 (Rusten et al., "Upgrading to nitrogen removal with KMT moving bed biofilm process", Water Science

 Өгрнокрабіа ото вйроऽ, $10-20^{\circ} \mathrm{C}$.

Пivakac 7.3. Характпрıттка́ биотท́यатоৎ MBBR

$\begin{aligned} & \text { Anopáкрuvón } \\ & \text { BOD }_{5}(\%) \end{aligned}$	Opyaviкí фо́pтіоп (KgBOD ${ }_{5} / \mathrm{kg}$ เ λ úoç $\eta \mu$ ह̇pa)	$\begin{gathered} \text { Оукоиєтрікர் } \\ \text { фо́ртіоŋ } \\ \left(\text { KgBOD }_{5} / \mathrm{m}^{3}\right. \\ \eta \mu \varepsilon \dot{\rho a}) \end{gathered}$	$\begin{aligned} & \text { Aváцıкто } \\ & \text { uypó } \\ & \text { MLSS } \\ & \text { (mg/lt) } \end{aligned}$	Xpóvos Парарогท்ऽ (hr)	Avaкиклочоріа ıגủos	Xpóvoç Параиоvŋ்я ıגủos (пиع́р $\rho \varsigma$)
85-97	0,05-0,3	-	2-10.000	0.25-1.5	0.95-1.50	20-30

\checkmark Мікро́тєрп катаvà $\lambda \omega \sigma \eta$ عvย̇рүعıас.

 ı入u̇oç عivaı ta кát $\omega \theta$ I:

 $\mu \dot{\varkappa} \gamma \varepsilon Ө \circ \varsigma$ ．

 $\mu \varepsilon$ аvтлıота́біо．

Пара́иєтроя	Tıиท	－ııpүacia nou anaıteitaı
Өоло́тпта	＜ 1 NTU	
	＞LRV 5	
BOD	$<5 \mathrm{mg} / \mathrm{l}$	
А $\mu \mu \omega$ viakà $\left[\mathrm{NH}_{4}\right]$	$<1 \mathrm{mg} / \mathrm{l}$	
O入ıко̇ àZんто	$<5 \mathrm{mg} / \mathrm{l}$	$\mu \varepsilon \mu \beta$ pavढ்ّ
Олıко́s， фш்очороя	$<1 \mathrm{mg} / \mathrm{l}$	

Aпора́криvön BOD_{5}（\％）	Opyavıки்甲óprion （KgBOD ${ }_{5} / \mathrm{kg}$ เ\úoç $\eta \mu$ ह̇pa）	Оүкоиєтрикі่ фо́рті́п $\begin{gathered} \left(\mathrm{KgBOD}_{5} / \mathrm{m}^{3}\right. \\ \eta \mu \varepsilon \dot{\rho} \rho a) \end{gathered}$	Aváuıкто uypó MLSS （ $\mathrm{mg} / \mathrm{lt}$ ）	Xpóvos Параиоvís （hr）	Avaкиклорорів ıAúos，	Xpóvoç Параиогர் iAủos （ $п \mu \varepsilon \dot{\rho} \varepsilon \varsigma$ ）
95－99	0，02－0，06	0，2－0，4	5－15．000	6－30	3－5	20－50

\checkmark Xapŋ入ウ่ параүшүท் ìúos．

Tクऽ عvepyoủ ıגủoc，

 $\varepsilon \vee т о ̇ \mu \omega v$ ．

 m^{2} عпı甲áveıaç．

 нккрг்.

	$\triangle \varepsilon \cup \tau \varepsilon \rho о \beta a ́ \theta \mu ı ~$	$\triangle \varepsilon \cup т \varepsilon \rho о \beta$ á $\theta \mu$ о $\mu \varepsilon$ таито́хроvп viтропоіךоп	$\Delta \varepsilon \cup T \varepsilon \rho о \beta a ́ \theta \mu \circ \circ \boldsymbol{\mu \varepsilon}$ vтропоіПणा бє
ҮбраиАікウ் Фо́ртіоп $\left(m^{3} / m^{2} d\right)$	0．08－0．16	0．03－0．08	0．04－0．1
Оруаиікウ́ фо́ртіоп			
－Kg SBOD $5 / m^{3} d$	0．003－0．01	0．002－0．007	0．0005－0．001
－Kg TBOD $/ / m^{3} d$	0．01－0．017	0．007－0．015	0．001－0．003
прळ̈то бта́бו๐			
－Kg SBOD $/ / m^{3} d$	0．02－0．03	0．02－0．03	
－Kg TBODs／m ${ }^{3} d$	0．04－0．06	0．04－0．06	
		0．0007－0．0015	0．001－0．002
YбраuАіко́s хро́vo¢ параноvர்¢（hr）	0．7－1．5	1．5－4	1．2－2．9
	15－30	7－15	7－15
		＜2	1－2

\checkmark Ап入о́тпта 入єוтоupyiac．
\checkmark Ханп入̀́ лعітоирүіко́ ко́отоц，

\checkmark பuvarótŋта viтропоіңбпя．

 орүаvікои่ фортіои．

 ठїкんv．
※ По́ßßдпиа обны่v．
 oxยбוacuou่．

7．1．4 Фưiкá ouotijuata

7．1．4．1 乏иатர́ната Bрабгiac Eqapuovís

 є甲арноүйя．

 ßабккой̧ тùnouc：

 то६，кои்．

	Арঠعvबण¢	$\Delta u j \theta \eta \sigma \eta$ ¢
Tехулкй вчарноүй	Katanoviouóç ท́ ধru甲 $\mu \varepsilon ́ \theta o \delta o t$	$\mu \varepsilon ́ \theta \circ \delta o t$
Yסрош入ıко́ ¢ортіо（m／Étoc）	0．60－2．00	1．70－6．00
$\left(\sigma \tau \rho . / 10^{3} \mathrm{~m}^{3} \mathrm{~d}\right)$	170－550	56－200
	Алаитеích	Алоıтвitou

 ß 人áotnons．

\checkmark H uшŋ入n่ aпоца́криvoŋ opyaviкои́ фортiou．
 ка入入ı́рүєıас，

\checkmark Гоvı䒑oпоinon घס́áqouç．

Пара́летроя	Фо́ртїп （Kg／отр．η $\mu)$	BaOuȯs anóరoonns （\％）	Паратпрர்бвı¢
BOD ${ }_{5}$	4．50－18．0	86－100	бхहס̈Iaの
Aдито	0．33－4．10	10－93	Eदартàtaı anó： －To घпіппठбо проєпє६६pyaciac －Tqv ava入oyia BOD／N －Tov кúкגо גعiтoupyiac， －То иठбраидıко் фортіо

ФНб甲ópos，	0．11－1．34	29－99	
Ко入оßактпрıвıб̈		2－6 ¢орદ่ऽ	 －тпv періобо छп்раvøпऽ

 ßраб̈вias عфариоү＇்ऽ．

 غ̇хモI：

 kal：

7．1．4．4 TEגvпtoi Yүооßıóтопоі

 （фutá tou үévouç Typha）．

 фиđікої uүроßıо́топоו．

 Өрєптіка́ каı фитофа́риака．

Mnxaviouoi anouákpuvons TWV pún ω v $\sigma \varepsilon$ TعXvntoúc uypoßiótonous

 T $\omega \mathrm{V}$ рún $\omega \mathrm{V}$ ．

 $\mu \varepsilon$ тіऽ μ орфє́ц аЦф்тои.

 єпाтиүхávєтаı oॄ μ нкро́тєро ßаӨно́.

Oı $\mu \eta$ хаvıб

 ß入áotnonc.

 бтยрळंv.

YypoßıóтопоI катако́pu甲ps pońs (SWS)

 uypoßıóтопшv．
 opyaviкои́ фортіои

	Movásec	इv́ørŋиa FWS	ミv́otıuß SFS
	$\eta \mu \varepsilon ́ p e ¢$	$5-14$	5－14
Bánoç vepoú	m	$0.1-0.5$	0．3－0．8
Oрүоvıкฑ์ ¢о́рtıоך	kgBOD／$/ \tau \tau$ ．d	8	8
	$\mathrm{m}^{3} / \mathrm{m}^{2}$ ． d	0，01－0，06	0．01－0．06
	$\sigma \tau \rho . / \mathrm{m}^{3} \cdot \mathrm{~d}$	0．02－0．14	0．02－0．14
	－	2：1－10：1	<1
Enerүoç коvvoumuóv	－	Aлんutعitca	
 	yr	3－5	1－2

1．Aعpóßıa（ $\mu \eta$ aعpıて̛ơ $\mu \varepsilon v a$ ），
2．аєро́ßıa（аعрıそ’’ $\mu \varepsilon v a)$ ，каı
3．єпанфотєріZоита avaعро́ßıa．

入єाтоupyウ́oouv $\mu \varepsilon$ uчП入á оруаvıкд́ фортіа．

 tóvous．
 घпıплغ்ovта 甲uтá．

Пара́ицтроі				
	B＇Bá̈भıo аєро́ßıо	B＇$^{\prime}$ व́̇өиıo aยpı̧̆öцєvo	Aеро́ßıas Апона́крииапия （xwpis аврıоно́）	इиотர்иата $\mu \varepsilon$ 甲ит்́ tп̧̧ oıкоүモ̇veıa̧̧ Lemnaceae
Tитıка́ крıтіриа ox\＆				
Anaínon Провпе६еруатіая	Eoxápwon ท̇ KäiZ̆̃on	Eoxáp ω on r̀ KäiZnon		Ekpoì anó єпацфотєріگ̆uб६ऽ入iuve，
$\begin{aligned} & \text { BODs } \varepsilon I \sigma \dot{\partial} \delta o u \\ & (\mathrm{mg} / \mathrm{lt}) \end{aligned}$	130－180	130－180	30	40

Opүаviкí фо́ртібп（Kg $B O D_{5} /$ OTp．d）	4．5－9．0	16．8－33．6	1．12－4．50	2．24－3．36
Bä⿴o¢ vepoú（m）	0．5－1．0	1．0－1．22	0．6－1．0	1．22－1．83
X \quad óvos параногп̆я（d）	10－36	4－8	6－18	20－25
Yбраилıкó 甲ортіо （ $m^{3} / m^{2} d$ ）	$\begin{gathered} 0.019- \\ 0.056 \end{gathered}$	0．094－0．28	0．037－0．15	0．056－0．084
Өериократіа лица́тшн（ ${ }^{\circ} \mathrm{C}$ ）	＞10	＞10	＞10	＞7
Про́үраниа биукоиибіяद	Eпохıаки่ 	$\Delta u ̉ 0 ~ \varphi о р \varepsilon ́ \zeta ~$ To $\mu \dot{\eta} v a$ ह̇ ωc, ouvexüs，	 бuvexळ்̧	u unvaia
Avauعvóuะvך поо́тпта вкроர́я				
$\begin{aligned} & B O D_{5} \text { घIOÓठou } \\ & (\mathrm{mg} / \mathrm{lt}) \end{aligned}$	＜20	<15	<10	＜30
SS（mg／t）	<20	＜15	<10	＜30
TN（mg／t）	＜15	<15	＜5	<15
$T P(m g / t)$	＜6	＜1－6	＜2－5	<6

та६ıvo

 тои aпо́ß λ птои otף $\lambda i \mu v \eta$ ．

\checkmark To хацŋ入ó катабквиабтіко́ ко́бто̧．
\checkmark То хацпло́ 入єıтоирүіко́ ко́отос，

7．1．5．1 Гعиाк

 апоठ்̇̇кє६ऽ）

kaı 甲 $\omega \propto \varphi \dot{\rho} \rho о$ ．

Enavaxpnaiuonoinon via ápōeuon

 проб́аүрафш்v Tпร KYA 5673／400／1997．

 про́бßаö．

 апоррофптікой ßóӨрои.

عそ६тव்oтŋккаV

1．Movíc kai napanieúpoc tou péuctos．

ミuиßатікá ouotńuata evepvoú ı入úoc \＆napatetauغ́vou aعpiouoú

 ยпıßápuvon．

 عпıßápuvoŋ．

ミúornua aımpoúuzvou Bıo久ovikoú pi入u（MBBR－Moving Bed Bio Reactor）

 Reactor），入óүш：

 عпıßápuvoŋ．

 ßıобібкоuc，入óvш：
 П入єктрıкウ่ऽ عvغ்pүєıac．

 ло́үш：

 عпıßàpuvan．

－$\varepsilon \mu \varphi a ́ v i \sigma п \varsigma ~ п р о \beta \lambda п \mu a ́ т \omega v ~ о б \mu \omega ் v, ~ \varepsilon v т о ́ \mu \omega v . ~$

－aठ̃va

ミuotn่uata enipaveıakn＇s pońs

 touc．

－$\varepsilon \mu \varphi a ́ v i \sigma п \varsigma ~ п \rho о \beta \lambda п \mu a ́ т \omega v ~ о \sigma \mu \omega ் v, ~ \varepsilon v т о ́ \mu \omega v . ~$

－піӨavís púnavoņ unóyદiшv uठ̃ро甲орह́فv

 tous．

－$\varepsilon \mu \varphi a ́ v i \sigma \eta \varsigma ~ п \rho о \beta \lambda п п а ் т \omega v ~ о \sigma \mu \omega ் v, ~ \varepsilon v т о ́ \mu \omega v . ~$

TEXVnTE่s 入iuvec otaOrponoinons

－aváyкпऽ aveủp touc．

 $\mu \varepsilon Ө \dot{\text { óठous }}$

 عוбદрхо் $\mu \varepsilon v \omega v ~ \lambda u \mu a ́ т \omega v . ~$
－Мєүव̀入n апло́тпта ото хвıрıбио́．
 ठıaӨغ்ণıル

 そんウ́я，к．ג．п．）．

 غ́pyou．Oı кupıóтepec anó autéc sivaı：

 ठраотпріо́тптея.
 $\lambda \varepsilon \kappa a ́ v \eta$.
 uठ́áт ωv
 пооо́тПтаৎ̧ T $\omega \mathrm{V}$ Uठ̄áт $\omega \mathrm{V}$ тои
 uппребієऽ

 бхहтıк门் ठıабıкабіа

- इu

 ठıа́таद̆ๆ E1ß/221/65.

ото параквіцвvo ре́ца．

 عпіпт $\omega \neq \eta$ ．

 пะрıாтஸ்бモı，

 Н入єктронаүvクтіка́ пєঠia ठєv unàpXouv．

8．YФIгTAMENH KATA乏TA乏H חEPIBAMONTO乏

 $\mu \varepsilon$ тПV YA 5980／16－10－1965－ФEK 714／B／29－10－1965．

8．1．1 Актіva перıохŋ̆ऽ $\mu \varepsilon \lambda$ ह̇tņ

8．1．2 £пиعıaкó غ̇pyo

8．1．3 Katпүорі́a غ̇pyou

8．1．4 Проотатєио́иєvŋ періохй

8．1．5 Үүротопик门் періох门்

 tou $A \theta \omega$ ．

8．2．КДıнатоДоүıка́ каı 乃ıокДıнатıка́ характпрıотıка́

 НпєІрютіко̇－Мєбєирюпаїко่．

 avغ்pхモтаı $\sigma \varepsilon 16-17^{\circ} \mathrm{C}$ ．

$\begin{array}{\|l\|} \hline \text { Прріобоৎ } \\ 1978-2004 \\ \hline \end{array}$	Xарактпріотікш்v			
Mṙvas，	$\begin{aligned} & \text { Өءриокрабіа } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	＇Үшоя Bpoxn்s	Exeтıкர் uypaóia aغ́pos	$\begin{gathered} \text { Ее́áтиıо̄ } \\ (\mathrm{mm}) \end{gathered}$
Iavouápıos，	2，6	47	85	21
Фєßpouápıos，	3，4	55	83	21
Ма́pтіоs，	6，5	50	80	34
Апрілоя，	11，0	51	73	51
Máos，	16，2	50	71	59
Ioúvios，	20，9	41	66	76
Ioú入ıos，	22，9	54	65	84
Aúyouotos，	22，3	38	67	SO
इєпте̇нßрıоऽ	18，6	31	72	63
ОктФ்ßрıя，	13，3	56	80	40

Noغ́यßрı¢¢	7，6	84	85	20
	4，7	90	86	23
Mżoŋ（o入ıкท̇）	12，5	649	76	568

8．3．Морчолоүıка́ каı топıодоүıка́ Характпрıотıкá

8．3．1 Катаурафѝ топіоu avaфорás

 проотатви̇દтаı aпó autó.

 tou $A \theta \omega$.

 apкєтळ்v oпиavтікळ்v taxa.

8.4.1 Гઘळдоүıка่ характпрıотька்

 Пonoviaç Pa: Ziov Пánkou, Al: Zóvn

Pk: Zòm Пlapvacooi-Tkuôvac
P: Zóvq Mivóov,

E Iónoş Çov.

 O＾OKAINO）

 IOYPAEIKO）

 TPIAAIKO）
8．Eц甲аviбвıц каı котта̇б $\mu a т а \mathrm{~Pb}-\mathrm{Zn}$

10．Eц甲аviఠधıद，каı котта̇бцата Mn

12．Мहта入入віа．

8．4．2 EбачоДоүика́ характпрıотıка́

 ото＇Аүıо＇Ороц（І．Г．М．Е．1978，Nта́甲クऽ к．á 1999）．

IZnuatovevn่ пहाрळ́uata

＇Eठароs

 ичо́ $\boldsymbol{\varepsilon т \rho а ~ o ́ n o u ~ غ ̇ \chi ~}$

 va đuбow

 （ти́поu Грпүоріои）．
 кєрооті入ßıко́ үраvітๆ．

 ота μ етаіそう่ μ ата．
n：П६рıठотітєऽ каı ठоuvitяৎ，

 1:50.000)

 oxモ̇oŋ：

$$
A=\mathbf{a} \cdot \mathrm{g}
$$

Onou：\quad g：впாтáxuvon ßapúтŋтаৎ каı

8．5．Фибıкó пєрıßáגMov

8．5．1 「eviká otoryeia

X $\lambda \omega$ рiog

 Мєøદuршпаїка́ (4\%) каı топика́ єvб̄пиıка́ (2\%).

Aпعı入оúuzva kaı пpootateuóueva عión

 (Мпанпалаंvaç 1998).

a/a		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii			V	
4	Asperula aristata ssp. thessala		X		

5	Astragalus thracicus ssp. monochorum		X		
6	Atropa belladona	Γ			A Δ
7	Aubrieta erubescens			R	
8	Beta nana		X	R	
9	Campanula lavrensis		X		
10	Centaurea pannosa		X		A
11	Centaurea peucedanifolia	A			A
12	Cephalanthera longifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		A Δ
15	Fritillaria euboeica		X	R	
16	Fritillaria graeca		X		A \triangle
17	Helichrysum sibthorpii			V	
18	Hypericum athoum		X		
19	Isatis tinctoria ssp. athoa		X		A \triangle
20	Limodorum abortivum	B			A
21	Linum leucanthum		X		
22	Linum olympicum ssp. athoum		X		
23	Neotinea maculata	B			
24	Neottia nidus-avis	B			
25	Polygonum icaricum		X		A
26	Silene echinosperma		X		
27	Silene multicaulis ssp. genistifolia		X		
28	Silene orphanidis	A		V	
29	Viola athois		X		A Δ

EnをEnvñozıc Пivaka

 Провб̄ріко́ ठ̈а்таүна 67/80.
2. Evōnuıкó. Naı: X.
 घiठ̄oc [(V)], A5: ミnávio عiठ̄oc (R).
 K.à. (1998)

Maviठo

 K. ПоїраZіठŋ (Nтáqп¢ 1992a).

Eıкóva 8．6．Пароибia тоu тбака入ıи́（canis aureus）ото voно́ Xа入кıঠ̈ıкп่я．

 отףv avákанчП тоu عiठouc，

8．5．2．1 Xáptnє проотатعuóusvns пEploxńs

 пропүои̇цєvŋ парáyра甲о．

EIAIKA XAPAKTHPIZTIKA：EIAH TH乏 ПPO乏TATEYOMENH亡 MEPIOXHE－GR 1270003 EZA XEPEONHEO AOS

－Өauvต̇vec $\mu \varepsilon$ Laurus nobilis 5230

－Фpúyava Sarcopoterium spinosum 5420
－АбßЕотои̇хо а入пıкоі $\lambda \varepsilon ı \mu \omega ் v \varepsilon \varsigma ~ 6170 ~$

－Yполеıииатıка́ а λ 人оußıака́ ठáon（Alnion glutinoso－incanae）91EO

－E E $\lambda \eta$ viká סáon o६ıás $\mu \varepsilon$ Abies borisii－regis 92701 C C B C
－$\quad \Delta a ́ \sigma n$ o ξ íc $\mu \varepsilon$ Quercus frainetto 92805 B B A A

－$\Delta a ́ \sigma \eta \mu \varepsilon$ Quercus brochyphylla otףv Kpritn 9310
－$\Delta a ́ \sigma \eta ~ \mu \varepsilon$ Quercus ilex 934025 A B A B
－Δ áon $\mu \varepsilon$ Quercus macrolepis 9350
 Pinus mugo kaı Pinus leucodermis 7 B C B B

（ava甲орá otףv парака́ть 入íтта）：

Eiön Bגáơnons

Abies cephalonica
Acinos alpinus nomismophyllus

Aethionema orbiculatum
Allium guttatum sardoum
Allium moschatum
Allium chamaespathum
Alyssoides utriculata
Amelanchier ovalis ovalis（A $\mu \varepsilon \lambda a ́ v \chi ı \varepsilon p ~ т о ~ \omega o \varepsilon ı ठ \varepsilon ́ \varsigma) ~(~) ~$
Anthemis sibthorpii
Anthyllis montana jacquinii
Anthyllis vulneraria pulchella
Arabis brvoides
Arctostaphylos uva－ursi（Арктоота́чи入ос）
Arenaria biflora
Asperula aristata nestia
Asperula suberosa
Astragalus thracicus monachorum
Atropa bella－dorma
Aubrieta erubescens
Aurinia corymbosa
Beta nana
Berberis cretica（Bepßepic п крптікп́）
Bromus cappadocicus cappadocicus
Buxus sempervirens（Пuछ̇óc）
Calamintha hirta
Campanula albanica sancta
Campanula chalcidica
Campanula lavrensis
Campanula orphanidea
Centaurea athoa athoa
Centaurea chalcidicaea
Centaurea huljakii
Centaurea pannosa
Centaurea peucedanifolia
Cephalaria flava flava
Cephalanthera Iongifolia
Cephalanthera damasonium
Cerastium banaticum speciosum

Colchicum doerfleri
Convallaria maialis
Coronilla varia
Corydalis integra
Crepis athoa
Cruciata glabra
Cruciata pedemontana
Cyclamen graecum graecum
Cyclamen persicum
Danthonia alpina
Delphinium fissum
Dianthus gracilis gracilis
Dianthus pinifolius pinifolius
Dianthus stefanoffii
Digitalis leucophaea
Erysimum calycinum
Erysimum drenowskii
Euphorbia amygdaloides amygdaloides
Euphorbia deflexa
Festucopsis sancta
Fritillaria euboeica
Fritillaria graeca
Fumana procumbens（Фоuमáva η ह́pпоuøa）
Gagea bohemica
Gagea pusilla
Gagea villosa
Galium asparagifolium
Galium demissum
Galium incanum incanum
Galium insularae
Galium pyenotrichum
Genista lydia（Гعviota tnc＾uठ̈iaç）
Geocarvum capillifolium
Globularia bisnagarica
Helianthemum nitidum（HגıávӨع μ ）
Helichrysum sibthorpii
Heracleum humile（Нра́к $\lambda \varepsilon ı$ то ханп\人ó）
Heracleum sphondylium ternatum
Hypericum athoum
Hypericum cerastoides
Hypericum montbretii
Hypericum rumeliacum rumeliacum
Hypericum vesiculosum
Isatis tinctoria athoa
Juniperus communis hemisphaerica (Bouvókะঠ̄po то Пиıбраıрıко́)
Juniperus foetidissima (Bouvoкunápıбoo)
Linum elegans
Linum olvmpicum athoum
Matthiola fruticulosa valesiaca
Melica nutans
Neotinea maculata
Neottia nidus-avis Onosma paradoxum
Ophioglossum vulgatum
Orobanche purpurea
Orthilia secunda
Paeonia perearina
Platanthera bifolia
Platanthera chlorantha
Phyllitis scolopendrium
Pimpinella tragium polyclada
Pinus brutia (Tpaxعia пعúkn)
Pinus nigra pallasiana (Avatoגıкó μ (иро́пєико)
Poa compressa
Poa hybrida
Poa thessala
Polygala nicaeensis mediterranea
Potentilla speciosa
Pterocephalus perrenis perrenis
Rhamnus saxatilis prunifolius (Pá μ voc o проuvóчu $\lambda \lambda \circ$)
Polygonum icaricum

Satureia parnassica athoa
Saxifraga juniperifolia sancta
Saxifraga sempervivum
Scorzonera cana
Sedum cepaea
Sedum grisebachii qrisebachii
Sedum reflexum
Sideritis perfoliata athoa
Silene compacta
Silene flavescens thessalonica
Silene multicaulis genistifolia
Silene orphanidis
Silene vulgaris prostrata

Sorbus aucuparia aucuparia（Aypıooopßıá）
Sorbus chamaemespilus（Xaцa॥દ்бпı入оऽ）
Sorbus umbellata（Мıкрர் aoñ
Stachvs leucoglossa
Taxus baccata（ T тоноऽ）
Tephroseris integrifolia aucheri
Teucrium divaricatum athoum
Thymus praecox iankae
Thymus thracicus
Vaccinium mvitillus（Baккivıo o μ úpті入入oc）
Veronica barrelieri
Valeriana alliariifolia
Veronica chamaedrys chamaedrys
Veronica officinalis
Vicia cracca stenophylla
Viola arvensis
Viola athois
Viola delphinantha
Viola orphanidis orphanidis
Viola reichenbachiana
Viola sieheana
Eiön Onגaotıк由̀v
Canis lupus（＾úkoc）
Sus scrofa（Aypioyoúpouvo）
Mustela nivalis
Felis silvestris

Capreolus capreolus

Eiön Aucpıßiwy

Bombina variegata

Triturus karelinii

Triturus alpestris

Eiön عのпยтஸ்y

Podarcis muralis

Lacerta viridis

Testudo graeca

Testudo hermanni

Eiön opvıOnaviöas

Accipiter brevipes（ $\Sigma a i ̂ v i)$
Accipiter nisus nisus（Tбıx入оүध́рако）
Apus melba melba（ Σ кєriapvác）
Aquila chrysaetos chrysaetos（Xрuбaعтóc）
Bubo bubo bubo（Mnoúqos）
Buteo buteo buteo（Гعракiva）
Caprimulgus europaeus（Гиס̄ంßu̧̧áxтрa）
Ciconia nigra（Mauponèapyóc）
Circaetus qallicus（Ф।ठаعтóc）
Columba livia livia（Aypıoпєpiotepo）
Corvus corax corax（Kópakaç）

Emberiza cirlus（ Σ ip λ otoix λ ovo）
Erithacus rubecula rubecula（Koккıvoגaifņ）
Falco eleonorae（MauponहाрітПऽ）
Fringilla coelebs coelebs（ \sum nivoc）
Garrulus glandarius atricapillus（Kiaซa $\mu a u p o \kappa \varepsilon \dot{\varepsilon} \varphi \mathrm{a} \lambda \eta$ ）
Hieraaetus fasciatus（ $\Sigma \pi ı \zeta$ वहтóc）
Lullula arborea arborea（ $\triangle \varepsilon v \tau \rho о \sigma T a \rho \dot{\theta} \theta \rho a$ ）
Phalacrocorax aristotelis（ \because а入абооко́ракас）
Tetrao urogallus（Aүpıoкоupvóc）

 92／43／EOK

1410 Mعбоүعוaкḋ a入ineठ̄a（Juncetalia maritimi）－OXI

2220 Oive¢ $\mu \varepsilon$ Euphorbia terracina－OXI

92AO Σ тов́ $\mu \varepsilon$ Salix alba кaı Populus alba－OXI

 m ．

 ६u入ока́рßouva．

 glutinosa kaı Fraxinus excelsior). $\Sigma \varepsilon$ aктiva пहpinou 1000 m anó in θ ह̇on tou ह́pyou,
 $\mu \varepsilon$ Castanea sativa) Kal кшठ̈ıкó 9280 (Δ áon oziác $\mu \varepsilon$ Quercus frainetto), ol onoiol $\delta \varepsilon v$ anote入oúv

8.5.3.1 Xapaктńpas tnc ह́кктаons tou ह́pvou

 п入ПӨибио́ бг акєраіо்тпта．

 uпápXouv тонвіс，параүшүіко̇тๆтаৎ．

 Ха＾кібікウ่ऽ．

 'Opous દival μ ovaxoi.

 Moví.

8.6.2.2 Проотатعио́uहva тиท́uata

 10-1965.

 غ̇xouv.

 пиркаүі́ тои 1891.

8.6.3.1 Apxaıolovikoí xஸ́pol-Zúves

 714/B/29-10-1965.

8.7. Коıvตvıкó каı оוкоvонıкó перıßádMov

8.7.1 Апроүрафики่ ката́оттой

 Ayiou 'Opous,

 TIऽ İpȩ́, Movȩ́.

8.7.2 Параушумп่ ठıа́р θ ршоп

8.7.2.1 Парауригікоі тоиві'

$\Delta \varepsilon v$ unápxouv параүшүікоі тонві,

8.7.2.2 Eпіठоа́वвіс ото пहрıßállov tuv touéav

$\Delta \varepsilon v$ uпápxouv параүшүюкоі тонвіс,

8.7.3 Etoryeia anaoxóAクoņ

$\Delta \varepsilon v$ unápxєı отоıхघia anaoxó入nonc.

8.8.1 Үпобори்̧ нєтафорю́v

 каı oı періпатоı віvaı ouxvó $\mu \varepsilon ̇ \sigma o ~ \mu \varepsilon т а 甲 о р a ́ \varsigma . ~$

 $\Delta \varepsilon v$ unápxouv ठiktua $\Delta E H$ ．

Характпрıоро́s púnavons		$\begin{gathered} \text { Kanvóc } \\ (24 \omega \rho \varepsilon g \\ \text { ThÉc, } \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\underset{(24 \omega \rho \varepsilon \varsigma}{\mathrm{SO}_{2}}$ тицغ்， $\mu \mathrm{g} / \mathrm{m}^{3}$ ）		NO_{2} （ ω praiss Tı $\mu \dot{\varepsilon}, \underline{,} \mu \mathrm{g} / \mathrm{m}^{3}$ ）
Хаип入á	＜15	＜250	＜200	＜180	＜200

Мह́трıa	$>15 \leq 20$	$>250 \leq 275$	$>200 \leq 250$	$>180 \leq 250$	$>200 \leq 350$
Y૫П入á	$>20 \leq 25$	$>275 \leq 300$	$>250 \leq 300$	$>250 \leq 360$	$>350 \leq 500$
По入ú uчП入á	>25	>300	>300	>360	>500

8．11．Акочотıко́ перıßáג\оv каı доvŋ்бєıৎ

 латрєитוкغ่ऽ，к．ג．п．）．

перıßа̀ллоитоя

 піvака тои ápӨрои 2 пар． 5 тои П．Δ ．1180／81（ФЕК－293 А＇）．

a／a	Перıохй（хрウ்ण үワ¢）	Avஸ்тато ópıo Oopúßou oع dBA
1		70
2	вıоипхаиіко́	65
3	 	55
4		50

\square

 Oópußo．

8．12．НАєктронаүvптıка́ пеסі́a

unóßa日pou

8．13．＇Үठата

 $\lambda u ́ \mu a t a$.

8．13．2 Eпıраvモıaкá úठ̄aтa

8．13．2．1 ПЕрічра甲ர் иброура甲ікои́ ঠікти́ои

 апоотрауүіदદı тПی перıохウ＇．

－Үठெ
－＇Apঠ̌ūワ

$\Delta \varepsilon \mathrm{v}$ uпа́pхєı púnavan aпó проїóvта фитопроотабіая，

8．13．3 Yпóyモıa úठัara

 періохウ่я．

－Yס̄p\＆ữ
－＇Apঠॄūn

 катаvàえ ω on μ óvo．
$\Delta \varepsilon v$ unápxغı púnavon anó проїóvта 甲uтопроотабia̧，

катабтрочผ́v

a．Дıакопй НДєктрıкой Pعúдатоऽ
β ．Екठ்̀̀ $\lambda \omega \sigma \neq \eta$ пиркаүіа́я
Y．Eпıßapquéva anóß入пта

 актіvоßо入іг，

9．EKTIMH乏H KAI AEIO＾OГHEH חEPIBAAMONTIK』N EПICTREERN

9．1．МвӨобоАоүıкє́ц апаıтர்бєıऽ

 ยпıாт்்ฮع ω ．

 घாıாтஸ்øع $\omega \mathrm{v}$ ：

 unápxouv．

vii．Avaotрعчıиóтпта，а६ॄ๐

 'Epyou:

- Фáon Kaтабквuท́ऽ,
- Фáon ^عıтоupyiac

характпрıотіка́

9.2.3.1 Фд́वп катабкहиम́'s

 ако入ойӨ ω с:

Eiōoç pu̇nou	CO_{2}
g/HP-hr	587,3

	CO_{2}	
	Kg/d	tn/y
$\begin{aligned} & \text { Eкбкаф́̇̇а 200kW } \\ & \text { (286.5 HP) } \end{aligned}$	1346.1	40
Avatpenóusvo 120 kw (161 HP)	756	23

 غ́pywv.

9.2.3.2 Фáon \हוтoupvias

	$6 \mathrm{kWh} / \eta \mu \varepsilon \varepsilon^{\text {pa }}$
плєктропараүшүท่	$0.855 \mathrm{~kg} / \mathrm{kWh}$
Huعрウ่бıя¢, єкпоипغ่¢, CO_{2}	$5.13 \mathrm{~kg} / \mathrm{d}=0.005 \mathrm{tn} / \mathrm{d}$ ウ่ $1.9 \mathrm{tn} / \mathrm{y}$

характпрıотıка́

9．4．1．1 Al山oíwon，катáтипоп हпा५ávelac пहтраиátшv

 єпı甲аvєıака́ ர் uпहठ̄а甲ішఢ．

Пaviōa

 $\mu \varepsilon т а к і v ウ ் \sigma \varepsilon \omega v ~ T \omega v ~ \zeta \omega \omega \omega V$

9.5.2.1 Eiठiкá णтоґхहía

Eiön Bגáotnons

Eiön θ nגagtıkळ்v

вүкатäotaonc.

Eiön Auøißıa каı Eiön عonetต்v

 арквтळ்v oпиаvтікய்v taxa．

 т $\omega \mathrm{V}$ то́п $\omega \mathrm{V}$ Нотокіая，клп．

 о́пшఢ проаvарє́рӨПкє（то по入u่ $140 \mathrm{~m}^{2}$ ）．

9．6．1．2 Eпиттш்овия

 uyieivis.
 тпV проотабіа тои перıふ்̀лоитос.

9.6.2.1 Ektiunon हпиптш்ozav

 тПV проотабіа тои періßі̀̀лоитоя,

9.6.2.2 \triangle и́वппаоп пофеобоиікой ।отои́

 перюххŋ.

9.6.3 Поגтпотккй кגпроvoциа่

9.6.3.1 Enıாтய்oعis

 вүката́ттап.

9．6．3．3 Eıठікウ่ हктіuпनп

9．7．5 Поıо́тাта そんท่я

 отףv I．M．इi $\mu \omega v$ оç Пغ̇тpac，

9．8．1 Enırтஸ்ळモı̧

9．8．2 Eпápкєıa

 Movís.

9.9.1 ПıӨavótŋта єvioxuō¢

O á $\mu \varepsilon \sigma a$ عппр

9.10. Епıптம்бعı̧ отпи поıо́тпта тои аघ́ра

 $100 \mathrm{mg} / \mathrm{m}^{3}$, пои каӨоріद̨таı anó то d́pӨро 2 парау. ठ тои П. $\Delta .1180 / 81$ (ФЕК 293/А/6-10-1981).

 ठєка́бॄєऽ ppm).

 avánтuछ̆ท обんผ்v．

 autokivŋTడv．

 293／A／6－10－1981）．

 גعітоupyia тоис，

 50 dB，тпрळ̈vтац та аuवтпро́тधра ópıa поu тіӨєvтаı ото П．Δ ．1180／81（ФЕК 293／A／6－10－1981）үıа

$$
\mathrm{L}_{\mathrm{P}}=\mathrm{L}_{\mathrm{N}}-10 \log _{10}\left(4 \cdot \pi \cdot \mathrm{r}^{2}\right)
$$

ònou:

9.11.2 Епиாтம்бદıя

9.12.1 Enurréceas

9.12.2 ПиӨаvóтпта

$\Delta \varepsilon v$ unápxouv $\eta \lambda \varepsilon к т р о \mu a y v \eta т і к a ́ ~ п \varepsilon \delta \delta i a . ~$

9.13. Епиптஸ்бعıৎ ота и́бата

9.13.2.1 Епиптӓбвıг ото діктио

 пара入іас.

9．13．2．2 Епıптш்беıя סıаӨвоıио́тптая

9．13．2．3 Eктіипоп нетаßо入ต́v

 á $\boldsymbol{\varepsilon \sigma a}$ каı $\mu \varepsilon \lambda$ Могтıка．

Фágn kataokeuǹs

 غivaı по入ú μ ккра́（ 1,5 － 2 нغ்тра）．

Фáon Aहıтоupvias

 перıохウ่я $\mu \varepsilon \lambda \varepsilon ̇ т \eta \varsigma, ~ к а т а ́ ~ т \eta ~ \lambda \varepsilon ा т о u p ү i a ~ T \omega v ~ \varepsilon ́ p ү \omega v . ~$

9．13．3．4 Eктiunon нетаßо入а́v

 $\lambda u \mu a ̀ t \omega v ~ o \varepsilon ~ a u t a ́ . ~$

৯óyш атчХпнáтшv ка৷ катабтрофผ́v

Фáon катабквuńs

Фáon Aertoupvias

1．IPAミINH ENAEI三H avtıoтoIxモi $\sigma \varepsilon$ ӨETIKH EחIITT $\Omega \Sigma H$

3．KOKKINH ENAEIEH avtıoтоххยi $\sigma \varepsilon$ APNHTIKH EПIПT $\Omega \Sigma H$

ФAEH EPROY	REPIBAAMONTIKO ETOIXEIO	Enintaseis			BAPYTHTA				АIAPKEIA		ANAETPE ${ }^{\text {I }}$ IMM		
		$\frac{4}{2}$	W్凶入入	층	$\begin{aligned} & \text { I } \\ & \frac{1}{3} \\ & \frac{1}{3} \end{aligned}$	$\frac{\boxed{⿺}}{\frac{\Delta}{2}}$		爯	$\sum_{i=1}^{2}$	들	밍	W W	$\frac{1}{2}$
			\checkmark			\checkmark				\checkmark	\checkmark		
	Мор甲олоүıка́ каı тополоүıка́ характпрıттка̇		\checkmark				$\sqrt{ }$			\checkmark			$\sqrt{ }$
	характпріотіка́			\checkmark									
	Фuбıко́ перıßà入入оv		$\sqrt{ }$				$\sqrt{ }$			$\sqrt{ }$			$\sqrt{ }$
				\checkmark									
		\checkmark			\checkmark					$\sqrt{ }$			
	TEXVIKદ̇¢ unoठ̃ouદ̇¢，		\checkmark					\checkmark		$\sqrt{ }$			\checkmark
				\checkmark									
	Поıótŋта тои аह̇pa	\checkmark				$\sqrt{ }$				\checkmark		\checkmark	
		\checkmark					$\sqrt{ }$			\checkmark		\checkmark	
	Н入єкронаүvๆтıка̇ пеठia			\checkmark									
	Үбата			\checkmark									
		\checkmark				\checkmark				\checkmark		\checkmark	

EPIO ：«EPTA EПEEEPTAГIAI KAI $\triangle L A \Theta E \Sigma H \Sigma ~ A \Sigma I I K S I N ~ A Y M A T S N ~ I T O ~ A / I O N ~ O P O \Sigma * ~$

ФAH EPROY	ПEPIBAMONTIKO ETOIXEIO	EHIMTREEIL			BAPYTHTA				AIAPKEIA		ANAETPEUIMH		
		ミ	W	5	$\begin{aligned} & \frac{1}{5} \\ & \frac{1}{3} \\ & \hline \end{aligned}$	家	¢	息	$\sum_{\sum}^{\text {E }}$	ПPOЕRPINH	－	W c 言 岕	$\frac{1}{2}$
			\checkmark					$\sqrt{ }$	\checkmark			$\sqrt{ }$	
	Мор甲олоүıка́ каı тополоүıка̇ характпрıттıа												
	характпріоткка́			$\sqrt{ }$									
	Фuテıкȯ пعрıßà入入оv	$\sqrt{ }$			$\sqrt{ }$				\checkmark				
	AvӨр	\checkmark			$\sqrt{ }$				$\sqrt{ }$				
		$\sqrt{ }$			$\sqrt{ }$				$\sqrt{ }$				
				\checkmark									
		$\sqrt{ }$			\checkmark				$\sqrt{ }$				
	Поıо́tпта тои aย́pa	\checkmark						\checkmark	$\sqrt{ }$				$\sqrt{ }$
	Єópußoç каı ס̄оvฑ̇бعı¢，		\checkmark					$\sqrt{ }$		$\sqrt{ }$			$\sqrt{ }$
	Нлекоонаүуŋттка̇ пعठіа			$\sqrt{ }$									
	＇Yסата	$\sqrt{ }$			$\sqrt{ }$				$\sqrt{ }$				
		$\sqrt{ }$				$\sqrt{ }$				$\sqrt{ }$		$\sqrt{ }$	

「عviкéc катєuӨúvoॄıs

 ото П．$\Delta .1180 / 81$（ФЕК 293／A／81）каІ عıठıко்тєра то àpӨро 2 autou่：

 тои періßá入入оитоऽ．

 ако்’ouӨa：

 єкбкафळ்v．

 періßа̀入入оитоц．

 та проß入єпо́ $\mu \varepsilon v a ~ о т і \varsigma: ~$
－YA A5／2375／78（ФEK 689／B／78）
－YA 56206／1613／86（ФЕK 570B／86）
－YA 69001／1921／88（ФЕК 751／B／88）
－YA 765／91（ФЕК 81／B／91）

 (EK 801ß/74), KYA 5673/400/1997, KYA 145116/2011 каӨ'े̧ каІ бто П. $\Delta .1180 / 81$.

 apxñs.

 ठпниоupyoúv alшрѓцата.

 праүиатопоіпөві.

 тņ बкóvņ:

- ouvtijp

Фáon AEItouovias

 $\lambda a ́ \delta ı a ~ к \lambda п.) ~ о т \eta v ~ п \varepsilon р ı о х ウ ่ ~ т о и ~ \varepsilon ́ p y o u . ~$

кАıиатıка́ каı ßıоклıнатıка́ характпрıотıка́

Фáon катабкعuís

фáon deltoupvias

норфолоүıка́ каı топпоћоукка́ Характпрıотıка́

Фáon катабкعuŕs

Фáon גहItoupvias

 єп६६६рүабนغ̇va 入úцата．

Фáon катабкеuńs

єкбка甲ウ＇ऽ	

Фáon \eitoupvias

甲บаוкó перıßá̀\ov

Фáon катаокहu＇́s

 $\beta \lambda a ́ ß n ~ \sigma \varepsilon ~ a u t i n v ~$

 anó Tๆv $\mu \varepsilon \lambda \varepsilon ̇ t \eta$.

 паviठ̄a Өa $\mu п о р о и ̆ \sigma \varepsilon ~ v a ~ п а ү ı ठ ̄ \varepsilon u t \varepsilon i . ~$.

 ơףv KYA 71560/3053, ФEK 665/B/85.
 Фáon Λ हוтoupvias

avӨрんпоүعvغ́s перıßádAov

фáon катабкहиग́s

 бкиро́ঠॄєца.

 тои غ́pyou．

Фáon λ عitoupvias

Фáon катабкहut́s

 пгрıßà入入ov عival：

 ठıа́ркєıа TんV єрүабішंv．

Фáon \eitoupvias

Фáon катаокعuís

Oı u甲ıのтá

Kataokยuñ unoסonüv	

Фáon \EItoupvias

Фáのп катабкعuŕs

 браотпрітытптая

Фáon גeitoupvias

отпи поוо́тпта тои aย́ра

Фáon катаокеuís

 $\mathrm{mg} / \mathrm{m}^{3}$ ，пои каӨоріद̨таı апо́ то ápӨро 2 параү．δ тои П．\triangle ．1180／81（ФЕК 293／А／6－10－1981）．

Атноб甲аıрікர் púnavoñ	 غival $a \mu \varepsilon \lambda \eta T \varepsilon ่ \varepsilon ¢$ ．

Фáon λ हitoupvias

Өópußo ர் боvர்бєı

Фáon катабкви⿱亠́s

 та проß入єпо́нєva aпо́ то ПА 1180／1981（ФЕК 293／A／81）．
 17252／1992（ФЕК 395B／29－06－1992）ópia Өopúßou．

Өópußoç anó тŋv kivŋon охпиáт ω v каІ та катабквиабтıка́ ह́pүа	

Фáon 入eitouovias

$\Delta \varepsilon v$ uпápxouv $\eta \lambda \varepsilon к т \rho о \mu а ү v \eta т і к а ́ ~ п \varepsilon ঠ i a . ~$

и́бата

Фáon катаокहиग́s

 סıарроє́，

Фáon \eוtoupvias

入uиáтшv ото перıßá入入ov．

Фáon катабкहUй́s

Фáon \eitoupvías

10.15. АпотєАєбнатıко́тпта μ в́траv

Фáon катабкहú̃'s

Өópußoç anó тףv kivŋō oxпиáтшv каі та катабкєบаотіка́ ह́pya	
Атцоб¢аıрıкй púnavan	
Kатабквиท் ориүцátшv 	
єкбка甲ท่ऽ	

Фuøıкó перıßà入入ov	

Фáon λ हitoupvias

Араотпрıо́тпта－ парє́цßабп	
Xprion Yns	
Eүкатàのтaøך ह́pyou	
	 avaßaӨんoús，ó óoious $\mu \varepsilon$ тоиद u甲ıта́ $\mu \varepsilon v o u s, ~$
Граниє́я нєтачора́я， 	

Ефıкто́тпта цغ่тр $\omega \mathbf{v}$

 TOU．
 tov unعúӨuvo tnc Movic．

Mह̇тpa－Evowuátwon oto oxeठ̃ıaquo่

 Tou．

Фáon катабкеuís

Фрабтпрıо́тпта－паре́цßабп	
Өópußos anó tŋv kivŋon охпиáт ω к каі та катабкєиаотікá ह́pya	про́бßaon апо́ $\mu \eta \chi а v \grave{\mu а т а ~ ф о р т п ү а ́ ~ к \lambda п ~ ү і а ~} \mu \varepsilon і \omega \sigma \eta ~ T \omega v ~$
Атцобраıрıкй рúnavon	
	 －Өa aпaitnӨoúv пहрıрı
Kataøkยuர่ орuүнátwv	
єкбка甲ウ่я	
Фuđiкó перıßà入入ov	

Фáon λ हitoupvias

பраотпрıótпта－ парє́ μ ßaō	
Xprion yns	
Eyкaráotaon épyou	

	 катабкєบผ்v anó đкиро́бॄца．
Граниغ́я нвта甲ора́я 	

 145116／2011

（ППүウ่：aпо́чаवП 171914 DEK 3072／B 3－11－13）

 anó tpitouc．

 12，пар． 2 тпऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каı В）ота घпıкіvठuva aпо́ß入пта
 $287 B^{\prime} / 07$ ）．

B．Фáon катабкеuŕs

 oteyafuغ̇vouç Xépouc,

 тоиа＾ह่тعя，

 та ако̀лоиӨа：

 ع入áxıロто ठ̄uvató

Yypá кal oteped anóß λ nta

OÓpußoc - ठovingeıs

 סІஎтáद̧धı, пعрі Өорúßou

Фáom λ हıтoupvias

 paivó $\mu \varepsilon v a$ п $\lambda \eta \mu \mu u \rho \dot{\omega} v$

 провлпистт ω.

¿uүкєкрıцغ่va va үiveтal:

 тпऽ عүката́бтаõs

 avtippúnavoñ．

Yypá Aпóß入nta

 үıа тı̧ aváyкє̧ тоu غ̇pүou．

 тクऽ пعрıохウ่я

 єка́oтотє ІбXủouv．

 ónڤৎ عка่ототє ıбxủouv．

 ठıaх

$\Delta .3 .2$ Ta גúцata Өa oठ̄nyoúvtaı үıa ano入úpavaף．

ミтعред́ Aпóß入nтa

 （ФЕK 24／A＇／2012）．

 NоноӨعбіас, ЕІб̈ıко́тєра:

 41624/2057/E103/10 (ФЕК 1625 B') ón $\omega \varsigma$, IOXúouv.

 $\mu \varepsilon$ та проßлєпó $\mu \varepsilon v a$ oтпv Koıvர் Yпоupүıкர் Aпóqaon H.П. 24944/1159/06 (ФЕК 791 B') ón $\omega \varsigma$

 òn ω, ІбXU̇ย1.
 (ФEK $81 A^{\prime}$).

 1312 B' $^{\prime}$) ón $\omega \varsigma$ ıбхúعı.
 13588/725/28.3.06 (ФЕК 383 В'), 24944/1159/30.6.06 (ФЕК 791 B'), 8668/2.3.07 (ФЕК 287 B') каІ

 $\varepsilon п \varepsilon \xi \varepsilon р ү а \sigma і а \varsigma ~ а п о \beta \lambda и ̆ т \omega v . ~$

 10xúouv.
 oTఇv KYA 114218/1997 (ФЕK $1016 \mathrm{~B}^{\prime} / 17-11-1997$).

 Еүкиклiшv．

 о入ок入ńpшon тоия．

 Фáon oxe $\delta 1 a \sigma$ Нoú

 Xpóvo.
 12, пар. 2 тпऽ К.Y.А. Н.П. 50910/2727/03 (ФЕК 1909 В'/03) каı ß) ота єпıкivठ̄uva anóß入пта
 $287 \mathrm{~B}^{\prime} / 07$).

 ерүабієऽ,

 тоиa夫ह́т६ৎ,

 та ако்入оиӨа:

 ع入áxıஏто ठuvató

Yypá кal oteped anóß λ nta

Өópußoc - סovṅ்eıs

 ठІатáદ̇દı, пعрі Өорúßou

Фáon AEITouovias

 фaıvó $\mu \varepsilon$ va п $\lambda \eta \mu \mu u \rho \omega \dot{v}$

 апоррı $\mu \mu \dot{т} \omega \mathrm{~V}$ T $\omega \mathrm{V}$ паракві $\mu \varepsilon \mathrm{v} \omega \mathrm{V}$ перıохढ้̈.

Aغ́pıa Aпóß入nta

 проßлпиа́т ωv ．

¿uүкєкрıцвंva va yiveтal：

 avtippúnavons．

Yypá Aпóß入nta

 праүнатопоıітаı $\mu \varepsilon$ ßáon та ако́入оиӨа：

 үıa тіৎ aváүкец тоu غ̇pyou．

 тทร періохウ்я

 єка่ототє ıхXúouv．

 П入єктронпХа⿱㇒⿻二丨⿴囗⿱一一

 бúp甲 ón $\omega \varsigma$ عка́oтотє Ioxúouv．

ミтعрعd́ Aпóß入nта

 （ФEK 24／A＇／2012）．

 Noно日とбіас，ЕІठІко்тяра：

 41624／2057／E103／10（ФЕК 1625 B＇）$^{\prime}$ ）ónw̧，וסxúouv．

 （ФЕК 81 A＇）．

 1312 B＇$^{\prime}$ ）ón $\omega \varsigma$ ıбXúยı．
 13588／725／28．3．06（ФЕК 383 B＇），24944／1159／30．6．06（ФЕК 791 B＇），8668／2．3．07（ФЕК 287 B＇）каІ

 ยп६६६рүасіас апоß入ク่тшv．

 Үпоирүıкє́я Апофа́бєıс，13588／725／06（ФЕК 383 В＇）каı Н．П．24944／1159／06（ФЕК 791 В＇）о́пшऽ ıoxúouv．
 oTףv KYA 114218／1997（ФЕК 1016 B＇／17－11－1997）．

 $\Delta / v \sigma \varepsilon \omega v ~ T \omega v ~ \sigma u v a \rho \mu o ́ \delta i \omega v$ Yпоupyधi ωv ．

 Еүкиклі ωv ．

 Періßа́入入оитоя，

 о入ок入ウ́p ω оп тоия，

Пaúan Aertoupvias

EPFO ：«EPTA EПE＝EPTAEIAE KAI $\triangle I A Q E \Sigma H \Sigma ~ A \Sigma T I K Q N ~ A ~ Y M A T S N ~ \Sigma T O ~ A I T O N ~ O P O \Sigma » ~$

ФAH EPTOY	ПEPIBAMAONTIKO ETOIXEIO	EMIITSEEİ			BAPYTHTA				AIAPKEIA		ANAETPE世IMH			ПIAPATHPHEEİ
		$\stackrel{\mathrm{H}}{\mathbf{Z}}$	W	징	2	$\frac{\Sigma}{\mathbb{L}}$	존		$\sum_{i}^{\frac{T}{2}}$		B		－	
														$\mu \varepsilon т а 甲 о р а ́ \varsigma ~ а б ̄ р а v \omega ் v . ~$ $\Delta ı ß \rho o x \dot{~} \sigma \omega \rho \omega ் v$ єкбкафш்้
		$\sqrt{ }$					\checkmark			$\sqrt{ }$		$\sqrt{ }$		Өорйßou aпо́ та $\mu п х а v \grave{\jmath \mu а т а ~ к а т а б к є и ท ่ с . ~}$ Típnon opiwv vouoӨraiaç anó tous عрyo入áßouc．
	Н入єкооцаүуๆтıка́ пєठіа			$\sqrt{ }$										
	＇Үסата			$\sqrt{ }$										
	इоßapá atuxŋ்нata ர் катаотрорє́я			\checkmark										
	К入ıиатıка́ каı ßıокдıцатіка́ характпріттка́		$\sqrt{ }$					\checkmark	\checkmark			\checkmark		
$\begin{aligned} & \frac{T}{W} \\ & \theta \end{aligned}$	Морфолоүіка́ каı топоגоүіка́ характпріттіка்							y						Мє та $\mu \varepsilon ́ т р а ~ п о и ~$ протвіvоитаı перıоріگॄта। браотıка́ η оптік门் óx $\lambda n \sigma \eta$ ．

ФAEH EPROY	ПEPIBAAAONTIKO zTOIXEIO	Emintaseis			BAPYTHTA				AIAPKEIA		ANAETPEWIMH			ПAPATHPHEEİ
		$\frac{4}{2}$	W్WH	징	$\begin{aligned} & \text { 工 } \\ & \frac{1}{3} \\ & \frac{1}{z} \end{aligned}$	$\frac{\mathbb{L}}{\stackrel{L}{\mid H}}$		$\stackrel{\text { 区 }}{\stackrel{\text { E }}{5}}$		들 긍 首	칭	$\begin{aligned} & \text { W } \\ & \text { 흘 } \\ & \text { 쏘 } \end{aligned}$	$\frac{\mathbf{V}}{2}$	
	вбачодоүіка́ характпріотіка́			\checkmark										
	Фu大iкó перıßàlıov	\checkmark			\checkmark				\checkmark					
		$\sqrt{ }$			\checkmark				\checkmark					
	 	$\sqrt{ }$			\checkmark				\checkmark					
				\checkmark										
	ото періßӓMov	\checkmark			$\sqrt{ }$				\checkmark					
	Поıótŋта тои аह́pa	\checkmark						\checkmark	\checkmark				\checkmark	ठє६au\＆vळ்v үıo TŋV
			\checkmark					\checkmark		\checkmark			\checkmark	
	Н入екронаүVПтіка̇ пеठia			$\sqrt{ }$										
	＇Yбата	$\sqrt{ }$			\checkmark				\checkmark					
	ミоßарá aтuxńцата ウ́ катаотроре́с，	$\sqrt{ }$				\checkmark				\checkmark		$\sqrt{ }$		

Tax．$\Delta / v \sigma \eta$ ：Папа́ழп 82，Єعбба入оviкn，Т．К．54453，
Tク入．： 2310902321
Email：skarageo＠gmail．com
Σ цраүіб̈а－Үпоүра甲и́

EへE「XOHKE

O IIPOÏГTAMENOE
TMHMATOE $\triangle A E Q N$ \＆IEDIBAMONTOL

Mó σ Хоৎ Tфитаそıúтクя
\triangle aooגóyos $\mu \varepsilon$ Á $^{\prime} \beta$

OEתPHOHKE Oعбoaגovikn．14．／4l．20．．22

O \triangle IEYOYNTHE THE TEXNIKH工 YTLHPEEIAE
 Подıико́s Mnxaviкós μ ع A ${ }^{\prime} \beta$ ．

11．ПEPIBAAへONTIKH $\triangle I A X E I P I \Sigma H ~ K A I ~ П A P A K O へ O Y O H \Sigma H ~$

 Plan（EMP）Eival：

入außávouv xळ̇pa

11．2．ПعрıßаААоитıкґ́ парако৯ои́Өпбך

－Opia x －$p o u$ EEA
－Opıa ктıрі ω v Movís

－Пєріпт

	Пара́иетроऽ	Mé̇oర̄os	auMoyis	ठєıуนárwv	X ${ }^{\text {¢óvos mapauovìs }}$	
					Esaywyin	Avanuan
Eiooธ̃cy ह̇ध०ō०ऽ	BOD-5	MCAWW Method 405.1	One $500-\mathrm{mL}$ amber glss jar with TeflonTM-lined cap	Store at $4^{\circ} \mathrm{C}$	48 hours	5 days
	COD	MCAWM Method 410.4	One $500-\mathrm{mL}$ amber glss jar with Teflon ${ }^{\text {TM }}$-lined cap	$\mathrm{H}_{2} \mathrm{SO}_{4}$; store at $4^{\circ} \mathrm{C}$	NA	28 days
	TSS	MCAWM Method 160.2	One $500-\mathrm{mL}$, polyethylene bottie	Store at $4^{\circ} \mathrm{C}$	NA	7 days
	OAG	MCAVWN Method 413.2	One 1-L amber glass jar vith Teflon ${ }^{\text {Tu }}$. lined cap	HCl ; store at $4^{\circ} \mathrm{C}$	28 days	40 days
	Chloride and sulsate	MCAWW Method 300	One $250-\mathrm{mL}$ polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	28 days
	Micobiolog. parameters		$120-\mathrm{mL}$ sterilized borosilicate glass bottle	Store at $4^{\circ} \mathrm{C}$	1 hr	48 hours
	DO	MCAWW Method 360.1	One $250-\mathrm{mL}$. polyethylene botle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours
	pH	MCAWW Method 150.1	One $250-\mathrm{mL}$ polyethylene bottle	Store at $4^{\circ} \mathrm{C}$	NA	24 hours

 غं६०ठ̄०.

TAPAMETPOE	EIEOAOE	EEOAOE	IAYE	$\triangle E I T M A$	ПAPATHPHEEİ
Парохй		$+$			
$B O D_{5}$	\＃	\＃		M．H	
COD	\＃	\＃		M．H	
SS	\＃	\＃		M．H	

＊：इпораб̈ка́

ПAPAMETPO乏	£YTKENTP $\Omega \mathbf{\Sigma H}$
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{lt})$	<25
$C O D$（ $\mathrm{mg} / \mathrm{lt}$ ）	＜ 125
Alw	≤ 35

－＇Opia ктіріши Movウ́s

－＇ҮпарЕп סıappoळंv

－Opia xápou EEA
－Opia ктірíwv Movís

－Auछ̨пц̇̇voc Өópußoc

11．2．5 Парако入ойӨпоワ ооцผ்v

 бтаӨяропоіпоп каІ хоuнопоіпоп．

 عVо́тпт६؟：

－KaӨnuعріvá

－＇Opia Xépou EEA
－＇Opıa ктıрішv Movís

11．3．1 Eıсаүюүи่

 апоठ่́̇ктワ．

 перıохウ் каı та vєрà．

- A A $̇ \grave{\lambda \varepsilon ı a ~}$
- YпєрӨغ́puavon

ү. Eпıßapпиц́va anóß入пта

 $\varepsilon \varphi \varepsilon \delta$ рікои் $\varepsilon \xi о п \lambda ı \sigma \mu о и ่ . ~$

 апов λ ர்т $\omega \mathrm{v}$.

 Acquisition or SCADA) каı ठ $\varepsilon ı ү \mu a т о \lambda п \eta i \varepsilon \varsigma-a v a \lambda u ́ \sigma \varepsilon ı \varsigma . ~$

11.3.4 Anevepyonoinol TOU Σ_{X} हסiou

B. Xрńõ ßutioøópwv

 к. . .т.

Г. Мદ́đa єктव́ктоu aváүкŋऽ

апоß λ ウ่т $\omega \mathrm{V}$

ГIA THN EГKPİH ПEPIBAMAONTIKQN OP Ω N

12.2.1 KaтàтaĘŋ غ̇pyou

 2703/B75-10-12).
 1931B/27-12-2004).
 3-2007).

KatátaEn кaтá ETAKOA 2008 ка। NACE Rev. 2

12.2.2.1 হuvTETaทमévec Oéoñ EEA

 520895,35 каІ $Y=4448690,24$.

	ミuvtetaypėvec，E［टA 87	
	X	Y
＇Ȩoठ̃oc anó EE＾	520882，25	4448672，78
ミпuعio סiáӨzaņ	520871，92	4448675，58

12．2．3 Пергүрафй＇Ерүои

Anoxeteutiká סiktug

Піо бuүкєкрıцદ̇va：

 t ωv ß

ПAPAMETPO乏		ФAEH EXEAIAEMOY
	Kar．	65，00
	$\mathrm{m}^{3} / \mathrm{d}$	9，75

акаӨа́ртшV	$\mathrm{m}^{3} / \mathrm{d}$	14，63
	$\mathrm{m}^{3} / \mathrm{h}$	0，61
Парох＇̆ aıхиர்¢ Qp	$\mathrm{m}^{3} / \mathrm{h}$	2，20
Eıठıккó Punavtikó ¢ортio BOD_{5}	gr／Kar／d	60
Eıठıкó Punavtikó ¢ортio TSS	gr／kat	70
EıÖıkó Punavtikó ¢ортio TN	gr／kat／d	10
Eıठıко́ Puпavtikó 甲ортio TP	gr／kar／d	3
Фортіо BOD_{5} охеరІаवرои̉	kg／d	3，90
ФортіО TSS охعঠัıабиоu่	kg／d	4，55
	kg／d	0，65
Фортіо TP охहסıабนои่	kg／d	0，20

Кшסัıко்ৎ E．K．A．：19．08．05

Пєріпои 1 m³／غ่тоऽ
 тро́по．

 $\varepsilon п \varepsilon \xi \varepsilon p y a \sigma i a, ~ y ı a ~ T \eta v ~ \sigma u \mu \mu o ́ p \varphi \omega \sigma \eta ~ \sigma u ́ \mu \varphi \omega v a ~ \mu \varepsilon ~ т о v ~ п i v a к а ~ 1 ~ T \eta \varsigma ~ K Y A ~ 5673 / 400 / 1997 ~(Ф Е К ~$
 145116／2011．

 Koivotitituv.

 ópıо Tんv $100 \mathrm{mg} / \mathrm{m}^{3}$, поu каӨоріद६таı anó то ápӨро 2 парáy. ס' тои П. Δ. 1180/1981

12.2.5.2 Yурá aпó $\beta \lambda$ птG

 мaцßávovtaç uпóuף :

KYA）

ПAPAMETPO乏	इYTKENTP 2 EH
$\mathrm{BOD}_{5}(\mathrm{mg} / \mathrm{lt})$	≤ 10
COD（ $\mathrm{mg} / \mathrm{lt}$ ）	≤ 100
Alwpou่ $\mu \varepsilon \mathrm{va}$ отعрعà，SS（ $\mathrm{mg} / \mathrm{lt}$ ）	≤ 10
Өо入о́тпта	<2
pH	5，5－8，5

 Пара́ртпиа 1 тп̧ KYA 5673／400／97．

Kaтá тŋ 甲áon Kaтaбквuņ̃：
－KYA 9272／471／07，ФЕК 286／B／2．03．07：«Tpononoinon tou ápӨpou 8 тףs un＇apiӨر．

－KYA 56206／1613，ФЕК 570／B／9．9．86 ：«Пعрі пробס゙орı〒
 81／1051／EOK ка।

 $\mu \varepsilon$ то Провठ̄рıко́ Δ ı่́таүна（П． μ ováס̄ac．

Enurit由்oยんv

12．2．7．1 Katá тп 甲áon Kataбкеuíc：

 12，пар． 2 тПऽ К．Y．А．Н．П．50910／2727／03（ФЕК 1909 В＇／03）каІ В）ота عпıкivठ̄uva aпо́ß入пта бú $\mu \varphi \omega v a \mu \varepsilon$ то ápӨро 11，ón $\mu \varsigma$ тропопоıク̇Өпкє $\mu \varepsilon$ то ápӨро 3，пар． 2 тпৎ K．Y．A．8668／2007（ФЕК 287 B＇／07）．

 хஸ்роия.

 ако́入ouӨa:

 ع入áxıтто ठuvató

Yyoá kai oteped anóßAnta

 апорріщиат $\omega \mathrm{v}$.

 ठІaтáそॄı, пદpi Өopúßou

 єпо́нєvクఢ параүра́фои

 koıvís ఇouxias

- Aпаүорعúغтаı η vuxtepıvŋ் epyacia.

12.2.7.3 Kaтá тп फáon ^हाтоupviac:

 проßлпца่тшv．

ミuүкєкрıщغ̇va va үiveтal：

 тПऽ عүкста́бтаö々

 ठuvari่ єкпоипท่ рún $\omega \mathrm{v}$ ．

Yyóa AnóBAnta

 4042／2012（A＇24），о́n $\omega \varsigma$ عка́бтотع ІбXủouv．

 апоß入ウ่тшv тпऽ параушүıкйऽ ठıаб̈кабіас，

इта avt

ミтеред́ AnóßAnta

24/A72012).

 NoноӨعбіас, ЕІб̈ıко்тяра:

 41624/2057/E103/10 (ФЕК 1625 B') ón ω ¢ וסxúouv.

 о́n $\omega \varsigma$ ıбхи்ยા.

 13588/725/28.3.06 (ФЕК 383 В'), 24944/1159/30.6.06 (ФЕК 791 В'), 8668/2.3.07 (ФЕК 287 B') каІ

 IOXU̇ouv.
 KYA 114218/1997 (ФЕK 1016 B'/17-11-1997).

 Еүкик入і ω v．

 Пєріßа̀入入оитоя，

12．2．7．4 Пह́рас леוтоирvía tou ह́pvou каі апоката́отаоп

 катабкદบผ்v．

13．ПPO乏OETA $\Sigma T O I X E I A$

2．Yүıвıvoגоүıкоі uпо入оүıбноі

14．ФЛТОГРАФІКН TЕКМНРI $\Sigma \mathrm{I}$

Хळ்poc，катабкєuท่¢ E．E．＾．

15. XAPTE - $\Sigma X E \Delta I A$

15.1.Xápтпя пробavato丸ıбนой

 параколои்Өŋопs.

16. ПАРАРТНМА

16.1. ҮГIEIONOAOГIKOI ҮПOАОГIEMOI THЕ E.E.А.

IEPA KOINOTHTA
AГIOY OPOY乏
$\mathrm{A} \Theta \Omega$

ЕРГО：«EPГA EПEEEPTAटIA乏 KAI $\triangle I A O E \Sigma H ~ A \Sigma T I K \Omega N ~$ AYMATRN $\Sigma T O$ AIION OPOE»

ПАРАРТНМА А：
 YГIEIONOAOГTKOI YПOАOГTさMOI EГКАTAЕTAEHE EПEEEPГAEIAEAYMATRN TMHMATOE I．M．ЕIMRNOE ПETPAE

MEPIEXOMENA

1．EİAГ Ω ГH 1
2．ПАРАМЕТРОI इXEDIAEMOY EE＾ 1
 1
2.2 Поо́тпта Eкроп́s 1
2.3 ¿uvoптікก் Пєрічра甲й EEへ 2
3．$\triangle I A \Sigma T A \Sigma I O \wedge O T H \Sigma H ~ M O N A \Delta \Omega N$ 2
 2
3．1．1 ГЕvıка่ 2
 3
 6
 6
3．2．2 Аіабтабіо入о́yпоп－Үпо入оүібиоі 6
 7
 8

1．ЕІІАГㅈㄷㅐ

2．ПAPAMETPOI EXEAIAEMOY EEA

ПAPAMETPO乏		ФA乏H EXEAIAEMOY
	кат．	65，00
	$\mathrm{m}^{3} / \mathrm{d}$	9，75
	$\mathrm{m}^{3} / \mathrm{d}$	14，63
	$\mathrm{m}^{3} / \mathrm{h}$	0，61
	$\mathrm{m}^{3} / \mathrm{h}$	2，20
Elơıkȯ Punavtikó 甲ортio BODs	gr／Kat／d	60
Eİıк⿺尢丶 Punavtıkó ¢ортіо TSS	gr／kat	70
Еıб̈ккó Puпavtıкó ¢ортіо TN	gr／kat／d	10
Eıठ̈ıкȯ Punavtıкȯ ¢ортio TP	gr／kat／d	3
	kg／d	3，90
	kg／d	4，55
Фортіо TN бx\＆ठıабной	kg／d	0，65
Фортіо TP охعסıабนой	kg／d	0，20

2.2 Поюо́ттта Eкроѓя

 عival:

ПAPAMETPOE		OPIA	
BOD_{5}	$\mathrm{mg} / \mathrm{lt}$	\leq	25
COD	$\mathrm{mg} / \mathrm{lt}$	\leq	125
AIwpoúnzva orepeà (TS)	$\mathrm{mg} / \mathrm{lt}$	\leq	35

ПAPAMETPO		OPIA	
BOD $_{5}$	$\mathrm{mg} / \mathrm{lt}$	\leq	25
COD	$\mathrm{mg} / \mathrm{lt}$	\leq	125
Alwpoúuzva णعрعà (TS)	$\mathrm{mg} / \mathrm{lt}$	\leq	35

2.3 इuvoптткŕ Перıүрачŋ́ EEA

 Екроп̆я.

 фutà.

3. AIAETAEIOAOГHEH MONAAQN

3.1.1 「Evıкá

 ठє६ацєvท่.

H ठє६，

 бтعрєळ่v．

 бкиро́бєца．

 иठбраи入ıка่．

 ßıо入оүıкйऽ єпє६६рүабiac．

 oxモ̇ఠŋ：
$\mathrm{q}=\mathrm{Q}_{\mathrm{d}, \mathrm{m}} / \mathrm{A}$

ПAPAMETPOE	MONA \triangle A	TIMH
	$\mathrm{m}^{3} / \mathrm{m}^{2}-\mathrm{hr}$	0,6
	$\mathrm{m}^{3} / \mathrm{hr}$	2,2
	m^{2}	3,67

ПAPAMETPOE	MONA \triangle A	TIMH
Méyıơך ω pıaia пapox't Qd,max	$\mathrm{m}^{3} / \mathrm{hr}$	0,61
	m^{3}	12,82
	m^{3}	38,20
t1 : Xpóvos кaӨiZ̧	hr	62,62
	hr	17,36

3.1.1.1 Апо́боот ноváठас̧ - поюо́тпта вкроர்ৎ

 aб甲á $\lambda \varepsilon ı a ~ \omega \varsigma ~ a к о \lambda о u ́ \theta \omega \varsigma ~(A T V-H a n d b u c h, ~ M e c h a n i s c h e ~ A b w a s s e r r e i n i g u n g, 1996): ~$

ПAPAMETPOE	MONADA	TIMH
BOD_{5}	\％	25
COD	\％	25
Alwpoúneva oteped SS	\％	60
O入ıкó á̧̧то	\％	10
Фஸ்णழороऽ	\％	9

ПAPAMETPOE	MONA ${ }^{\text {a }}$	TIMH
BOD5	mg／l	300，00
	kg／d	2，93
COD	mg／l	540，00
	kg／d	5，27
Alıpoủheva otepeà SS	mg／l	186，67
	kg／d	1，82
O入ıко́ àz	mg／l	60，00
	kg／d	0，59
	mg／l	18，66
	kg／d	0，18

3．1．1．2 Пapayшyウ் ıAúoৎ

 побо́тๆта aı

	4，55 kg／d
	$1,88 \mathrm{~kg} / \mathrm{d}$
	2，73 kg／d

3．2．1 Tєхvıкท่ перıүра甲ர் દ̇рүшv

 апоб̈отıк่．

3．2．2 Аıаттабıодо́үпоп－Yполоүıбиоі

$$
A=\frac{Q_{o}}{k_{1} \times n \times d} \ln \frac{C_{o}}{C_{e}}
$$

＇Onou ：

h：то єvєруо́ порळ்ठॄऽ， $\mathrm{n}=0,37$ ，
d：\quad то $\mu \varepsilon ் \sigma о ~ \beta \dot{\theta о \varsigma ~(m), ~ d=0,8 ~ m ~}$
Co：BOD عוбס́ठ̄ou（mg／l），Co＝300 mg／l，

Ce: BOD દ $\xi \dot{\circ} \delta \bar{O}(\mathrm{mg} / \mathrm{l}), \mathrm{Ce}=25 \mathrm{mg} / \mathrm{l}$

$$
H R T=H \times A \times n / Q
$$

'Onou:

n: то єvєрүó порஸ்ठє؟, 0,37
 $3,79 \mathrm{~d}$ ($\delta \eta \lambda$. үіа тпv пиعрп்біа парохท่ $9.75 \mathrm{~m}^{3} / \mathrm{d}$).

 uпعрарквта́.

 ウ $5,83 \mathrm{lt} / \mathrm{m}^{2 h}$.
 ßарútnтаৎ PVC Ф140.

Побо́тпта отргธ்v 入áonns : $2.73 \mathrm{~kg} / \mathrm{d}$

'Оүкоз 入áonns $\quad: 0.14 \mathrm{~m}^{3} / \mathrm{d}$
 фо́ртїп (Маркаvтшvàтос, 1990) :

'Етол, проки́птєı:

16.2.ITYXIO MEЛETHTH

ПTYXIO ME \triangle TTHTH

П1 1 138/2009 / N. 3316/2005

AP. MHTP $\Omega O Y$:
 19558

А.Ф.М.:

A.O.Y.:

EIISNYMO:

ONOMA:
ONOMA ПATPOL:
EIAIKOTHTA:
EAPA NOMOE:
епагГ. еАра:
Katoikia:

119767005
ェT' OE ${ }^{\prime}$ IAAONIKH

KAPAГE®PIIOY
eyztpatiog
anapeaz
XHMIKOL MHX.
OEL/NIKHE
ПАПАФН 82 ӨЕГ/NIKH TK 54453
ПАПАФН 82 ӨЕЕ/NIKH TK 54453

KATHIOPIE MEAETQN

16.3. EIUIKH OIKOЛOГIKH AЕIOЛOГНЕH

EIIIKH OIKO＾OГIKH AミIONOГH乏H

EPГתN EПE＝EPГA乏IA乏 KAI $\triangle I A O E \Sigma H \Sigma ~ A \Sigma T I K \Omega N ~ \Lambda Y M A T \Omega N ~ T M H M A T O \Sigma ~ I . ~ M . ~$ £IM＠NO乏 ПETPA乏

ANADOXOE
EYETPATIOL KAPATERPFIOY
ПАПАФН 82， 54453 ӨЕІІААОNIKH
email：skarageo＠gmail．com

IOYNIOE 2021
Пívaкац $\pi \varepsilon \rho เ \varepsilon \chi о \mu \varepsilon ́ v \omega v$
EIइAIתГH－ПEPIOXH ME＾ETH乏． 3
1．YФI乏TAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBAN＾ONTO乏 4
1．1 KATATPAФH KAI ANAAY乏H TQN इTOIXEIQN ФY乏IKOY ПEPIBANAONTO乏 ミTHN ПEPIOXH MEAETH乏 4
 4
 5
 6
 10
1．2 ANAФОРА ANA Ω Y YФİTAMEN ΩN H／KAI EГKEKPIMEN ΩN EPI ΩN^{\prime} H $\triangle P A \Sigma T H P I O T H T \Omega N ~ \Sigma T H N ~$ ПЕРIOXH MEAETH乏 33
 33
1.4 ФΩ TOГРАФІКН TEKMHPI $\Omega \Sigma H$ 34
1．5 KATAIPAФH TH乏 KATA乏TA乏H乏 TOY ФY乏IKOY ПEPIBANMONTO乏 £THN ПEPIOXH TOY АIKTYOY NATURA 2000 35
 35
 характпрıбтєí η оькі α лерıохŋ́ Natura 2000. 36
1．5．3 Kúpıє̧̧ тце̧́ avaфорás 42
 42
 43
 47
2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O \wedge O T H \Sigma H ~ T \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N ~$ 47
3．METPA ANTIMET $\Omega \Pi \Sigma H \Sigma T \Omega N ~ \Pi I \Theta A N \Omega N$ EПIПT $\Omega \Sigma E \Omega N$ 49
4．ANTIITAOMIETIKA METPA 53
 4014／2011 53
 53
 54
 55
5．ПРОГРАММА ПАРАКОЛОҮӨНГН乏 56
6．$\Sigma Y N O \Psi H$ §YMПEPA $\Sigma M A T \Omega N$ 60
7．BIB＾IOГРАФIKE ПHTE 62
8．OMA $\triangle A$ MEAETH Σ 66
ПАРАРТНMA I 67

EIइAГОГН - ПEPIOXH ME^ETH乏

 $\delta \eta \mu$ ioupyoúvtat aró to épyo

 влє६врүаоіац)

1．YФIミTAMENH KATA乏TA乏H TOY ФY乏IKOY ПEPIBA＾＾ONTO乏

MEAETHE

1．1．1 Euvortikń $\pi \varepsilon \rho$ typaфń tnc olkiac $\pi \varepsilon \rho$ toxńc Natura 2000

 котvotıкó סíktuo Natura 2000.

「єшүрафики́ θ ह́бๆ：E： $23^{\circ} 87^{\prime} 69^{\prime \prime} \mathrm{N}: 40^{\circ} 08^{\prime} 44^{\prime \prime}$
＇Ekтаoŋः ：33．567，80ha

1．2．2 Ava入utıкń $\pi \varepsilon \rho เ ข \rho \alpha \phi n ́ ~ \tau n c \pi \varepsilon \rho เ o x n ́ c \mu \varepsilon \lambda \varepsilon ́ t n s$

 (Мтацла入ы́vac 1998).

 Пacoviaç，Pa：Zần Пã̌ioov，Al：Zôvn

Pk：Zövv Пapvacoou－Г k óovas，
P：Zóvๆ Пivóou，

I：lóvoc 弓̧ovn

Etкóv α 2．「 $\varepsilon \omega t \varepsilon к т о v \iota к o ́ ~ \sigma \chi ŋ ́ \mu \alpha ~ \tau \omega v ~ E \lambda \lambda \eta v i \delta \omega v ~ \zeta \omega v \omega ́ v ~ к \alpha \tau \alpha ́ ~ M o u v \tau \rho \alpha ́ к \eta ~(1983) . ~$

 oта $\mu \varepsilon \tau \alpha і ̈ \zeta \check{\jmath} \mu \alpha \tau \alpha$ ．
π ：Перıסотітє̧ К αt סоuviteৎ．

 tou $24 \dot{\omega}$ pou.

 ठрáoņ $\tau \omega v$ хعщน́р $\rho \omega v$.

 пои үіvetal otnv перเoxǿ बutí.

X \wedge תPI $\triangle A$

 $\pi \lambda \alpha ү \iota \omega \dot{v} \mathrm{k} \alpha \iota \eta$ фúon $\tau \omega v \pi \varepsilon \tau \rho \omega \mu \alpha ́ \tau \omega v$.

 (χ ад́̇пıо̧ $\pi \varepsilon \cup ́ \kappa \eta)$.

4. H दúvŋ $\tau \omega v$ о
5. Heछ
 $\pi \alpha \rho \alpha \mu \varepsilon \sigma о ү \varepsilon เ \alpha к \eta ́ ~ \zeta \grave{v \eta \eta ~ \beta \lambda \alpha ́ \sigma t \eta o \eta \varsigma ~(Q u e r c e t a l i a ~ p u b e s c e n t i s), ~ о ь о \pi о i ́ я ~ \pi \varepsilon \rho เ о р i \zeta о v t \alpha \iota ~ \sigma t \eta v ~}$

 lentiscetum.

 (Euphorbia acanthothamnos), Өu $\mu \dot{\alpha} \rho \mathrm{l}$ (Corydothymus capitatus), фабкó $\mu \eta \lambda_{0}$ (Salvia sp.), ф $\lambda^{\mu} \mu \circ \varsigma$

 (Pistacia lentiscus), oı α ркعuӨoı (Juniperus sp.), т α ркiкı α (Erica spp.) к $\lambda \pi$.

 к λ „ μ атикє́я.

 Év \quad orn.

Ta ópla μ हта६ú ths eu

 to Carpinetum orientalis.

 $\mu \varepsilon \tau \varepsilon ́ \chi o u v \tau \alpha \xi \cup \lambda \dot{\omega} \delta \eta$ हi $\delta \eta \eta$ Ilex aquifolium, Fraxinus ornus, Sambucus nigra, Clematis vitalba, Rosa canina, Hedera helix, Sorbus aucuparia, Sorbus torminalis, Quercus conferta,Alnus glutinosa ($\sigma \alpha$

 $\mu u \rho t ı \alpha ́ \varsigma, ~ к о u \mu \alpha \rho เ \alpha ́ \varsigma, ~ \varepsilon \rho \varepsilon i k \eta \varsigma, ~ \sigma x i v o u, ~ \pi o u p v \alpha \rho ı o u ́, ~ \lambda \alpha \delta \alpha v i \alpha ́ \varsigma ~ \eta ́ ~ \alpha ү \rho ı \varepsilon \lambda ı \alpha ́ \varsigma ~ к \alpha l ~ \sigma \chi \eta \mu \alpha t ı \sigma \mu о u ́ \varsigma ~$

Eión B Báounoons
Abies cephalonica / £üvクษ゚\&ऽ
Aethionema orbiculatum / $\Sigma \pi \alpha \dot{v}$ to
Allium chamaespathum / Пlopóv
Anthemis sibthorpii / Σ návio
Arabis bryoides / Парóv
Arctostaphylos uva-ursi / Mapóv
Asperula aristata ssp. nestia / Ha oóv
Asperula aristata ssp. thessala / Mapóv
Astragalus thracicus ssp. monochorum / $\Sigma \pi \alpha \dot{v} v o$
Atropa bella-donna / ñóvio
Aubrieta erubescens / Пapóv

Beta nana／Erávio
Campanula lavrensis／Mapóv
Centaurea pannosa／П 1 рóv
Cephalanthera damasonium／חapóv
Cephalanthera longifolia／Mapóv
Colchicum doerfleri／חapóv
Convallaria majalis／Mapóv
Corydalis integra／Enávto
Cyclamen persicum／Пapóv
Cystoseira spp／П $\alpha \rho o \dot{v}$
Dianthus petraeus ssp．orbelicus／ח $\alpha \rho o ́ v$
Digitalis leucophaea／$\Sigma \pi \alpha \dot{v}$ ıo
Erysimum drenowskii／П α مóv
Fritillaria euboeica／Пo ú End́vıo
Fritillaria graeca／Пapóv
Helichrysum sibthorpii／Mo入ú $\sum \pi \alpha \dot{v}$ Io
Heracleum humile／Парóv
Hypericum athoum／$\Sigma \pi \alpha \dot{v}$ vo
Isatis tinctoria ssp．athoa／$\Sigma \pi \alpha \dot{v} v o$
Limodorum abortivum／חגрóv
Linum leucanthum $\Sigma \dot{\operatorname{uj} v \eta \vartheta \varepsilon \varsigma, ~}$
Linum olympicum ssp．athoum／Пo入ú इnג்vo
Neotinea maculata／Mapóv
Neottia nidus－avis／Mapóv
Ophioglossum vulgatum／חapóv
Osmunda regalis／חू ρ óv
Oxytropis purpurea／ $\bar{\pi} \alpha \dot{v i v i o}$
Platanthera bifolia／Пapóv
Platanthera chlorantha／Пapóv
Poa thessala इúvnधेes
Polygonum icaricum／$\Sigma \pi \alpha \dot{v}$ vo

Saxifraga juniperifolia ssp．sancta／Mapóv
Silene echinosperma／Парóv
Silene multicaulis ssp．genistifolia／M $\alpha \rho o ́ v$
Sorbus chamaemespilus／$\Sigma \pi \dot{\alpha} v{ }^{2} o$
Stachys leucoglossa／Mapóv
Thymus thracicus／חapóv
Valeriana alliariifolia／ミnávio
Viola athois／חo
Zerynthia polyxena

 immanuelis－loewii，Centaurea peucedanifolia，Silene orphanidis，Viola delphinantha，Viola athois，
 $\pi \alpha \rho \alpha ́ \rho т \eta \mu \alpha$ 3．3．13），عvஸ́ т τ عíŋ Arctostaphylos uva－ursi，Atropa bella－donna，Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．orbelicus，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus $\pi \rho \circ \sigma \tau \alpha \varepsilon$ úovt $\alpha \iota$ aró то $\Pi \Delta 67 / 1981$ ．T α Heracleum humile，Saxifraga juniperifolia ssp．sancta，Ophioglossum vulgatum eival orávı α otqv E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha$ ń к $\alpha \iota$

 т \quad п́ $\mu \alpha$ тпร．

－$\Delta \varepsilon v \delta \rho o \varepsilon เ \delta \dot{n}$ Matorrals $\mu \varepsilon$ Juniperus spp．（Arborescent matorral with Juniperus spp．）－ 5210
－$\Delta \varepsilon v \delta \rho о \varepsilon เ \delta \mathfrak{j}$ Matorrals $\mu \varepsilon$ Laurus nobilis－ 5230
－इuotá $\delta \varepsilon \varsigma$ ס́áфvns－ 5310

－Фpú ${ }^{\text {－}}$ ava aró Sarcopoterium spinosum－5420

－Δ áon o६uác aró Luzulo－Fagetum－ 9110

－$\Delta \alpha \dot{\alpha} \eta_{n} \mu \varepsilon$ Castanea sativa－ 9260

 Xepoovíбou（Securinegion tinctoriae）－92D0
－$\Delta \alpha ́ \sigma n$ ס́nuóc tou Alyaiou $\mu \varepsilon$ Quercus brachyphyllo－ 9310
－$\quad \Delta \alpha ́ \sigma \eta \eta \varepsilon$ Quercus ilex кaı Quercus rotundifolia－ 9340
－$\Delta \alpha ́ \sigma \eta ~ \mu \varepsilon$ Quercus macrolepis－ 9350

N11－A入ликоі каı uла入л兀коі $\lambda \varepsilon \mu \omega ́ v \varepsilon \varsigma ~(2,08 \%) ~$
N16－חגатúфu入入 α фи $\lambda \lambda$ оßó $\lambda \alpha$ סáon $(24,38 \%)$
N17－$\Delta \dot{\alpha} \sigma \eta$ K ωv офо́p ωv（ $10,03 \%$ ）
N18－Aعíфu入入人 $\delta \dot{\alpha} \sigma \eta(20,42 \%)$

 ка入uлто́น

 фaivovtal otov रápin tou ПAPAPTHMATOE I．

OIKOTOПOE ПPOTEPAIOTHTAE

 excelsior．K $\omega \delta$ ukóc 91 E 0.
 Padion，Alnion incanae，Salicion albae）．

 $\alpha \mu \varepsilon \tau \alpha ́ \beta \lambda \eta$ тоৎ，$\pi \varepsilon \rho \iota \lambda \alpha \beta \alpha \dot{v} \varepsilon є \frac{\alpha \rho к \varepsilon \tau \alpha ́ \alpha ~}{\varepsilon \cup \mu \varepsilon \gamma \varepsilon ́ \theta \eta} \varepsilon i \delta \eta$（Filipendula ulmaria，Angelica sylvestris，
 ro入入 $\dot{\alpha}$ eapıv $\dot{\alpha} ~ ү \varepsilon \dot{\omega} \phi \cup \tau \alpha$ ó $\pi \omega \varsigma$ Ranunculus ficaria，Anemone nemorosa，A．ranunculoides，Corydallis solida．

OLKо入оүике́ đuvӨńkes

 vepoú．

X $\lambda \omega \rho \mathrm{L} \delta_{\text {Lkń }}$ đúvӨzon

Alnus glutinosa，Equisetum telmateia，Rubus sanctus，Alnus glutinosa，Sparganium erectum，Urtica dioica，Geranium robertianum，Corylus avellana，Galium aparine，Salix alba，Sambucus nigra，Humulus lupulus，Rubus ulmifolius，Carex remota，Platanus orientalis，Rubus caesius，Salix elaeagnos，k．á．

Katáotaon $\delta 1 \alpha$ tńpnonc-Aлદ

 Quercus coccifera, Juniperus oxucedrus, Quercus trojana, Carpinus orientalis, Ostrya carpinifolia, Pistacia terebinthus, Buxus sempervirens, Jasminus fruticans, Fraxinus ornus, Cercis siliquastrum (Coccifero - Carpinetum Honvat).

 π пиоuбוо́tepoç.
$\chi \lambda \omega \rho \iota \delta \kappa k \dot{\prime} \sigma^{\prime} v \vartheta \varepsilon \sigma \sigma$
 eupatoria, Acer campestre, Carpinus orientalis, Chrysopogon gryllus, Silene italica, Juniperus oxycedrus, Ballota acetabulosa, Trifolium repens, Fraxinus ornus, Berberis cretica, Ostrya carpinifolia, к. $\dot{\text {. }}$

CORINE 41.9 Aáon Kaotaviác. Kwoıkóc 9260.

 （kaotav ω tá）．

 medwediewii，Carpinus orientalis，Sorbus domestica，Fagus sylvatica s．l．к．$\dot{\alpha} .$, к $\alpha \theta \omega \dot{c}$ к $\alpha \iota ~ \alpha \varepsilon i \phi u \lambda \lambda \omega v$ $\varepsilon \iota \delta \dot{\omega v}$ ，ó $\pi \omega \varsigma$ ta Pinus nigra，Abies cephalonica，Abies borisii－regis，Ilex aquifolium，Quercus ilex k． ．Ot

Castanea sativa，Pteridium aqulinum，Alliaria petiolata，Carpinus orientalis，Corylus avellana，Fragaria vesca，Campanula spatula，Calamintha grandiflora，Fagus sylvatica，k．́．́．

 medwediewii，Carpinus orientalis，Sorbus domestica，Fagus sylvatica s．l．k．$\dot{\alpha} .$, к $\alpha \theta \dot{\omega} \varsigma ~ к \alpha \iota ~ \alpha \varepsilon i ́ \phi u \lambda \lambda \omega v$ $\varepsilon \iota \delta \omega \mathbf{v}$ ，ó $\pi \omega \varsigma$ ta Pinus nigra，Abies cephalonica，Abies borisii－regis，Ilex aquifolium，Quercus ilex к．$\dot{\alpha}$ ．Ot

 $\mu u ́ k \eta \tau \alpha$ Pseudonectria（Endothia）parasitica．

 frainetto．

 пирเүєทท́ пєт $\rho \omega ́ \mu \alpha \tau \alpha, \alpha \sigma \beta \varepsilon \sigma т о ́ \lambda ı \theta$ ос, $\mu \alpha ́ \rho \mu \alpha \rho о$ к. $\alpha).$.

Eíßŋ фutúv пou عлıкратоúv عivat ta: Quercus frainetto, Fagus sylvatica, Fagus moesiaca, Carpinus orientalis, Pteridium aquilinum, Coryllus avellana, Poa nemoralis, Quercus petraea, Quercus petraea ssp., Sorbus torminalis, Fagus sylvatica ssp. sylvatica, к. $\dot{\alpha}$.

 тои $\mu \varepsilon б о ү \varepsilon เ \alpha к о и ́ ~ о เ к о б и \sigma т ท ́ \mu \alpha т о \varsigma ~$

IIANIDA

Opvivoravi $\delta \alpha$

 Handrinos and Akriotis (1996), Birdlife Intenational (2004) каı Mлои́билоupaç (2009), η

 (Xpuoartóc), Bubo bubo (Мпои́фоऽ), Buteo buteo (Гعракiva), Caprimulgus europaeus
 (Aүptorepiotepo), Corvus corax (Kópakaç), Delichon urbica ($\Sigma \pi \iota \tau 0 x \varepsilon \lambda i(\delta o v o), ~ E m b e r i z a ~ c i r l u s ~$
 peregrinus (Пعтрitņ), Fringilla coelebs (Enivoc), Garrulus glandarius atricapillus (Kiøoa

 Tetrao urogallus (Аүрıóкоиркос).

 Eıठıко́tєра:

$\Phi=\Phi \theta$ ıvóл $\omega \rho \circ$
$X=X \varepsilon \mu \omega \dot{v}$ aç
$\mathrm{A}=\mathrm{Avoı} \xi \mathrm{n}$
$K=$ K α док α ipt
2）Katпүорієя＂Kóккıvou Bı $\beta \lambda i o u$＂：
K1＝Kıvסuveúouv á $\mu \varepsilon \sigma \alpha$
$K 2=K ı$ Uuveúouv
$T P=T \rho \omega \tau \alpha$
$\Sigma=\Sigma \pi \alpha \dot{v i L} \alpha$
AT＝Averapkús $\gamma v \omega \sigma \boldsymbol{\alpha}$
A＝Arрообıópıтt α

2．SPEC1＝Eiठף $\pi \alpha ү к о \sigma \mu i \omega \varsigma ~ \alpha \pi \varepsilon ı \lambda о u ́ \mu \varepsilon v \alpha$

EIAH		（1）	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovopuoía	Ertoornuovukí Ovouaбia									
＾ацлроßои́ті	Gavia arctica			$+$				11	11	3
इкоифоßоutףxта́pl	Podiceps cristatus		＋	$+$						
Kokkıvoßoutnxtápt	Podiceps grisegena		＋			A		11	11	
MaupoßoutnXtápt	Podiceps nigricoiiis		＋			$A \Gamma$		11		
Aрtérn¢	Caionectris diomedea	$+$		$+$	＋			II		2
Múxos	Puffinus yeikouan	＋	＋	$+$	$+$		＊	II		
Kopuopávos	Phalacrocorax carbo	$+$								
Өалаббоко́ракас，	Phaiacrocrax aristoteiis	$+$				TP	＊	11		
Kрилтотоикvid́ç	Ardeoia raiioides						＊	II		3
＾еuкотоıкviás	Egretta garzetta	$+$					＊	II		
ミтахтотоıкviás	Ardea cinerea	＋								

EIAH		（1）	X	A	K	K．BIBA．		79／409	BEP．	BON．
Kotví Ovouãia	EtıotпHovıки́ Ovoцабia									
Maupore入арүós	Ciconia nigra	＋		＋	＋		＊	11	II	3
Пе入арүós	Ciconia ciconia	$+$					＊	11	11	2
Воиßо́кикуоя	Cygnus oior		$+$						II	
B $\alpha \rho \beta \alpha{ }^{\text {a }}$ 人	Tadorna tadorna		$+$			TP		11	II	
Прабเvoкย́фа入П	Anas piatyrhynchos	$+$	＋						11	
इарбह́入 ${ }^{\text {a }}$	Anas querqueduia	$+$		$+$		$A \Gamma$			II	3
ミфпкıápŋs	Pernis apivorus	$+$		＋	＋		＊	11	11	
Toídtns	Miivus migrans	$+$				K1	＊	II	II	3
Aопропа̇рп§	Neophron percnopterus	＋				TP	＊	II	11	3
Фıбавтós	Circaetus gallicus	＋		$+$	＋		＊	II	11	3
	Circus aeruginosus	$+$				TP	＊	II	11	
ミтепо́кьрко¢	Circus macrourus	＋						II	11	
Аıßабо́кıркоऽ	Curcus pygargus	$+$		$+$		K1	＊	II	II	
－undoodivo	Accipiter gentiiis	$+$	＋	$+$	＋			II	11	
Тоıхдоүе́рако	Accipiter nisus	$+$	＋		＋			II	II	
Eaivt	Accipiter brevipes	＋			＋		＊	II	II	2
геракіvа	Buteo buteo	＋	＋	$+$	$+$			II	11	
Xıovoyepakiva	Buteo lagopus		＋					II	II	
Kраuүazró¢	Aquila pomarina	＋				TP	＊	II	11	2
Xpuoaztó¢	Aquiia chrysaetos	$+$	＋	＋	＋	TP	＊	II	11	3
ミruZątós	Hieraaetus fasciatus	$+$	＋	$+$	＋	TP	＊	II	II	3
¿taupaetós	Hieraaetus pennatus	$+$				TP	＊	II	11	3
Kıpkıvȩ́，	Fa／co naumanni	＋		$+$		TP	＊	II	1／11	1
Врахокıркіvȩ̧o	Fa／co tinnuncuius	＋	＋	＋	＋			II	II	3
Маирокıркігеそ\％	Fa／co vespertinus			＋				II	11	
Феvтроүе́рако	Fa／co subbuteo	＋						II	11	
Mauportetpitns	Fa／co eleonorae	＋				Ar	＊	11	II	2
Хрибоүе́рако	Fa／co biarmicus		＋			TP	＊	II	11	3
Петрitņ	Fa／co peregrinus	$+$				Ar	＊	11	II	
Aуpıóкоирко¢	Tetrao urogaiius	＋	＋	＋	＋	Σ		II		
Пยтропе́рбıка	Alectoris graeca	$+$	＋	＋	＋					2
Optúkt	Coturnix coturnix	＋		＋	＋	AT			II	3
Nepóкота	Gailinuia chioropus	$+$	＋	$+$	＋					

EIAH		（1）	X	A	K	K．BIB＾．		79／409	BEP．	BON．
Kotví Ovopacia										
Фаларi $\delta \alpha$	Fuilica atra		$+$						11	
Потацоофирутт＇s	Charadrius dubius	＋						11	H	
Өaлабообфирихtท́s	Charadrius aiexandrinus	$+$	$+$					11	11	3
K $\lambda \lambda \eta \mu \alpha{ }^{\prime} \alpha^{\prime}$	Vanellus vane／us		$+$						11	2
	scoiopax rusticoia		$+$						11	3
Потацо́триүүа¢	Actitis hypoieucos	$+$	$+$					11	11	3
ミтеркора́pıo¢	Stercorarius parasiticus			＋						
Maupoке́фа入оs	Larus meianocephaius		＋			TP	＊	II	II	
Navóẏapos，	Larus minutus	＋						11		3
Käтаvокと́фа入о¢	Larus ridibundus	＋	$+$							
＾етто́рацфос	Larus genei		＋			K2	＊	II	11	3
Atyatóy入apos	Larus audouinii			＋		K2	＊	II	1／II	1
Aопио́үлароя	Larus cacchinans	$+$	＋	$+$	＋					
Гहлоү入ápovo	Gelochelidon ni／otica	$+$				K1	＊	11	11	3
	Sterna sandvicensis		＋			A	＊	II	11	2
Потацоулápovo	Sterna hirundo			＋			＊	11	11	
Aүpiorzрiotepo	Co／umba iivia	＋	＋	＋	＋					
Фабоолерітєро	Co／umba oenas	＋	＋	＋	＋	Σ				
Фа́бо⿱㇒日勺	Co／umba pa／umbus	$+$	＋	＋	＋					
هعкохтои́pa	Streptopelia decaocto	$+$	＋	$+$	$+$					
Tpuyóve	Streptopelia turtur	$+$		＋	＋					3
Koúko¢̧	Cucu／us canorus	${ }^{+}$		$+$	＋					
Tutú	Tyto alba	$+$	$+$	$+$	$+$			11		3
「кıúvns	Otus scops	＋			＋			11		2
Мтои́фо¢	Bubo bubo	$+$	＋	$+$	$+$		＊	11		3
Koukoußáyıa	Athene noctua	＋	$+$	＋	＋			11		3
Xouxouptotŕs	Strix aluco	＋	＋	$+$	$+$			II		
Navóилоифо¢	Asio otus	＋	＋	＋	$+$			II		
「ıరoßúद，	Caprimulgus europaeus			＋	＋		＊	II		2
¿тахтáp α	Apus a pus			$+$	$+$					
Eкعп兀арvás	Apus melba	＋		＋	＋			II		
A入киóva	Alcedo atthis	＋	＋				＊	II		3
Мع入ıобоффа́үo¢	Merops a piaster			＋	＋			II	11	3

EIAH		（1）	X	A	K	K．BIB＾．		79／409	BEP．	BON．
Kotví Ovouacia	Eruotquovıkí Ovo $\mu \alpha \sigma$ i α									
	Coracias garrulus			＋	$+$	TP	＊	II	II	2
Tба入алеtعเvós	Upupa epops			＋	$+$			II		3
	Jynx torquilla			$+$				11		3
	Dendrocopos syriacus	$+$					＊	11		
	Melanocoryha calandra			＋			＊	II		3
Katoou入1épク̧	Galerida cristata	$+$	＋	＋	＋					3
	Lululla arborea	＋	＋				＊			2
	A／auda arvensis		＋	＋						3
OxӨохе入i \％$^{\wedge}$	Riparia riparia	＋		$+$				II		3
Bpaxoxe入i＇oovo	Ptyonoprogne rupestris	$+$			＋			II		
Xe入ıరóvi	Hirundo rustics	＋		$+$	＋			II		3
－xvtpoxe入íoovo	Hirundo daurica	＋		＋	＋			II		
Erıtoxenióovo	Deiichon urbica	＋		＋	＋			II		3
	Anthus triviaiis			$+$	$+$			11		
Kıtpıvooouooupá $\delta \alpha$	Motacilia fiava	$+$		＋	＋			II		
¿тахtoooucoupá $\delta \alpha$	Motacilia cinerea	＋		＋	＋			11		
	Motaciiia alba	＋	＋	＋				11		
Nероко́тбифа¢	Cinc／us cinc／us	$+$	＋	＋	＋			II		
Tрutoфра́xtrs	Troglodytes troglodytes	＋	＋					11		
Ө $\alpha \mu \mathrm{vo}$ ¢ $\dot{\alpha} \lambda$ tns	Prunella modularis		＋					11		
Xıovo廿込tns	Pruneila collaris	$+$	＋	＋	＋			II		
Kouфапర̇óvi	Cercotrichas galactotes	＋		＋	＋			11	II	3
Kokkivo入aiuts	Erithacus rubecula	＋	＋	＋				11	II	
AnSóvi	Luscinia megarhynchos	＋		＋	＋			11	11	
Kapßouvíapns	Phoenicurus ochruros	＋	＋		＋			II	II	
Kokkivoúphs	Phoenicurus phoenicurus	＋		＋	＋			11	11	2
Kaotavohaiuns	Saxicola rubetra	＋		$+$				II	II	
Maupohaiunc	Saxicola torquata	＋						11	11	
こтахтопетро́к入入१	Oenanthe oenanthe	＋		＋				11	II	3
Аопрок ${ }^{\text {a }}$ 人 α	Oenanthe hispanica	＋		＋				11	11	2
Петроко̇тбифа¢	Monticola saxatilis	$+$		$+$	＋			11	11	
	Monticola solitarius	＋	＋	＋	＋			11	11	3
Kótouфа¢	Turd us merula	＋	＋	＋	＋				11	

 TMHMATO乏 IEPA乏 MONH $\Sigma \Sigma I M \cap N O \Sigma ~ \Pi E T P A \Sigma ~$

EIAH		©	X	A	K	K．BIB＾．	79／409	BEP．	BON．
Kotví Ovouacia									
Toix $\lambda \lambda$	Turd us philomelos	＋	＋	＋	＋			II	
Toaproáp ${ }^{\text {a }}$	Turd us viscivorus	＋	＋					II	
Чعutanర̄óvt	Cettia cetti	＋					11	11	
Ka入auotpilotis	Locuste／a luscinioides	＋		＋			11	11	
Tбохлопот $\alpha \mu$ i $\delta \alpha$	Acrocephalus	＋		＋			11	11	
תхpоотрıтоi $\alpha^{\text {a }}$	Hippolais pallida	＋		＋	＋		11	11	3
Alootpıtai $\delta \alpha$	Hippolais olivetorum	＋		＋	$+$	＊	11	II	2
Kıtplvootpltoib α	Hippolais icterina	＋					11	11	
Kоккıขото甲ро $\dot{\alpha}$ ко¢	Sy／via cantillans			$+$			II	11	
Маиротбироßа́ко̧	Sy／via melanocephala		＋				11	11	
Деvтротбироßа́ко̧	Sy／via hortensis	＋		＋	＋		11	11	3
＾алотоцроßа́ко¢	Sy／via curruca	＋		＋	＋		II	II	
Өauvotoıpoßákos	Sy／via communis	＋		＋	＋		11	11	
Кппотб！роßа̇ко¢	Sy／via borin	＋					II	11	
Maupooкои́фп¢	Sy／via atricapiiia	＋	＋				11	II	
Bouvoфu入入обко́ros	Phyloscopus boneili	＋		$+$	＋		11	11	2
Аеутрофи入入обко̇тоя	Phyloscopus coilybita	＋	＋	$+$			11	11	
Өаигофи入入ооко́то¢	Phyloscopus trochiius	＋					11	II	
хрибоßабі入iбкоя	Regu／us reguius	＋		＋			II	11	
Baculionos	Regu／us ignicapiiius	$+$	$+$				11	11	
Muyoxáфt\％s	Muscicapa striata	＋		＋	＋		11	11	3
Navouuyoxáфtis	Ficeduia parva	＋				＊	11	11	
Maupouvyoxáфtпns	Ficeduia hypoieuca	＋					11	11	
	Aegithaios caudatus	＋	＋	＋	＋		11		
	Parus pa／ustris	＋	＋	＋	＋		11		
K入ぇiठ ω Vá¢̧	Parus iugubris	＋	$+$	＋	＋		11		
	Parus cristatus	＋	$+$	$+$	＋		II		
	Parus ater	＋	$+$	＋	＋		11		
「 $\alpha \lambda \alpha \zeta$ ог $\alpha \pi \alpha \delta$ it $\alpha \alpha$	Parus caeruieus	＋	＋	＋	＋		II		
Ka入óyepos	Parus major	$+$	＋	＋	＋		11		
Kаитобеvтроßג̇tns	Certhia brachydactyia	＋	＋	$+$	＋		11		
\evtpotoonaváko̧	Sitta europaea	＋	＋	$+$	＋		II		
Bpaxotooravákos	Sitta neumayer	＋	＋	＋	＋		11		

EISH		(1)	X	A	K	K.BIBA.		79/409	BEP.	BON.
Kotví Ovou^oía	Eruorquovikí Ovouaбi α									
	Tichodroma muraria		+			Σ		II		
£uкофа́үos	Orioius orioius	+		+	+			II		
Aعtonáxos	Lanius coilurio	+		$+$	+		*	II		3
Г α ¢оиорокеф $\alpha \lambda \alpha$ ¢	Lanius minor	+		$+$	+	AT	*	11		2
Коккıvокеф $\alpha \lambda \alpha$ ¢	Lanius senator	+		$+$	+			II		2
Парбалокефф $\lambda \alpha \ll$	Lanius nubicus	+				Σ		II		2
Kíбо ${ }^{\text {\% }}$	Garruius giandarius	+	+	+	$+$					
Kарак $\dot{\alpha} \xi \alpha$	Pica pica	+	+	$+$	+					
Kápria	Corvus moneduia	+	+	+	$+$					
Koupoúva	Corvus corone	+	+	+	+					
Kópaka¢	Corvus corax	+	+	+	$+$					
Yapóvt	Sturnus vulgaris	+	$+$	+	+					3
Enouppitns	Passer domesticus	+	+	+	+					3
Xwpaфоолоирvitns	Passer hispaniolensis	+		$+$	$+$					
Петроотоирүitns	Petronia petronia	+	+	+	+			II		
Xeıuluvóorivos,	Fringilla montifringilla		+							
Erivos	Fringilla coe/ebs	+	+	+	+			II		
£карө́xкı	Serinus serinus		+					II		
	Carduelis chioris	+	$+$	+	+			II		
Kapסepiva	Cardueiis cardueiis	+	+	+	+			II		
Nóupapo	Cardueiis spinus		$+$					II		
Фavėo	Cardueilis cannabina	+	+					II		2
Xovtpouúṫs	Coccothraustes	+	+	+	+			II		
	Emberiza cirius	+	+					II		
Bouvotaix ${ }^{\text {a }}$ ovo	Emberiza cia	+		+	+			II		3
B ${ }^{\text {áaxos }}$	Emberiza hortuiana	+		+	+		*	II		2
	Emberiza caesia	+		+	+		*	II		
Аилеえ̇оирүós	Emberiza meianocephaia	+		+	+			II		2
Toidras	Miliaria calandra	+		+						2
¿úvo久o:	173					29	40	134	81	68

 Ө $\alpha \lambda \alpha \sigma \sigma о к о ́ \rho \alpha к \alpha \varsigma$ (Phalacrocorax aristotelis)

Otкодоүік

 ката́סuđŋ η опоía фтávet $\mu \varepsilon ́ \chi \rho!~ \tau \alpha ~ 50 m . ~$

Arcilés

£muZaعtós (Hieraaetus fasciatus)

Оıколоүіа

Апєь入દ́ऽ

 каı $\eta \eta \lambda \varepsilon к т \rho о \pi \lambda \eta \xi i \alpha$ ．
Фıठaعtós（Circaetus gallicus）
K $\alpha \vartheta \varepsilon \sigma \tau \omega ่ \varsigma ~ \pi \alpha \rho о \cup \sigma i \alpha \varsigma ~-~ \pi \lambda \eta \vartheta \vartheta v \sigma \mu o ́ \varsigma ~$

Оıколоріа

 $\delta \alpha \sigma о к \alpha \dot{\lambda} u \psi \eta$ ．

Xouoartóc（Aquila chrysaetos）

 ot α סutik α tou Avtiá $\theta \omega v \alpha$ ．

 ¿عuүápıa (Tucker \& Heath 1994, BirdLife International 2004).

Оккодоуіа

 áкрец̧ twv $\delta \alpha \sigma \dot{\sigma} v$.

 проотатвúcouv ta Өnpáađtá tous.

 то $\begin{aligned} & \text { íठos. } \\ & \text {. }\end{aligned}$

Intpitnc (Falco peregrinus)

 $\mu \varepsilon \tau \alpha \xi \dot{u} 100 \kappa \alpha \iota 250$ ̧zuүápl α (Tucker \& Heath 1994).
Окколоүіа

 $\alpha \varepsilon \rho \alpha$ ．

Алєเ入દ่ऽ

 $\varepsilon \mu \pi$ о́рเо $\alpha \cup ү \omega ́ v ~ к \alpha เ ~ v \varepsilon о \sigma \sigma \omega ́ v ~ ү เ \alpha ~ เ \varepsilon р а к о Ө \eta \rho i \alpha . ~$

Bouvootaxtápa（Apus melba）

 $\pi \lambda \eta \theta$ ибцós：1．000－5．000 そعúүn（ $\pi เ \theta \alpha v \alpha ́ ~ \cup \pi о \varepsilon к т i ́ \mu \eta \sigma \eta) . ~$

Откодоүіа

 трофர் бє ло入и́ $\mu \varepsilon ү \alpha ́ \lambda \eta ~ \alpha \pi o ́ \sigma \tau \alpha \sigma \eta ~ \alpha \pi o ́ ~ т \eta ~ \phi \omega \lambda i \alpha ́ . ~$

Aлモเ入દ่ऽ

On $\lambda \alpha \sigma$ тıк

 （Erinaceus concolor），η vavo $u \cup \gamma \lambda i \delta \alpha$（Sorex minutus），$\eta$ кппо $\mu \cup \gamma \alpha \lambda i \delta \alpha$（Crosidua suaveolens），$\eta$

 otaxtorovtıkóc（Mus musculus），o uauporovtıkó（Ratus ratus），o סeкаtıotńs（Ratus norvegicys），o סaøonovtıó̧（Sylvaemys sylvaticus），o apoupaioç（Microtus arvalis），o β рахопоvtıkó（Apodemys ystacinus）．

 $\lambda \alpha ф \dot{\alpha} \tau \varepsilon \varsigma$（Elaphe quatuorlineata），$\sigma \alpha i t \varepsilon \varsigma$（Coluber najadum），$\delta \varepsilon v \delta \rho \circ \gamma \alpha ́ \lambda ı \varepsilon \varsigma$, （Coluber gemonensis）， vepóфı $\delta \alpha$（Natrix natrix），orıtóфı $\delta \alpha$（Elaphe situla）kaı $\sigma \alpha u ́ p \varepsilon \varsigma, ~ \varepsilon v \omega ́ ~ \alpha \pi o ́ ~ \tau \alpha ~ \alpha \mu ф i \beta ı \alpha ~ u \pi \alpha ́ \rho \chi o u v ~$

 vekpŋ́ opyavikń ú $\eta \eta$ к $\lambda \pi$ ）．

 $\varepsilon \lambda \alpha ı 0 ́ \phi i \lambda \eta$ ），Psilocybe crobulus（ Ψ ı λ okú $\beta \eta \eta$ Ouøoav $\omega t \eta$ ），Coccomyces delta，Lophodermium arudinaceum，Apiospora montagnei，Porpolomyces farinosus，Microthyrium ilicinum kaı ro入入áv

 Amanita virosa，Paxillus panuoides（ $\Pi \alpha \dot{\xi} £ \lambda \lambda$ os o $\pi \eta v i o ́ \mu \circ \phi \circ \varsigma$ ），Suillus collinitus，Mycena atrocyanea

 катаүрафвí ot onáviot абкоиúкnте̧̧ Mollisia cinerea，Ciboria americana，Lanzia echincephala，

 фа入入oहıס́ńs），Cortinarius purpurascens（Koptıvápıo̧ o порфи иóç），C．Trivialis（Koptıvápıo̧ o koเvós），

 фраоиخóнорфо）к．α ．（NtáфП̧ к．$\alpha .1997$ ）．

1．2 ANAФOPA AMASN YФI乏TAMENSN H／KAI ETKEKPIMEN ΩN EPISN＇H $\triangle P A \Sigma T H P I O T H T \Omega N ~$

ITHN ПEPIOXH MEAETH乏

1．3 AМАЕЕ ГXETIKE乏 ПАHPOФOPIE乏 ПOY АФOPOYN ГTHN ПEPIOXH MEЛETH乏

1.4 ФЛТОГРАФІКН ТЕКМНРI Ω Н

1.5 КАТАГРАФН TH乏 KATAฐTA乏H乏 TOY ФYミIKOY ПEPIBA＾AONTO乏 ミTHN ПEPIOXH TOY AIKTYOY NATURA 2000

1．5．1 Etóxol סıatńpnons tnc okías $\pi \varepsilon \rho$ ıoxńs Natura 2000

Aró to d́ $\rho \theta \rho \mathrm{po} 8$ tou N．3937／2001

 ठıatípクのฑŋ́s tou．

 tuc 20 £ $\varepsilon \pi \tau \varepsilon \mu$ ßpiou 2012.

 тou入áxıotov ह́va μ भ́va

Пivaкас 3：Еiઠŋ откото́ $\pi \omega v$ ．

TÚTO̧ OLKOTÚTLOU	KWర゙KÓ¢	терเохŋ́я Natura	＊2	Eлıфáveıа ミхモтıки́ ＊3	K α тáotaon 	$\begin{gathered} \text { ミuvo入ıkń } \\ \alpha \xi \text { เoגóvnon } \\ * 5 \end{gathered}$
－Aғvగกn⿻三丨iरń Matorrals $\mu \varepsilon$ Juniperus spp．	5210	1	D			
－AsuKnnosißín Matorrals $\mu \varepsilon$ Laurus nobilis	5230	1	C	A	C	B
	5310	1	C	A	C	B
Funhorhia knurtí as $\alpha k t \varepsilon ́ \varsigma$	5320	2	A	A	B	A
－Wnívcruar Carmnnterium spinosum	5420	4	A	C	B	B
－AnRsாтกíyOt $\alpha \lambda \pi$ tкoí $\lambda \varepsilon \iota \mu$ и́vȩ	6170	3	C	B	B	B
－Aifrinertinr Avato入ıки́c Méoүeiou	8140	3	B	B	B	B
－Ańran nfurár aró Luzulo－Fagetum	9110	1	D			
Alnue olutinnca krt Fraxinus excelsior	91 E0	1				
－Márm $\mu \varepsilon$ Castanea sativa	9260	39		A	A	A
－FגAnuikí ถŕr̃n nfiór $\mu \varepsilon$ Abies borisii－regis	9270	1		C	B	C
－Δ áoŋ o̧ıác μ ¢ Quercus	9280	5		B	A	A

α / α		1	2	3	4
1	Abies cephalonica		X		
2	Aethionema orbiculatum		X		
3	Antehemis sibthorpii			V	
4	Asperula aristata ssp. thessala		x		
5	Astragalus thracicus ssp. monochorum		X		
6	Atropa belladona	「			A \triangle
7	Aubrieta erubescens			R	
8	Beta nana		x	R	
9	Campanula lavrensis		x		
10	Centaurea pannosa		X		A
11	Centaurea peucedanifolia	A			A

α / α		1	2	3	4
12	Cephalanthera longifolia	B			A
13	Cyclamen persicum	B		V	A
14	Digitalis leucophaea		X		$\mathrm{A} \triangle$
15	Fritillaria euboeica		X	R	
16	Fritillaria graeca		X		$\mathrm{A} \triangle$
17	Helichrysum sibthorpii			V	
18	Hypericum athoum		X		
19	Isatis tinctoria ssp. athoa		X		$\mathrm{A} \triangle$
20	Limodorum abortivum	B			A
21	Linum leucanthum		X		
22	Linum olympicum ssp. athoum		X		
23	Neotinea maculata	B			
24	Neottia nidus-avis	B			
25	Polygonum icaricum		X		A
26	Silene echinosperma		X		
27	Silene multicaulis ssp. genistifolia		X		
28	Silene orphanidis	A		V	
29	Viola athois		X		A \triangle

Eлеहnynioels Пivaxa 3

α / α		E入入пиוки́ ovouacia	
1	Phalacrocorax aristotelis	Өa入аобоко́ракая	H meninvó fivert vict to fikor ting $\pi \lambda \eta \theta$ ио μ ои́．
2	I－lieraaetus fasciatus	ミлıそаєтó¢	 $\pi \lambda \eta \theta \cup \sigma \mu \circ$ ．
3	Puffinus yelkouan	Múxos	Kpıtŕpıo Bird Life ：B1ii，C3

α / α	Erıотŋ		
1	Circoetus gallicus	Фıסaetó̧	
2	Aquila chrysaetos	Xpuøatтós	

 au̧ávovtal-

 $\mu \varepsilon เ \omega \theta \varepsilon i ́$ катд́ то лроßлелто́ $\mu \varepsilon ́ \lambda \lambda \lambda о v$

1.5.3 Kúplé tués avaфopás

		Характпртоцо́s
$\chi \propto \mu \eta \lambda \eta \dot{\prime}$	B01.02	$\delta \varepsilon ́ v \delta \rho a)$
$\chi \alpha \mu \eta \lambda \underline{\prime}$	E01.03	бıабкортıбие́vๆ катонкіа
$\chi \propto \mu \eta \lambda$ ¢́	A01	
$\mu \varepsilon ́ \tau p ı \alpha$	109	фwtıá (фuđıкท̆)

2000 －STANDARD DATA FORM

 948 Пиркаүı́́ ало́ фибเкд́ $\alpha i t i \alpha$

ПupкауเÉs

 щク́ко̧̧ тŋ̧ Xepoovท́бou．

 Epyou．

入ípves

 Δ เо́taү $\mu \alpha$ 67／1981）－OXI

 67／1981）－OXI

[^2]
$>$ Mauremys rivulata IUCN－LC，Ко́ккเvo Bı $\beta \lambda$ io E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha \varsigma ̧$－LC，Annexes II of the EU Natural Habitats Directive－OXI
 uұо́ $\mu \varepsilon \tau \rho \alpha$

 67／1981）－NAI
 каı סабルќ β обкото́тıа．

 Δ เа́tаүна 67／1981），－NAI

 каı $\mu \varepsilon ү \alpha \dot{\lambda} \alpha$ ס α бル α бибтŋ́ $\mu \alpha \tau \alpha$

 EKOónvia 92／43／EOK，OXI
$>$ Platanus orientolis PD67／81 По入ú кotvó đe пота́ $\mu \mathrm{I}$ OXI

＞Trapa natans Annex II of Council Directive 92／43／EEC OXI
Pancratium maritimum Annex II of Council Directive 92／43／EEC OXI
$>$ Fraxinus angustifolia Annex II of Council Directive 92／43／EEC OXI
＞Groenlandia densa Annex II of Council Directive 92／43／EEC OXI
$>$ Lutra Lutro IUCN：NTKókкıvo Bı $\beta \lambda$ io E $\lambda \lambda \alpha \dot{\sigma} \delta a c$ EN－OXI
 трофர́
＞Monachus monachus Eíßn rou avaфépovtat oto áp日po 4 tņ oठnүiaç 2009／147／EK каı

ミпорабкки́ $\varepsilon\} \dot{́ r} \pi \lambda \omega \sigma \eta$ ．

 Пара́ртп $\mu \alpha$ V．Проотабіа CITES－OXI

＞Accipiter brevipes 2009／147／EC：Пapáptnu人 I，¿úpßaon tnç Bépvnc II，£ú $\mu \beta \alpha \sigma \eta$ tnç Bóvvnc II，

＞Aquila pomorina 2009／147／EC：Пapáptnua I，£úußaon tnç Bépvnc II，£úußaon tnc Bóvvnç II，
 к ω voф́́p ωv OXI

 uүротóтоия $\mu \varepsilon$ аццо́лофоис．OXI

＞Calandrella brachydactyla 2009／147／EC：Парáprnu I，£ú $\mu \beta \alpha \sigma \eta$ Bépvņ II，KBE－E入入ádac：NE，
 екта́бєı̧ ท́ ßобкótonouc OXI

 $\pi \rho o ́ \sigma \beta \alpha \sigma \eta ~ \sigma \varepsilon \varepsilon ~ \varepsilon \lambda \omega \dot{\sigma} \eta$ uүроtónouc．OXI

＞Circaetus gallicus 2009／147／EC：Парáptnua I，£úußaon tns Bépvnc II，£ú $\mu \beta \alpha \sigma \eta$ tnc Bóvvnc II，

＞Circus aeruginosus 2009／147／EC：Парáptnua I，£ú $\mu \beta \alpha$ on tnç Bépvns II，£ú $\mu \beta \alpha \sigma \eta$ tnç Bóvvnc II， CITESII／A，KBE－E入入 α $\delta a c ̧: ~ V U, ~ I U C N: ~ O X I ~$

 E入入áסac．
＞Coracios garrulous 2009／147／EC：Парáptn $\mu \alpha$ I，£ú $\mu \beta \alpha \sigma \eta$ tnç Bépvņ II，£ú $\mu \beta \alpha \neq \eta$ tns Bóvvnc II， KBE－E入入á $\delta a c ̧ / u$ ，IUCN：OXI

 モктג́бをเç．

＞Melanocorypha calandra 2009／147／EC：Па $\alpha \dot{\rho} \rho \tau \eta \mu \alpha \mathrm{I}, ~ \sum u ́ \mu \beta \alpha \sigma \eta$ Bépvnc II，KBE－E $\lambda \lambda \alpha \dot{\delta} \delta \alpha \varsigma$ ：VU，IUCN： OXI

ミnuعiwon via tnv $\pi \varepsilon p i o x n ́: ~$

 актіvоßо入іє¢．

2．$\triangle E O Y \Sigma A ~ E K T I M H \Sigma H ~ K A I ~ A \Xi I O / О O Г H \Sigma H ~ T \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N ~$

 ठпнıoupyoúvtal aró tףv үéфupa

 $\varepsilon \pi \varepsilon \xi \varepsilon \rho \gamma \alpha \sigma$ © α ）．

 $\theta \varepsilon \rho \mu o ́ \beta t \omega v$ пєúк ωv ．
 $\theta \alpha$ ঠıафоротоıŋӨои́v．

Enuttẃoeıs ह́pyou otnv $\pi \alpha v i \delta \alpha$ tnc $\pi \varepsilon \rho เ o x n ̃ s ~$

$\Delta \varepsilon v$ tï日

3．METPA ANTIMET $\Omega \Pi I \Sigma H \Sigma ~ T \Omega N ~ \Pi I O A N \Omega N ~ E П I \Pi T \Omega \Sigma E \Omega N ~$

 halepensis，P．nigra к αt Abies pseudocilicica），$\mu \alpha\langle\not \subset \mu \varepsilon \mu \kappa \tau \dot{\alpha} \delta \alpha \not \sigma \eta$ ．H корифท́ tou ßouvoú عival $\mu \varepsilon$

 Quercus coccifera．

 purpurea，Valeriana alliariifolia，Viola delphinantha）ミtov ката́入оүо WCMC каı／ท́ бтоv Eupwraïко́
 Cephalanthera damasonium，Convallaria majalis，Dianthus petraeus ssp．Orbelicus，Neottia nidus－ avis，Platanthera bifolia，Platanthera chlorantha，Poa thessala，Sorbus chamaemespilus） $\pi \rho о \sigma t \alpha t \varepsilon u ́ o v t \alpha t ~ \alpha r o ́ ~ t o ~ \varepsilon \lambda \lambda \eta v t к o ́ ~ \pi \rho о \varepsilon \delta \rho t к o ́ ~ \delta t \alpha ́ t a ү \mu \alpha ~(67 / 1981), ~ 3 ~ \varepsilon i ́ \delta \eta ~(H e r a c l e u m ~ h u m i l e, ~$ Saxifraga juniperifolia ssp．Sancta，Ophioglossum vulgatum）eivat orávia otŋv E入入áס α ń／T α $\beta \alpha \lambda \kappa \alpha v \iota \kappa \alpha ́ \alpha$ ev $\delta \eta \mu$ tк α（Allium chamaespathum，Arabis bryoides，Asperula aristata ssp．Nestia， Colchicum doerfleri，Erysimum drenowskii，Stachys leucoglossa）к $\alpha 1$ т $\alpha \xi$ ıvo μ ккóc（Thymus thracicus）．

Алєı入ои́ $\mu \varepsilon v \alpha$ кои пробт $\alpha \tau \varepsilon \cup о ́ \mu \varepsilon \vee \alpha$ ві $\delta \eta$

 $\pi \alpha ́ v \omega$ aró 100 ह́tๆ．

 $\sigma \varepsilon \mu$ кро́тєро $\alpha \rho เ \theta \mu$ ќ عı $\delta \omega ́ v$.

 пиркаүıá̧ عivaı η Fritillaria euboeica（Phitos et al．1995）．

 $\tau \omega v$ ：
 סג́on）

2．$\pi \varepsilon \rho เ \frac{\chi \omega ́ v}{} \delta \iota \alpha x \varepsilon i \mu \alpha \sigma \eta \varsigma \mu \varepsilon \gamma \alpha ́ \lambda \omega v$ Өŋ $\lambda \alpha \sigma t ⿺ \kappa \dot{v}$

5．$\pi \varepsilon \rho เ о \chi \omega ́ v ~ \mu \varepsilon ~ \pi о \lambda \lambda \alpha ́ \alpha ~ \omega ́ \rho ı \mu \alpha / ү \varepsilon ́ p ı к \alpha ~ \delta \dot{v v} \delta \rho \alpha$

 аvалараүшүчки́ пєрі́обо, $\mu \varepsilon т \alpha \xi \dot{~ A \pi \rho ८ \lambda i o u ~ k \alpha u ~ l o u \lambda i o u . ~}$
 про́бкроиaŋs

 غ́pүшv.

4．ANTI乏TAOMIETIKA METPA

N．4014／2011

Enirtwon	Métp α
 	 үı α tnv $\alpha \sigma \phi \dot{\lambda} \lambda \varepsilon \iota \alpha$ катабквuńs tou ह́ppou каı тnv о δ เкń $\pi \rho o ́ \sigma \beta a \sigma \eta ~ к \alpha ı ~ ү ц \alpha ~ т \eta v ~ к \alpha ́ \lambda u \psi \eta ~ \dot{\alpha} \lambda \lambda \omega v$
Пробwpıvós катакериатібиós	 tóte autá va eival фuatká $\delta \varepsilon v$ हлutpéretaı η
Пробшрıví $\alpha \pi \omega ́ \lambda \varepsilon เ \alpha ~ о т к о т о ́ \pi о и ~$ 	

Enirtwon	Métp α
Пробшрıvท́ $\alpha \pi \dot{\omega} \lambda \varepsilon \iota \alpha ~ \pi \imath \theta a v \omega ́ v ~ Ө \varepsilon ́ \sigma \varepsilon \omega v ~$ ф $\omega \lambda$ हогоínons	 （тo épyo عivaı roरú μ เкрó）

4．3 A\＆ı๐入óvnon $\mu \varepsilon ́ \tau \rho \omega v$ avtiotá $\theta \mu i \sigma n s$

 $\mu \pi о р \varepsilon i(v a \varepsilon \xi \alpha \lambda \varepsilon ı \phi \tau \varepsilon i)$ ．

 $\pi \lambda n ́ \rho \omega \varsigma$ ．

 каı тŋv $\alpha \pi \dot{\omega} \lambda \varepsilon เ \alpha ~ \tau \omega v$ то́л ωv шотокіаৎ, к $\lambda \pi$.

 eppaoiac. N $\alpha \mu \eta$ रivet avaßá $\theta \mu t \neq \eta$ ń катабкعuń katvoúptwv $\delta \rho o ́ \mu \omega v$ evtós tns

 тทv $\alpha \rho \mu o ́ \delta \iota \alpha ~ \alpha \rho \chi ウ ́ . ~$

 $\pi \rho о к \lambda \eta$ Өои́v ох λ ク́беเৎ．

－Na $\mu \eta \vee$ ঠпиноирүoúvtat « $\lambda \mu$ voú $\lambda \varepsilon \varsigma »$

5．ПРОГРАММА ПАРАКОЛОҮӨНГНГ

 к α Optotoúv．

 192／B－14．3．1997）

－Пробтабia тпৎ $\delta \eta \mu$ óбıас uүعiac．

Eloepróusvo opvaviкó بoprio

Mévo

 $\lambda \nu \mu a ́ t \omega v$ ．

 o入ok入ńp ω oń touc．

 ava入úбє

MAPAMETPO乏	EILOAOE	EEOAOE	IAY乏	$\Delta E I T M A$	ПAPATHPHEEI乏
BOD $_{5}$	$\#$	$\#$		M．H	
COD	$\#$	$\#$		M．H	
SS	$\#$	$\#$		M．H	

\＃：Пєрьобика́（ $\pi \cdot \chi \cdot 1-2 / \mu \eta v \iota \alpha i \omega \varsigma)$
＊$: \Sigma \pi$ о $\rho \alpha \delta$ เка́
M．H ：Méбo $\eta \mu \varepsilon \rho \dot{\jmath} \sigma t o ~ \delta \varepsilon i ́ ү \mu \alpha$

6．£YNOUH इYMПEPA乏MAT ΩN

 дuнд́т ωv ：

 перıß́д入入оv．

Me tnv ката⿱㇒⿺𠃊uท́ тоu ह́pүou：

7．ВІВАІОГРАФІКЕГ ПHГE乏

 Poठórtnc．AӨŕva．

－EइYE Aлоүраф́́ 1991.

－Dimou D，Gikas GD，Tsihrintzis VA：＂Water quantity and quality monitoring of Lissos river，North Greece＂，Proceedings of the Third International Conference on Environmental Management， Engineering，Planning and Economics（CEMEPE 2011）\＆SECOTOX Conference，2011，Skiathos， Greece，p．151－157
 Eтаıрías，Ө $\varepsilon \sigma /$ vikn Aлрìııos 2004
－ГLavvónou入oç，PYחANEH T ΩN Y $\triangle A T I N \Omega N ~ \Sigma \Omega M A T \Omega N ~ A \Pi O ~ T H N ~ K Y K \Lambda O Ф O P I A ~ T \Omega N ~ O X H M A T \Omega N ~$ 2o Пave入入ŕvio £uvéסpıo Oठorotíaç，Bóגoç，Máıoş 2005
－＂The AOPII Cost Effectiveness Study Part III：The transport base case Annex B4 Greece，The European Commission，Standard \＆Poor＇s DRI and KULeuven＂

－Taylor，E．C．，Green，R．E．，\＆Perrins，J．（2007）Stone－curlews Burhinus oedicnemus and recreational disturbance：developing a management tool for access．Ibis， 149 （1），37－44．
－Tucker，G．M．\＆Heath M．F．，（1994）Birds in Europe：Their conservation status．Cambridge，UK．： BirdLife International（BirdLife Conservation Series No 3）
－Barros，C．\＆De Juana，．E．（1997）Breeding success of the Stone Curlew Burhinus oedicnemus at La Serena（Badaioz．Spain）．Ardeola 44 （2），199－206．
－Bealey，C．E．，Green，R．E．，Robson，R．，Taylor，C．R．，Winspear，R．（1999）Factors affecting the numbers and breeding success of Stone Curlews Burhinus oedicnemus at Porton Down，Wiltshire． Bird Study 46 （2），145－156．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．
－Giannangeli，L．，De Sanctis，A．，Manginelli，R．，Medina，F．M．（2005）Seasonal variation of the diet of the stone curlew Burhinus oedicnemus distinctus at the Island of La Palma，Canary Islands． Ardea 92 （2），175－184．
－Green，R．E．，Tyler，G．A．，Bowden，C．G．R．（2000）Habitat selection，ranging behaviour and diet of the stone curlew（Burhinus oedicnemus）in southern England Journal of Zoology 250 （2），161－183．
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Thompson，S．，Hazel，A．，Bailey，N．，Bayliss，J．，Lee J．T．（2004）Identifying potential breeding sites for the stone curlew（Burhinus oedicnemus）in the UK．Journal for Nature Conservation 12， 229 － 235.
－Catry T．，Ramos JA．，Catry I．，Allen－Revez M．，Grade N．， 2004 Are salinas a suitable alternative breeding habitat for Little Terns Sterna albifrons？IBIS 146 （2）：247－257 APR 2004
－Fasola M．，（1993）Distribution，population and Habitat Requirements of the Vommon Tern and the Little Tern breeding in the Mediterranean in Aguilar，J．S．，Monbailliu，X．Paterson，A．M．Status and Conservation of Seabirds，Proceedings of the 2nd MEDMARAVIS，SEO，Madrid
－Goutner V．，Charalambidou T．，\＆Albanis A．（1997）Organochlorina Insecticide Residues in Eggs of the Little Term（Sterna albifrons）in the Axios Delta，Greece．Bull．Environmental Contamination and Toxicology 58－61－66
－Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Joris E．，\＆Stienen E．，（2009）Impact of wind Turbines on Terns in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009，Seabird Group 10th International Conference．Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．
－Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute （VLIZ）．Oostende，Belgium．Viii＋68 p．
－Medeiros R．；Ramos J．，Paiva V．，Almeida A．，Pedro P．，Antunes S．（2007）Signage reduces the impact of human disturbance on
－Little tern nesting success in Portugal，Biological Conservation 135 （2007）99－100

－Ruben F．，Krijgsveld K．，Camiel Heunks，Martin Poot \＆Sjoerd Dirksen．（2009）Nocturnal and Diurnal Flight Intensity and Altitude of Seabirds and Migrants in and around an Offshore WindFarm in the Dutch North Sea in Zeebrugge，Belgium in Stienen Eric，Norman Ratcliffe，Jan Seys，Jurgen Tack，Jan Mees and Ingrid Dobbelaere（eds．）2009．Seabird Group 10th International Conference．
－Provincial Court，Brugge，27－30 March 2009．VLIZ Special Publication 42．Communications of the Research Institute for Nature and Forest－INBO．M．2009．1．Research Institute for Nature and Forest（INBO），Brussels，Belgium－Flanders Marine institute（VLIZ）．Oostende，Belgium．Viii＋68 p．

 EKӨE
三ávӨŋ 2006．$\sigma \varepsilon \lambda .64$
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－BirdLife International（2008）Species factsheets．Downloaded from http：／／www．birdlife．org Handrinos，G．，\＆Akriotis，T．，（1997）The birds of Greece．C．Helm，A \＆C Black，London．
－Mullarney K．，Svensson L．，Zetterstrom D．，\＆Grant P．，（1999）T α Пou $\lambda \iota \dot{\alpha}$ tףc E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha \varsigma$ ，tףৎ Kúrpou

－Xavס́ptvós Г．，（1992）Mou入ıá oto Kapavסetvós M．，＾eүákı̧ A．To Kókkıvo Bı $\beta \lambda$ io twv
 OpvıӨо入оүий́ Eтаıрعía．
－BirdLife International（2004）Birds in Europe：Population estimates，trends and conservation status．Cambridge，UK：BirdLife International．（BirdLife Conservation Series No．12）．
－Cramp，S．\＆Perrins，C．M．（eds）（1993）Handbook of the birds of Europe，the Middle East and Africa．The birds of the Western Palearctic．Oxford University Press．

- De La Montana, E., Rey-Benayas, J.M., Carrascal, L.M. (2006) Response of bird communities to silvicultural thinning of Mediterranean maquis. Journal of Applied Ecology 43, 651-659.
- Guerrieri, G., Pietrelli, L., Biondi, M. (1996) Status and reproductive habitat selection of three species of Shrikes, Lanius collurio, L. senator and L. minor in a Mediterranean area. (Proc. of the First Intern. Shrike Symposium) Found. Vert. Zool. 6, 167-171.
- Handrinos, G., \& Akriotis, T., (1997) The birds of Greece. C. Helm, A \& C Black, London.
- Isenmann, P., Debout, G. (2000) Vineyards harbour a relict population of Lesser Grey Shrike (Lanius minor) in Mediterranean France. Journal fur Ornithologie 141 (4), 435-440.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) Philopatry, dispersal patterns and nest-site reuse in Lesser Grey Shrikes (Lanius minor). Biodivers. Conserv. 16, 987-995.
- Kristin, A., Hoi, H., Valera, F., Hoi, C. (2007) The importance of breeding density and breeding synchrony for paternity assurance strategies in the lesser grey shrike. Folia Zoologica 57 (3), 240250.
- Kristin, A., Hoi, H., Valera, F., Hoi, H. (2000) Breeding biology and breeding success of the Lesser Grey Shrike (Lanius minor) in a stable and dense population. Ibis 142 (2), 305-311.
- Lepley, M., Ranc, S., Isenmann, P., Bara, T., Ponel, P., Guillemain, M. (2004) Diet and gregarious breeding in lesser Grey Shrike (Lanius minor) in Mediterranean France. Revue d'Ecologie (La Terre et la Vie) 59 (4), 591-602. Pons P., Lambert B., Rigolot E., Prodon, R. (2003) The effects of grassland management using fire on habitat occupancy and conservation of birds at a mosaic landscape. Biodiversity and Conservation 12, 1843-1860.
- Ristow, D., Wink C., Wink M. (1986) Assessment of Mediterranean Autumn Migration by Prey Analysis of Eleonora's Falcon. Proc. 1st Conf. on Birds wintering in the Mediterranean Region, Aulla Feb. 1984. Supplemento alle Ricerche di Biologia della Selvaggina 10(1), 285-295.
- Tucker, G. M. \& Heath M. F., (1994) Birds in Europe: Their conservation status. Cambridge, UK.: BirdLife International (BirdLife Conservation Series No 3)
- Valera, F., Kristin, A., Hoi, H. (2001) Why does the lesser grey shrike (Lanius minor) seldom store food? Determinants of impaling in an uncommon storing species. Behaviour 138 (11-12), 14211436.
- Wirtitsch, M., Hoi, H., Valera, F., Kristin, A. (2001) Habitat composition and use in the lesser grey shrike (Lanius minor). Folia Zoologica 50 (2), 137-150

 B九бtwvi(α ¢ , lopapi $\delta \alpha \varsigma$), Boskidis et al., 2010 (J., Envir., Scien., Health, 45,11, 1421-1440, Changes of water quality and SWAT modelling of Vosvozis river basin),
 Өра́кпс),
- Economou et al., 2007 (Medit., Mar., Scien., 8,1,91-166, The freshwater ichthyofauna of Greece),

- Papastergiadou, Babalonas, 1993 (Willd., 23,137-142, Aquatic flora of N.Greece)Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),
- Drosos, 1992 (Willd, 22, 97-117, Floristic study of lake Mitriko etc),

 ОППЕО 97

 A日
－Zagas，T．D．，P．P．Ganatsas，T．K．Tsitsoni and Marianthi Tsakaldimi．2004．Thinning effect on stand structure of holm oak stand in northern Greece．In：
－Arianoutsou，M．and V．P．Papanastasis（eds），Proceedings of the 10 th MEDECOS Conference，April 25－May 1，2004．Rhodes，Greece．Millpress，Rotterdam．

 117.
－Grisebach，A．1841．Reise durch Rumelien und Brussa in jahre 1839， 1.2 Gottingen．
－Mattfeld，J．1927．Aus wald und macchie in Griechenland．Dendrol．Ges．38：106－151．

 1：50．00 AӨ＇
 ţ̄ E
 Opyaviб

8．OMADA MEAETH乏

Tах．$\Delta / v \neq \eta$ ：Пала́фП 82，Өعбба入оvíкп，Т．К．54453，
Tпп．／Fax： 2310902321 ／ 2310330630
$\Sigma ф \rho \alpha ү i \delta \alpha-Y \pi о ү \rho \alpha ф ர ்$

Orooadoviкn $14 / 04 / 2028$
TIA TON E AETXO

EлERXOHKE

Өraoaגovikn ．．．．．14／04）．．．2022
－IPOÏITAMENOE
TMHMATOE $\triangle A E Q N \& ~ I E P G B A M O N T O E ~$

$\triangle a \sigma 0 \lambda \sigma 60 \varsigma \mu \varepsilon A^{\prime} \beta$

OEתPHOHKE

Oqбoaरovikn． $14 / 04 / 20$ 22．
O AIEYOYNTHE TH乏
OEXNIKHE YПHPEEIA乏

Гعஹ́pүı¢̧ Matpaná̧̧ns
Подıtiкós Mnxavikós $\mu \varepsilon \mathrm{A}^{\prime} \beta$ ．

ПАРАРТНМА I

0

15.4 Гعம入оүıко̇с ха̇ртпя

$\begin{aligned} & \text { IEPA KOINOTH乏 } \\ & \text { AГIOY OPOY } \\ & \text { AӨת } \end{aligned}$		
2xxto:		
Avioxoc Mekerns:	KAPAREQPIIOY EYTTP AP. TEE: 87022 Пataiqq 82, 54453, өcio 	
YToropots - Eewpofosis		
	Appelos Sxxiou	Hucoonvica
-	IM-01-13-09_3	IOYNIOE 2021

[^0]: M．П．E．EPISNN EПEEEPTAEIA乏 KAI $\triangle I A \Theta E \Sigma H \Sigma ~ A \Sigma T I K R N ~ A Y M A T S N ~ T M H M A T O \Sigma ~ I . ~ M . ~ \Sigma I M \Omega N O \Sigma ~ П E T P A \Sigma ~-~-~$ MH TEXNIKH ПEPINHUH

[^1]:

[^2]: －OXI

